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ABSTRACT

This chapter gives some essential scopes to study some plithogenic algebraic 
structures. Here the notion of plithogenic subgroup has been introduced and explored. 
It has been shown that subgroups defined earlier in the crisp, fuzzy, intuitionistic 
fuzzy, as well as neutrosophic environments, can also be represented as plithogenic 
fuzzy subgroups. Furthermore, introducing function in plithogenic setting, some 
homomorphic characteristics of plithogenic fuzzy subgroup have been studied. Also, 
the notions of plithogenic intuitionistic fuzzy subgroup, plithogenic neutrosophic 
subgroup have been introduced and their homomorphic characteristics have been 
analyzed.
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PREFACE

This chapter is written for the advancement of Neutrosophic theory and Plithogenic 
theory, which can be helpful for scientists and researchers in mathematics, 
computer science and also other disciplines. It provides a detailed introduction and 
fundamental ideas of plithogenic subgroup. The prerequisites are some knowledge 
of fuzzy, intuitionistic fuzzy, neutrosophic and plithogenic set theories. Also, some 
understandings in fuzzy, intuitionistic fuzzy and neutrosophic algebraic structures 
are required. In this chapter, the notion of plithogenic subgroup is introduced and 
explored with proper examples. It has been shown that subgroups defined earlier in 
the crisp, fuzzy, intuitionistic fuzzy, as well as neutrosophic environments, can also 
be represented as plithogenic fuzzy subgroups. Furthermore, some homomorphic 
characteristics of plithogenic fuzzy subgroup are studied. Also, the notions of 
plithogenic intuitionistic fuzzy subgroup, plithogenic neutrosophic subgroup are 
introduced and their homomorphic characteristics are studied.

1. INTRODUCTION

Crisp set (CS) theory has certain drawbacks. It is quite insufficient in case of handling 
real-life problems. Fuzzy set (FS) theory (Zadeh, 1965) is more reliable in tackling 
such scenarios. Since the very beginning of FS theory, many researchers have carried 
out that perception in various realistic problems. But eventually some other set theories 
have emerged like intuitionistic fuzzy set (IFS) (Atanassov, 1986), neutrosophic set 
(NS) (Smarandache, 2005), Pythagorean FS (Yager, 2013), Plithogenic set (PS) 
(Smarandache, 2017), etc., which are capable of handling uncertainty better than 
FSs. As a result, these set theories are preferred by most of the researchers to solve 
different real-life problems in which uncertainty plays a crucial role. Actually, NS 
is a generalization of IFS, which is further a generalization of FS. Smarandache’s 
contributions towards the development of NS theory are remarkable. For instance, he 
has contributed in developing neutrosophic measure and probability (Smarandache, 
2013), calculus (Smarandache & Khalid, 2015), psychology (Smarandache, 2018), 
etc. Also, NS theory has a vast area of applications. Furthermore, Smarandache has 
introduced the notion of PS (Smarandache, 2018) theory which is a generalization 
of CS, FS, IFS and NS theories. He has further generalized PS and developed the 
notions of refined PS, plithogenic multiset, plithogenic bipolar set, plithogenic 
tripolar set, plithogenic multipolar set, plithogenic complex set, etc. Furthermore, 
he has developed plithogenic logic, probability and statistics (Smarandache, 2000; 
Smarandache, 2017) and shown that all those notions are generalizations of crisp 
logic, probability and statistics. Presently, PS theory is extensively applied in various 
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decision-making problems as well as in other applied fields. The following Table 
1 consists of some important contributions in NS and PS theory.

Again, plithogenic number (PN) has been introduced and some essential operations 
on PN, like, the summation of PNs, multiplication of PNs, power of a PN, etc., have 
been developed by Samandache. Furthermore, he has introduced some important 
measure functions like, dice similarity plithogenic number measure (based on (Ye, 
2014)), cosine similarity plithogenic number measure, Hamming plithogenic number 
distance, Euclidean plithogenic number distance, Jaccard similarity plithogenic 
number measure (Smarandache, 2017), etc. Also, in plithogenic probability theory the 
concepts of plithogenic fuzzy probability, plithogenic intuitionistic fuzzy probability, 
and plithogenic neutrosophic probability have been proposed which are essential 
tools to handle various probabilistic problems.

This Chapter has been arranged as following: In Segment 2, literature surveys of the 
fuzzy subgroup (FSG), intuitionistic fuzzy subgroup (IFSG), neutrosophic subgroup 
(NSG) are given. In Segment 3, some preliminary notions like PS, the preeminence 
of PS over other set theories, homomorphic characteristics of FSG, IFSG, and NSG 
are discussed. In Segment 4, different aspects of plithogenic subgroup (PSG), like, 
plithogenic fuzzy subgroup (PFSG), plithogenic intuitionistic fuzzy subgroup 
(PIFSG), plithogenic neutrosophic subgroup (PNSG) are introduced and also, the 

Table 1. Significance and influences of NS and PS in various fields

Author and Year Contributions in Various Fields

(Vlachos & Sergiadis, 2007) Implemented NS in pattern recognition problem.

(Guo & Cheng, 2009) Implemented neutrosophic approach to image segmentation.

(Smarandache, 2013) Mentioned some applications of neutrosophic logic in physics.

(Majumdar, 2015) Implemented NS in decision-making problem.

(Kumar et. al., 2015) Implemented neutrosophic cognitive maps in medical diagnosis.

(Deli et. al., 2015) Applied neutrosophic refined sets in medical diagnosis.

(Broumi et. al., 2016) Solved neutrosophic shortest path problem.

(Smarandache, 2017) Introduced plithogenic set, logic, probability and statistics.

(Kumar et. al., 2018) Solved neutrosophic shortest path problem.

(Smarandache, 2018) Introduced aggregation plithogenic operator in physical fields.

(Smarandache, 2018) Introduced physical plithogenic set.

(Smarandache, 2018) Extended soft set to hypersoft set and introduced plithogenic hypersoft set.

(Kumar et. al., 2019) Solved neutrosophic shortest path problem.

(Kumar et. al., 2019) Solved neutrosophic Transportation problem.
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effects of homomorphism on those notions are mentioned. Finally, in segment 5 the 
conclusion is given and some scopes of future researches are mentioned.

2. LITERATURE SURVEY

To tackle drawbacks and insufficiency of CS theory FS was introduced. But that too 
has certain limitations and hence IFS and further NS were introduced. Presently, 
Pythagorean FS (Yager, 2013) and PS (Smarandache, 2018) are more popular for 
their uncertainty handling capability. As a result, these set theories are preferred by 
most of the researchers to solve different realistic problems in which uncertainty 
is involved.

In this segment, we have discussed FS, IFS, NS and also some other essential 
notions like FSG, IFSG, NSG, level set, level subgroup, T-norm, T-conorm, etc. All 
these notions play vital roles in developing plithogenic subgroup (PSG).

Definition 2.1 (Zadeh, 1965) A FS σ of a CS U is a function from U to [0,1] 
i.e., σ : [ , ]U → 0 1 .

Definition 2.2 (Atanassov, 1986) A IFS 𝛄 of a CS U is denoted as

γ γ γ= ∈{( , ( ), ( )) : }m t m f m m U , 

where both tγ  and fγ  are FSs of U, known as the respective degree of membership 

and non-membership of any element m U∈ .  Here for every m U∈ , tγ  and fγ  
satisfy the condition

0 1≤ + ≤t m f mγ γ( ) ( ) .  

Definition 2.3 (Smarandache, 1999) A NS η  of a CS U is denoted as

η η η η= ∈{( , ( ), ( ), ( )) : }m t m i m f m m U , 

where

t i f Uη η η, , : ] , [→ − +0 1  
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are the respective degree of truth, indeterminacy and falsity of any elementm U∈ .  
Here for every m U∈ tη , iη and fη  satisfy the condition

− +≤ + + ≤0 3t m i m f mη η η( ) ( ) ( ) .  

Definition 2.4 (Zadeh, 1965) Let α be a FS of U. Then ∀ ∈t [ , ]0 1  the set

α α
t
x U x t= ∈ ≥{ : ( ) }  

is called a level subset (t-level subset) of α.
Definition 2.5 (Gupta & Qi, 1991) A function T : [ , ] [ , ]0 1 0 1→  is termed as 

T-norm iff ∀ ∈m u t, , [ , ]0 1  subsequent conditions are fulfilled:

(i) ( , )T m m1 =  

(ii) ( , ) ( , )T m u T u m=  

(iii) ( , ) ( , )T m u T t u if m t≤ ≤  

(iv) ( , ( , )) ( ( , ), )T m T u t T T m u t=  

Definition 2.6 (Gupta & Qi, 1991) A function T * : [ , ] [ , ]0 1 0 1→  is termed as 
T-conorm iff ∀ ∈m u t, , [ , ]0 1  subsequent conditions are fulfilled:

(i) ( , )*T m m0 =  

(ii) ( , ) ( , )* *T m u T u m=  

(iii) ( , ) ( , )* *T m u T t u if m t≤ ≤  

(iv) ( , ( , )) ( ( , ), )* * * *T m T u t T T m u t=  
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In the next subsection, the notions of FSG, IFSG, and NSG are discussed and 
also, some of their basic fundamental properties are given.

2.1. Fuzzy Subgroup, Intuitionistic Fuzzy 
Subgroup and Neutrosophic Subgroup

Definition 2.7 (Rosenfeld, 1971) A FS α of a group P is termed as a FSG of P iff 
∀ ∈m u P, , the subsequent conditions are fulfilled:

(i) α α α( ) { ( ), ( )}mu min m u≥  

(ii) α α( ) ( )m m− ≥1 . 

Here α α( ) ( )m m− =1  and α α( ) ( ),m e≤ where e represents the neutral element 
of P. Also, in the above definition if only condition (i) is satisfied by α then we call 
it a fuzzy subgroupoid.

Theorem 2.1 (Rosenfeld, 1971) α is a FSG of U iff

∀ ∈m u U, α α α( ) { ( ), ( )}mu min m u− ≥1 . 

Definition 2.8 (Das, 1981) Let α be a FSG of a group P. Then ∀ ∈t [ , ]0 1  and 

α( )e t≥  the subgroups α
t
 are called level subgroups of α.

Definition 2.9 (Biswas, 1989) An IFS

γ γ γ= ∈{( , ( ), ( )) : }m t m f m m U  

of a crisp set U is called an IFSG of U iff ∀ ∈m u U,

(i) t mu t m t uγ γ γ( ) min{ ( ), ( )}− ≥1  

(ii) f mu f m f uγ γ γ( ) max{ ( ), ( )}− ≤1  

The collection of all IFSG will be denoted as IFSG(U).
Example 2.1 Let U i i= − −{ , , , }1 1  and δ be a NS of U such that
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γ = − −{( , . , . ),( , . , . ),( , . , . ),( , . , . )}1 0 6 0 4 1 0 7 0 3 0 8 0 2 0 8 0 2i i . 

Notice that γ∈ IFSG (U).
Definition 2.10 (Çetkin & Aygün, 2015) Let U be a group and δ be a NS of U. 

δ is called a NSG of U iff the subsequent conditions are fulfilled:

(i) δ δ δ( ) min{ ( ), ( )}m u m u⋅ ≥ , i.e. 

t m u t m t uδ δ δ( ) min{ ( ), ( )}⋅ ≥ , 

i m u i m i uδ δ δ( ) min{ ( ), ( )}⋅ ≥  

and

f m u f m f uδ δ δ( ) max{ ( ), ( )}⋅ ≤  

(ii) δ δ( ) ( )m m− ≥1 i.e. 

t m t uδ δ( ) ( )− ≥1 , 

i m i uδ δ( ) ( )− ≥1  

and

f m f uδ δ( ) ( )− ≤1  

The collection of all NSG will be denoted as NSG(U). Here notice that tδ  and 
iδ  are following Definition 2.7 i.e. both of them are actually FSGs of U.

Example 2.2 (Çetkin & Aygün, 2015) Let U i i= − −{ , , , }1 1 and δ be a NS of U 
such that

δ = − −{( , . , . , . ),( , . , . , . ),( , . , . , . ),( , .1 0 6 0 5 0 4 1 0 7 0 4 0 3 0 8 0 4 0 2 0i i 88 0 4 0 2, . , . )} . 
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Notice that δ∈NSG(U).
Theorem 2.2 (Çetkin & Aygün, 2015) Let U be a group and δ be a NS of U. 

Then δ∈NSG(U) iff

∀ ∈m u U, δ δ δ( ) min{ ( ), ( )}m u m u⋅ ≥−1 . 

Theorem 2.3 (Çetkin & Aygün, 2015) δ∈NSG (U) iff ∀ ∈p [ , ]0 1 the p-level sets
( )t

pδ , ( )i
pδ and p-lower-level set ( )f

pδ are CSGs of U.
Definition 2.11 (Çetkin & Aygün, 2015) Let U be a group and δ be a NS of U. 

δ is called a neutrosophic normal subgroup (NNSG) of U iff

∀ ∈m u U, δ δ( ) ( )m u m u⋅ ⋅ ≤−1  

i.e.

t m u m t uδ δ( ) ( )⋅ ⋅ ≤−1 , 

i m u m i uδ δ( ) ( )⋅ ⋅ ≤−1  

and

f m u m f uδ δ( ) ( )⋅ ⋅ ≥−1 . 

The collection of all NNSG of U will be denoted as NNSG (U). Some more 
references that can be helpful to various authors are (Kandasamy & Smarandache, 
2004; Gayen et. al., 2019; Kumar et. al., 2019; Gayen et. al, 2019; Broumi et. al., 
2014; Kumar et. al., 2020 Kumar et. al., 2019b; Kumar et. al., 2017.. In the Table 
2, some sources have been mentioned which have some major contributions in the 
fields of FSG, IFSG, and NSG.

2.2. Motivation of the Work

From the above discussions, it is clear that the studies of FSG, IFSG, as well as 
NSG, have generated many fruitful research fields. Some researchers have studied 
their normal versions, homomorphic characteristics and different other algebraic 
structures. Also, some authors have implemented the soft set theory in these notions 
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and studied their fundamental properties. Presently, the PS theory has grabbed a lot 
of attention due to its uncertainty handling nature. Again, this set theory is more 
general than CS, FS, IFS, as well as NS theories. So, the notions of PSGs i.e. PFSG, 
PIFSG and PNSG can become effective research fields. Furthermore, whether 
PFSG, PIFSG, and PNSG will act as generalizations of the crisp subgroup (CSG), 
FSG, IFSG, and NSG or not that is needed to be discussed. Again, their normal 
forms, homomorphic properties and also some other essential algebraic structures 
are needed to be studied. In this chapter, the subsequent research gaps are discussed:

• Still, the notion of PFSG is undefined.
• Whether CSG, FSG, IFSG, NSG can be represented by PFSG or not, that is 

needed to be analyzed.
• Also, some other essential PSGs like PIFSG, PNSG are needed to be 

introduced and studied.
• Furthermore, homomorphic characteristics PFSG, PIFSG, PNSG are still 

unexplored.

Table 2. Significance and influences of some authors in FSG, IFSG, and NSG

Author and Year Different Contributions in FSG, IFSG, and NSG

(Rosenfeld, 1971) Introduced FSG.

(Das, 1981) Introduced level subgroup.

(Anthony & Sherwood, 1979) Introduced FSG using general T-norm.

(Foster, 1979) Introduced product of FSGs.

(Anthony & Sherwood, 1982) Introduced subgroup generated and function generated FSG.

(Sherwood, 1983) Studied product of FSGs.

(Mukherjee & Bhattacharya, 
1984) Introduced fuzzy normal subgroups and cosets.

(Biswas, 1989) Introduced IFSG.

(Eroǧlu, 1989) Studied homomorphic image of FSG.

(Kim & Kim, 1996) Studied fuzzy symmetric groups.

(Ray, 1999) Studied some properties on the product of FSGs.

(Hur et. al., 2004) Introduced Intuitionistic fuzzy normal subgroups and intuitionistic fuzzy 
cosets.

(Yuan et. al., 2010) Introduced (α,β)-IFSG.

(Sharma, 2011) Studied homomorphism of IFSG.

(Çetkin & Aygün, 2015) Introduced NSG and neutrosophic normal subgroup and studied some 
fundamental properties by introducing homomorphism in them.
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Therefore, this motivates us to introduce these notions of PFSG, PIFSG, and 
PNSG and analyze their algebraic properties.

2.3. Contribution of the Work

On the basis of the above gaps, the purpose of this article is to provide some essential 
definitions, examples, theories, propositions, etc. in the fields of PSG i.e. PFSG, 
PIFSG, and PNSG. Also, effectiveness and excellence of PSG in comparison with 
CSG, FSG, IFSG, and NSG will be mentioned. Furthermore, some important analysis 
like homomorphic characteristics of these notions will be discussed. The following 
are some purposes that are planned and executed during this research work.

• To define PFSG and study its algebraic properties.
• To check whether PFSG is a generalization of CSG, FSG, IFSG, and NSG 

or not.
• To define PIFSG and study its algebraic properties.
• To define PNSG and study its algebraic properties.
• To study some homomorphic characteristics of PFSG, PIFSG, PNSG.

3. DESCRIPTION OF THE WORK

3.1. Research Problem

So far, many researchers have studied different algebraic structures and fundamental 
properties of FSG, IFSG, and NSG. We know that homomorphic functions preserve 
algebraic structures. Therefore, to study those essential algebraic properties one need 
to study the effects of homomorphism on them. Several researchers have already 
introduced and studied homomorphism in the environments of FSG, IFSG and NSG. 
Also, some researchers have introduced the normal forms of FSG, IFSG, NSG and 
studied their homomorphic properties. Till now the concept of PFSG is undefined 
and unexplored. Again, depending upon the different degree of appurtenance and 
degree of dissimilarity functions some other PSG can be introduced, like PIFSG, 
PNSG, etc. In addition, PS is a generalized version of CS, FS, IFS as well as NS and 
hence PSGs i.e. PFSG, PIFSG, and PNSG have the potentials to become a generalized 
version of FSG, IFSG, and NSG. Smarandache has showed that with only one set 
theory i.e. PS theory all the other set theories can be developed. Similarly, with only 
PSG the notions of FSG, IFSG, and NSG can be developed.
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Again, not only these notions are needed to be defined but also some essential 
analysis of homomorphic images, pre-images, etc. are needed to be analyzed. 
However, before introducing homomorphism in PSG, PIFSG and PNSG one first 
need to understand the behavior of any mapping in plithogenic environment. In this 
chapter, these essential notions of PSGs have been introduced and analyzed with 
proper examples. In the following preliminary subsection, some essential notions 
have been discussed, which were introduced earlier.

3.1.1. Preliminaries

The term plithogenic means pertaining to genesis or evolution or creation. A PS is 
a set in which its elements are characterized by one or more attributes and each 
attribute consists of some values. In PS a relation between an element and any 
attribute’s value is denoted as d m u( , ) , which is known as the degree of appurtenance 
function. Also, the relation between any two attribute’s values is denoted as c u u( , ) , 
which is known as the degree of contradiction or dissimilarity function. The following 
is a formal definition of a PS:

Definition 3.1 (Smarandache, 2018) Let U be a universal set and P U⊆ . A PS 
is denoted as

P P V p p
s d cF F
= ( , , , , ),ψ ψ  

where ψ be an attribute or appurtenance, Vψ is the corresponding range of attribute’s 
value,

p P V
d

s

F
: [ , ]× →ψ 0 1  

is the degree of appurtenance function (DAF) and

p V V
c

t

F
: [ , ]ψ ψ× → 0 1  

is the corresponding degree of contradiction function (DCF). Here s t, { , , }.∈ 1 2 3
Note that, in the above definition for s = 1 and t = 1 p

dF
will become a fuzzy 

DAF (FDAF) and p
cF

will become a fuzzy DCF (FDCF). In general, for simplicity, 

we consider only FDAF and FDCF. In the case of FDCF p
cF

satisfies the following 

axioms:
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∀ ∈ ×( , )u u V V
i j ψ ψ p u uc i iF

( , )= 0  

and

p u u p u u
c i j c j iF F
( , ) ( , )= . 

Again, to increase more accuracy one may wish to take s = 2 or s = 3with
t = 1 . In that case, we will have

p P V
dIF
: [ , ]× →ψ 0 1 2  

(intuitionistic fuzzy DAF (IFDAF)) and

p P V
dN
: [ , ]× →ψ 0 1 3  

(neutrosophic DAF (NDAF)) along with p
cF

as FDCF. Again, to generalize further 

and increase the level of accuracy and complexity one may wish to take t = 2 or 
t = 3 i.e.

p V V
cF
: [ , ]ψ ψ× → 0 1 2  

(intuitionistic fuzzy DCF (IFDCF)) or

p V V
cF
: [ , ]ψ ψ× → 0 1 3  

(neutrosophic DCF (NDCF)).
CS, FS, IFS and NS are characterized by a single attribute which has one value 

for CS (membership (M)), two values for FS (M, nonmembership (NM)) and three 
values for NS (M, indeterminacy (I), NM) and hence using PS one can easily denote 
any CS, FS, IFS, and NS. So, PS is a generalization of these sets.

The following are some preliminary homomorphic characteristics of FSG, IFSG, 
and NSG. These fundamental characteristics will help one to understand the effects 
of homomorphism in PFSG, PIFSG, and PNSG.
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Definition 3.2 (Anthony & Sherwood, 1979) A FS α of U is said to have 
supremum property if for any ′ ⊆α α ∃ ∈ ′m

0
α  such that α α

α
( ) sup ( )m m

m
0
=

∈ ′
.

Theorem 3.1 (Anthony & Sherwood, 1979) Let α be a fuzzy subgroupoid of 
P on the basis of a continuous t-norm T and l be a homomorphism on P, then the 
image (supremum image) of α is a fuzzy subgroupoid on l P( )with respect to T.

Theorem 3.2 (Rosenfeld, 1971) Homomorphic image or pre-image of any FSG 
having supremum property is a FSG.

Theorem 3.3 (Sharma, 2011) Let g be a homomorphism of a group U1 into 
another group U2 then preimage of an IFSG γ of U2 i.e. g−1( )γ is an IFSG of U1.

Theorem 3.4 (Sharma, 2011) Let g be a surjective homomorphism of a group 
U1 to another group U2, then the image of an IFSG γ of U1 i.e. g( )γ is an IFSG of 
U2.

Theorem 3.5 (Çetkin & Aygün, 2015) Homomorphic image or pre-image of 
any NSG is a NSG.

Theorem 3.6 (Çetkin & Aygün, 2015) Let δ∈NNSG(U) and l be a homomorphism 
on U. Then the homomorphic pre-image of δ i.e. l− ∈1( )δ NNSG(U).

Theorem 3.7 (Çetkin & Aygün, 2015) Let δ∈NNSG(U) and l be a surjective 
homomorphism on U. Then the homomorphic image of δ i.e. l( )δ ∈NNSG(U).

Since PS is a generalization of CS, FS, IFS and NS one may guess superiority 
of PSG over CSG, FSG, IFSG, and NSG. In the next section, we have introduced 
different types of PSGs and studied their homomorphic characteristics.

4. PROPOSED NOTIONS OF PLITHOGENIC SUBGROUPS

4.1. Plithogenic Fuzzy Subgroup

Definition 4.1 Let

P P V p p
s d cF F
= ( , , , , )ψ ψ  

be a PS of a group U. Where ψ is an attribute, Vψ is a range of all attribute’s values,

p P V
dF
: [ , ]× →ψ 0 1  
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is the corresponding FDAF and

p V V
cF
: [ , ]ψ ψ× → 0 1  

is the corresponding FDCF. Then P
s

is called a PFSG of U iff p
dF

is a fuzzy subgroup 

i.e. in other words iff

∀ ∈ ×( , ),( , )m u m u P V
1 1 2 2 ψ  

the subsequent conditions are fulfilled:

(i) p m u m u p m u p m u
d d dF F F
(( , ) ( , )) min{ ( , ), ( , )}

1 1 2 2 1 1 2 2
⋅ ≥ and 

(ii) p m u p m u
d dF F
(( , ) ) ( , )

1 1
1

1 1
− ≥  

A set of all PFSG of a group U is denoted as PFSG(U).
Example 4.1 Let

P P V p p
s d cF F
= ( , , , , )ψ ψ  

be a PS of a group U, where P m u mu e= { , , , } be the Klein’s four group, ψ be an 
attribute, V a eψ = ′{ , }be a group consisting of two attribute values (here a e2= ′

and ′e is the neutral element). Also, let

p P V
dF
: [ , ]× →ψ 0 1  

and

p V V
cF
: [ , ]ψ ψ× → 0 1  

are respectively corresponding FDAF and FDCF defined in Table 3 and Table 4.
Then P

s
∈PFSG(U).
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Note that in Definition 4.1 both p
dF

 and p
cF

 are FSs but only on p
dF

 the conditions 

for FSG has been assigned because p
cF

will become a FSG only if

∀ ∈( , )u u V
i j ψ p u uc i jF

( , )= 0 . 

Example 4.2 Let

P P V p p
s d cF F
= ( , , , , )ψ ψ  

bet a PS of a group U, where P i i= − −{ , , , }1 1  be a cyclic group, ψ  be an attribute, 
V m u mu eψ = { , , , }be the Klein four-group. Also, let

p P V
dF
: [ , ]× →ψ 0 1  

and

p V V
cF
: [ , ]ψ ψ× → 0 1  

are respectively corresponding FDAF and FDCF given in Table 5 and Table 6.
Theorem 4.1 P P V p p

s d cF F
= ( , , , , )ψ ψ ∈PFSG(U) iff

Table 3. FDAF

pdF m u mu e

a 0.2 0.5 0.3 0.2

′e 0.3 0.2 0.2 0.2

Table 4. FDCF

pcF a ′e

a 0 0.5

′e 0.5 0
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p m u m u p m u p m u
d d dF F F
(( , ) ( , ) ) min{ ( , ), ( , )}

1 1 2 2
1

1 1 2 2
⋅ ≥−  

Proof: Using Theorem 2.1 this can be easily proved.
Using PS one can easily handle indeterminate, uncertain and incongruous data. 

As a result, it has become more general than CS, FS, IFS as well as NS. Hence, it is 
quite evident that PFSG can have the potentials to become more general than CSG, 
FSG, IFSG, and NSG. In the next section, the preeminence aspects of PFSG have 
been discussed with proper justifications.

4.1.1. PFSG as a Generalization of Other Subgroups

Proposition 4.1 Any CSG is a PFSG (given that the corresponding attribute value 
set is a union of two singleton crisp groups).

Proof: Let C be a CSG of a group U. So, C U⊆  and hence C is a PS of U. Here, 
one may consider corresponding ψ = “appurtenance”, Vψ = {M,NM}  with 
cardinality 2,

p C V
dF
: [ , ]× →ψ 0 1  

Table 5. FDAF

α( )p dIF m u mu e

1 0.4 0.4 0.6 0.2

-1 0.4 0.4 0.7 0.2

i 0.4 0.4 0.8 0.2

-i 0.4 0.4 0.8 0.2

Table 6. FDCF

cdF m u mu e

m 0 0.2 0.3 0.5

u 0.2 0 0.9 0.8

mu 0.3 0.9 0 0.6

e 0.5 0.8 0.6 0
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and

p V V
cF
: [ , ]ψ ψ× → 0 1 . 

Here

p
cF
(M,M)= 0 , 

p
cF
(NM,NM)= 0  

and

p
cF
(M,NM) .= 1  

Also, Vψ  can be considered as

Vψ = ∪{M} {NM} , 

where {M}  and {NM}  are singleton CSGs. Also, p m
dF
( ,M)= 1  and 

p m
dF
( ,NM) .= 0

Now,

∀ ∈ ∈−m m mm CC
1 2 1 2

1,  

i.e. p m
dF
( ,M)
1

1=  and p m
dF
( ,M)

2
1=  imply that

p m m
dF
( ,M) .
1 2

1 1− =  

Where from it can be easily proved that

p p pm m m m
d d dF F F
( ,M) ( ,M) min{ , } min{ ( ,M), ( ,M)}.
1 2 1 2

1 1 1 1⋅ = ≥ =−  
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Similarly, ∀ ∉m m C
1 2
,  it can be proved that

p p pm m m m
d d dF F F
( ,NM) ( ,NM) min{ , } min{ ( ,NM), ( ,NM)}
1 2 1 2

1 0 0 0⋅ = ≥ =− ..  

Hence, C∈PFSG(U).
Proposition 4.2 Any FSG is a PFSG (given that the corresponding attribute 

value set is a singleton CSG).
Proof: Let α∈FSG(U). So, α∈FS(U) and hence α∈PS(U). Here one may consider 

corresponding ψ= “appurtenance”, Vψ= {M} with cardinality 1,

p C V
dF
: [ , ]α ψ× → 0 1 (C m Uα= ∈{ : ( , ( )) }m mα α∈ ) 

and

p V V
cF
: [ , ]ψ ψ× → 0 1  

with p
cF

 (M, M) = 0. Note that here

p m m
dF
( ,M) ( ) [ , ]= ∈α 0 1 . 

Then by Theorem 2.1, ∀ ∈m m C
1 2
, ,α

α α α( ) { ( ), ( )}mm min m m
1 2

1
1 2

− ≥  

⇒ ≥−p p pm m min m m
d d dF F F
( ,M) ( ,M) ( ,M){ , }
1 2

1
1 2

 

⇒ ≥⋅ −p p pm m min m m
d d dF F F
(( ,M) ( ,M)) ( ,M) ( ,M){ , }

1 2
1

1 2
 

⇒ ≥⋅ −p p pm m min m m
d d dF F F
(( ,M) ( ,M) ) ( ,M) ( ,M){ , }

1 2 1 2
1  

Hence, from it can be concluded that, α∈PFSG(U).
Proposition 4.3 Any IFSG is a PFSG (given that the corresponding attribute 

value set is a union of two singleton CSG).
Proof: Let
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γ γ γ= ∈( , ( ), ( ))m t m f m IFSG(U). 

So, γ∈IFS(U)and hence γ∈PS(U). Here one may consider ψ= “appurtenance”, 
Vψ = {M,NM}with cardinality 2,

p C V
dF
: [ , ]γ ψ× → 0 1  

(C m U m t m f mγ γ γ γ= ∈ ∈{ : ( , ( ), ( )) } ) 

and

p V V
cF
: [ , ]ψ ψ× → 0 1  

(here p
cF
(M,M)= 0  p

cF
(NM,NM)= 0  and p

cF
(M,NM) .= 1 )

Here, Vψ can be considered as Vψ = ∪{M} {NM} , where {M}  and {NM}  are 
singleton CSGs and

p m p m
d dF F
( ,M) ( ,NM) .+ ≤ 1  

Note that,

p m t m
dF
( ,M) ( ) [ , ]= ∈γ 0 1  

and

p m f m
dF
( ,NM) ( ) [ , ]= ∈γ 0 1 . 

Then by Theorem 2.1, ∀ ∈m m C
1 2
, ,γ

t t tm m min m mγ γ γ( ) { ( ), ( )}
1 2

1
1 2

− ≥  

⇒ ≥−p p pm m min m m
d d dF F F
( ,M) ( ,M) ( ,M){ , }
1 2

1
1 2
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⇒ ≥⋅ −p p pm m min m m
d d dF F F
(( ,M) ( ,M)) ( ,M) ( ,M){ , }

1 2
1

1 2
 

⇒ ≥⋅ −p p pm m min m m
d d dF F F
(( ,M) ( ,M) ) ( ,M) ( ,M){ , }

1 2 1 2
1  

Again,

f m m f m f mγ γ γ( ) max{ ( ), ( )}
1 2

1
1 2

− ≤  

⇒ ≤−p p pm m m m
d d dF F F
( ,NM) max ( ,NM) ( ,NM){ , }
1 2

1
1 2

 

⇒ ⋅ ≤−p p pm m m m
d d dF F F
(( ,NM) ( ,NM)) max ( ,NM) ( ,NM){ , }

1 2
1

1 2
 

⇒ ⋅ ≤−p p pm m m m
d d dF F F
(( ,NM) ( ,NM) ) max ( ,NM) ( ,NM){ , }

1 2 1 2
1  

Hence, from and γ∈PFSG(U).
Proposition 4.4 Any NSG is a PFSG (given that the corresponding attribute 

value set is a union of three singleton CSGs).
Proof: Using Proposition 4.2 and Proposition 4.3 this can be easily proved.
To understand structures of different algebraic objects, one needs to study 

functions that preserve those algebraic structures i.e. one must study the effects of 
homomorphism on those algebraic entities. In the next section image and preimage of 
any PS under a function has been defined. Also, the homomorphic image, preimage 
of any PSG have been introduced and efficiently discussed.

4.1.2. Homomorphism on PFSG

Let ψ  be an attribute and Vψ  be the corresponding range of attribute’s values and

P P V p p
s d cF F
= ( , , , , )ψ ψ  

be a PS of a group U. Also, let f be a function defined on U V∪ ψ . Then the image 

of P
s

 is denoted as

′= ′ ′ ′ ′P P V p p
s d cF F
( , , , , )ψ ψ , 
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where ′ ′× ′ →p P V
dF
: [ , ]ψ 0 1  is defined as

′ =

∈ −

∈ −

p m u p m u
d dF

u f u

m f m
F

( , ) sup ( , )

( )

( )

2 2 1 1

1
1
2

1
1
2

 

and ′ ′× ′ →p V V
cF
: [ , ]ψ ψ 0 1  is defined as

′ =

∈ −

∈ −

p u u p u u
c cF

u f u

u f u
F

( , ) sup ( , )

( )

( )

3 4 1 2

2
1
4

1
1
3

. 

Also, if

′= ′ ′ ′ ′P P V p p
s d cF F
( , , , , )ψ ψ  

is a PS of f U( )  then the preimage of ′P
s

 will be denoted as

P P V p p
s d cF F
= ( , , , , )ψ ψ , 

where p P V
dF
: [ , ]× →ψ 0 1  is defined as

p m u p f m f u
d dF F
( , ) ( ( ), ( )),
1 1 1 1

= ′ ∀ ∈ ×( , )m u P V
1 1 ψ  

and p V V
cF
: [ , ]ψ ψ× → 0 1  is defined as

p u u p f u f u
c cF F
( , ) ( ( ), ( )),
1 2 1 2

= ′ ∀ ∈ ×( , )u u V V
1 2 ψ ψ . 

Theorem 4.2 Homomorphic preimage of a PFSG is a PFSG.
Proof: Let ψ  be an attribute and ′Vψ  be the corresponding range of attribute’s 

values and

′= ′ ′P P V
s
( , , ,ψ ψ

′ ′p p
d cF F
, )  
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be a PFSG of a group f U( ) , where f is a homomorphism on U V∪ ψ . Hence,

′ ′× ′p P V
dF
: ψ → [ , ]0 1  

is a FSG and

′ ′× ′ →p V V
cF
: [ , ]ψ ψ 0 1  

is a FS.
Then preimage of ′P

s
 is denoted as

P P V p p
s d cF F
= ( , , , , )ψ ψ , 

where

p P V
dF
: [ , ]× →ψ 0 1 is defined as 

p m u p f m f u
d dF F
( , ) ( ( ), ( ))
1 1 1 1

= ′ ∀ ∈ ×( , )m u P V
1 1 ψ  

and p V V
cF
: [ , ]ψ ψ× → 0 1  is defined as

p u u p f u f u
c cF F
( , ) ( ( ), ( ))
1 2 1 2

= ′ ∀ ∈ ×( , )u u V V
1 2 ψ ψ . 

Let

( , ),( , )m u m u P V
1 1 1 1

′ ′ ∈ × ψ , 

then

p m u m u p m m u u
d dF F
(( , ) ( , )) ( , )

1 1 1 1 1 1 1 1
⋅ ′ ′ = ′ ′  

= ′ ′ ′p f m m f u u
dF
( ( ), ( ))

1 1 1 1
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= ′ ′ ′p f m f m f u f u
dF
( ( ) ( ), ( ) ( ))

1 1 1 1
 

= ′ ⋅ ′ ′p f m f u f m f u
dF
(( ( ), ( )) ( ( ), ( )))

1 1 1 1
 

≥ ′ ′ ′ ′min{ ( ( ), ( )), ( ( ), ( ))}p f m f u p f m f u
d dF F1 1 1 1

(As ′p
dF

is a FSG) 

= ′ ′min{ ( , ), ( , )}p m u p m u
d dF F1 1 1 1

 

Also,

p m u p m u
d dF F
( , ) ( , )
1 1

1
1
1

1
1− − −=  

= ′ − −p f m f u
dF
( ( ), ( ))

1
1

1
1  

= ′ − −p f m f u
dF
( ( ) , ( ) )

1
1

1
1  

= ′ −p f m f u
dF
( ( ), ( ))

1 1
1  

≥ ′p f m f u
dF
( ( ), ( ))

1 1
 

= p m u
dF
( , )
1 1

 

So, by and p
dF

 is a FSG. Again, as ′p
cF

 is a FS its preimage under f i.e. p
cF

 is a 

FS and hence, P
s

 is a PFSG of U.
Theorem 4.3 Homomorphic image of a PFSG is a PFSG (provided for FDAF 

and FDCF supremum property holds).
Proof: Let ψ  be an attribute and Vψ  be the corresponding range of attribute’s 

values and

P P V
s
= ( , , ,ψ ψ p p

d cF F
, )  
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be a PFSG of a group U. Also, let f be a homomorphism defined on U V∪ ψ .

Then the image of P
s

 is denoted as

′= ′ ′ ′ ′P P V p p
s d cF F
( , , , , )ψ ψ , 

where ′ ′× ′ →p P V
dF
: [ , ]ψ 0 1  is defined as

′ =

∈ −

∈ −

p m u p m u
d dF

u f u

m f m
F

( , ) sup ( , )

( )

( )

2 2 1 1

1
1
2

1
1
2

 

and ′ ′× ′ →p V V
cF
: [ , ]ψ ψ 0 1  is defined as

′ =

∈ −

∈ −

p u u p u u
c cF

u f u

u f u
F

( , ) sup ( , )

( )

( )

3 4 1 2

2
1
4

1
1
3

. 

Then

∀ ′ ′ ∈ ′× ′( ( ), ( )),( ( ), ( ))f m f u f m f u P V
1 1 1 1 ψ , 

∃ ∈ −m f f m
0

1
1

( ( ))  and ∃ ∈ −u f f u
0

1
1

( ( ))  such that

p m u p m u
d d t tF

ut f f u

mt f f m
F

( , ) sup ( , )

( ( ))

( ( ))
0 0

1
1

1
1

=

∈ −
∈ −

. 

Also, ∃ ′ ∈ ′−m f f m
0

1
1

( ( ))  such that

p m u p m u
d d t tF

ut f f u

mt f f m
F

( , ) sup ( , )

( ( ))

( ( ))

′ ′ =

∈ − ′

∈ − ′
0 0

1
1

1
1

. 

So,

′ ⋅ ′ ′ = ′ ⋅ ′ ⋅p f m f u f m f u p f m f m f u
d dF F
( ( ), ( )) ( ( ), ( )) ( ( ) ( ), ( )

1 1 1 1 1 1 1
ff u( ))′

1
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=

∈ − ⋅ ′

∈ − ⋅ ′

sup ( , )

( ( ) ( ))

( ( ) ( ))

uz f f u f u

mz f f m f m
F
p m u
d z z

1
1 1

1
1 1

 

≥ ′ ′min{ ( , ), ( , )}p m u p m u
d dF F0 0 0 0

 

= ′ ′ ′ ′min{ ( ( ), ( )), ( ( ), ( ))}p f m f u p f m f u
d dF F1 1 1 1

 

Again,

′ = ′− − −p f m f u p f m f u
d dF F
( ( ), ( )) ( ( ) , ( ) )

1 1
1

1
1

1
1  

=

∈ − −
∈ − −
sup ( , )

( ( ) )

( ( ) )

uz f f u

mz f f m
F
p m u
d z z

1
1
1

1
1
1

p
cF

 

= − −p m u
dF
( , )

0
1

0
1  

= −p m u
dF
( , )

0 0
1  

≥ p m u
dF
( , )

0 0
 

= ′p f m f u
dF
( ( ), ( ))

1 1
 

So, by and ′p
dF

is a FSG. Also, as p
cF

 is a FS its image under f i.e. ′p
cF

is a FS 

and hence,P
s
′ is a PFSG of f U( ).

In Definition 4.1 only FDAF ( p
dF

) and FDCF ( p
cF

) has been used. Instead of 

using a fuzzy environment, intuitionistic fuzzy or neutrosophic environments can 
also be used. In that case, the degree of appurtenance functions will be IFDAF (
p
dIF

) or NDAF ( p
dN

). Also, different degrees of contradiction functions like IFDCF 

( p
cIF

) or NDCF ( p
cN

) can be used. In this chapter, for simplicity, only FDCF ( p
cF

) 

has been considered. However, one may always use some complicated degree of 
contradiction functions, like, p

cIF
or p

cN
to increase the level of accuracy as well as 
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complexity as per their requirements. In the next section, using p
dIF

and the notion 

PIFSG has been introduced and some of their homomorphic characteristics have 
been mentioned.

4.2. Plithogenic Intuitionistic Fuzzy Subgroup

Definition 4.2 Let

P P V p p
s d cIF F
= ( , , , , )ψ ψ  

be a PS of a group U. Where ψ is an attribute, Vψ is a range of all attribute’s values,

p P V
dIF
: [ , ]× →ψ 0 1 2  

is the corresponding IFDAF and

p V V
cF
: [ , ]ψ ψ× → 0 1  

is the corresponding FDCF. Then P
s

is called a PIFSG of U iff

p m u p p m u P V
d d dIF IF IF
= ∈ ×{(( , ), ( ) , ( ) ) : ( , ) }α β ψ  

is an IFSG i.e. in other words iff

∀ ∈ ×( , ),( , )m u m u P V
1 1 2 2 ψ  

the subsequent conditions are fulfilled:

(i) α α α( ) ( , ) ( , ) min{ ( ) ( , ), ( ) ( , )}p m u m u p m u p m u
d d dIF IF IF1 1 2 2 1 1 2 2

⋅ ≥  

(ii) α α( ) ( , ) ( ) ( , )p m u p m u
d dIF IF1 1

1
1 1

− ≥  

(iii) β β β( ) ( , ) ( , ) max{ ( ) ( , ), ( ) ( , )}p m u m u p m u p m u
d d dIF IF IF1 1 2 2 1 1 2 2

⋅ ≤  
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(iv) β β( ) ( , ) ( ) ( , )p m u p m u
d dIF IF1 1

1
1 1

− ≤  

A set of all PIFSG of a group U is denoted as PIFSG(U). Note that in Definition 
4.2 for simplicity, the attribute value contradiction function p

cF
 has been chosen. 

But to generalize Definition 4.2 one may use p
cIF
.

Example 4.3 Let

P P V p p
s d cIF F
= ( , , , , )ψ ψ  

bet a PS of a group U, where P i i= − −{ , , , }1 1 be a cyclic group, ψ be an attribute, 
V m u mu eψ = { , , , }be the Klein four-group. Also, let

p P V
dIF
: [ , ]× →ψ 0 1 2 ( p m u p p m u P V

d d dIF IF IF
= ∈ ×{(( , ), ( ) , ( ) ) : ( , ) }α β ψ ) 

and p V V
cF
: [ , ]ψ ψ× → 0 1 are respectively the corresponding IFDAF and FDCF, 

which are given in Table 7, and Table 9.

Table 7. IFDAF with membership

α( )p dIF m u mu e

1 0.4 0.4 0.8 0.2

-1 0.4 0.4 0.5 0.2

i 0 0 0 0

-i 0 0 0 0

Table 8. IFDAF with nonmembership

β( )p dIF m u mu e

1 0.6 0.6 0.2 0.8

-1 0.6 0.6 0.5 0.8

i 1 1 1 1

-i 1 1 1 1
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Then P
s
∈PIFSG(U).

Example 4.4 Let

P P V p p
s d cF F
= ( , , , , )ψ ψ  

bet a PS of a group U, where P m u mu e= { , , , } be the Klein four-group,ψ  be an 
attribute and

V i iψ = − −{ , , , }1 1  

be a cyclic group. Also, let

p P V
dIF
: [ , ]× →ψ 0 1 2 ( p m u p p m u P V

d d dIF IF IF
= ∈ ×{(( , ), ( ) , ( ) ) : ( , ) }α β ψ ) 

and

p V V
cF
: [ , ]ψ ψ× → 0 1  

are the respective IFDAF and FDCF, which are given in Table 10, Table 11 and 
Table 12.

4.2.1. Homomorphism on PIFSG

Let ψ  be an attribute and Vψ  be the corresponding range of attribute’s values and

P P V p p
s d cIF F
= ( , , , , )ψ ψ  

Table 9. FDCF

cdF m u mu e

m 0 0.2 0.9 0.5

u 0.2 0 0.4 0.3

mu 0.9 0.4 0 0.2

e 0.5 0.3 0.2 0
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Table 10. IFDAF with membership

α( )p dIF 1 -1 i -i

m 0.3 0.4 0.4 0.4

u 0.3 0.4 0.4 0.4

mu 0.3 0.4 0.4 0.4

α( )p dIF 1 -1 i -i

e 0.2 0.2 0.2 0.2

Table 11. IFDAF with nonmembership

β( )p dIF 1 -1 i -i

m 0.7 0.6 0.6 0.6

u 0.7 0.6 0.6 0.6

mu 0.7 0.6 0.6 0.6

e 0.8 0.8 0.8 0.8

Table 12. FDCF

cdF 1 -1 i -i

1 0 0.5 0.3 0.8

-1 0.5 0 0.7 0.2

i 0.3 0.7 0 1

-i 0.8 0.2 1 0
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be a PS of a group U, where

p P V
dIF
: [ , ]× →ψ 0 1 2 ( p m u p p m u P V

d d dIF IF IF
= ∈ ×{(( , ), ( ) , ( ) ) : ( , ) }α β ψ ) 

is the corresponding IFDAF and

p V V
cF
: [ , ]ψ ψ× → 0 1  

is the corresponding FDCF. Also, let f be a function defined on U V∪ ψ . Then the 

image of P
s

 is denoted as

′= ′ ′ ′ ′P P V p p
s d cIF F
( , , , , )ψ ψ , 

where

′ ′× ′ →p P V
dIF
: [ , ]ψ 0 1 2 ( ′ = ′ ′ ∈ ′× ′p m u p p m u P V

d d dIF IF IF
{(( , ), ( ) , ( ) ) : ( , ) }α β ψ ) 

is defined as

α α( ) ( , ) sup ( ) ( , )

( )

( )

′ =

∈ −

∈ −

p m u p m u
d dIF

u f u

m f m
IF2 2 1 1

1
1
2

1
1
2

, 

β β( ) ( , ) inf ( ) ( , )

( )

( )

′ =

∈ −

∈ −
p m u p m u
d dIF

u f u

m f m IF2 2 1 1

1
1
2

1
1
2

. 

Again, ′ ′× ′ →p V V
cF
: [ , ]ψ ψ 0 1  is defined as

′ =

∈ −

∈ −

p u u p u u
c cF

u f u

u f u
F

( , ) sup ( , )

( )

( )

3 4 1 2

2
1
4

1
1
3

. 

Also, if

′= ′ ′ ′ ′P P V p p
s d cIF F
( , , , , )ψ ψ  
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is a PS of f U( ) then the preimage of ′P
s

 will be denoted as

P P
s
= ( , ,ψ V p p

d cIF Fψ, , ) . 

Here

p m u p p m u P V
d d dIF IF IF
= ∈ ×{(( , ), ( ) , ( ) ) : ( , ) }α β ψ , 

where

α α( ) ( , ) ( ) ( ( ), ( ))p m u p f m f u
d dIF IF1 1 1 1

= ′ , 

β β ψ( ) ( , ) ( ) ( ( ), ( )) ( , )p m u p f m f u m u P V
d dIF IF1 1 1 1 1 1

= ′ ∀ ∈ ×  

and p
cF

 is defined as

∀ ∈ ×( , ) ,u u V V
1 2 ψ ψ p u u p f u f u

c cF F
( , ) ( ( ), ( )).
1 2 1 2

= ′  

Theorem 4.4 Homomorphic preimage of a PIFSG is a PIFSG.
Proof: Let ψ  be an attribute and ′Vψ  be the corresponding range of attribute’s 

values and

′= ′ ′P P V
s
( , ,ψ ψ , , )′ ′p p

d cIF F
 

be a PFSG of a group f U( ) , where f is a homomorphism on U V∪ ψ . Here,

′ ′× ′ →p P V
dIF
: [ , ]ψ 0 1 2  

is defined as

′ = ′ ′ ∈ ′× ′p m u p p m u P V
d d dIF IF IF

{(( , ), ( ) , ( ) ) : ( , ) }α β ψ . 
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Then preimage of ′P
s

 is denoted as

P P V p p
s d cIF F
= ( , , , , )ψ ψ . 

Here

p m u p p m u P V
d d dIF IF IF
= ∈ ×{(( , ), ( ) , ( ) ) : ( , ) }α β ψ , 

where

α α( ) ( , ) ( ) ( ( ), ( ))p m u p f m f u
d dIF IF1 1 1 1

= ′ , 

β β ψ( ) ( , ) ( ) ( ( ), ( )) ( , )p m u p f m f u m u P V
d dIF IF1 1 1 1 1 1

= ′ ∀ ∈ ×  

and p
cF

 is defined as

∀ ∈ ×( , ) ,u u V V
1 2 ψ ψ p u u p f u f u

c cF F
( , ) ( ( ), ( ))
1 2 1 2

= ′ . 

Then

∀ ′ ′ ∈ ×( , ),( , )m u m u P V
1 1 1 1 ψ , 

α α( ) (( , ) ( , )) ( ) ( , )p m u m u p m m u u
d dIF IF1 1 1 1 1 1 1 1

⋅ ′ ′ = ′ ′  

= ′ ′ ′α( ) ( ( ), ( ))p f m m f u u
dIF 1 1 1 1

 

= ′ ′ ′α( ) ( ( ) ( ), ( ) ( ))p f m f m f u f u
dIF 1 1 1 1

 

= ′ ⋅ ′ ′α( ) (( ( ), ( )) ( ( ), ( )))p f m f u f m f u
dIF 1 1 1 1

 

≥ ′ ′ ′ ′min{ ( ) ( ( ), ( )), ( ) ( ( ), ( ))}α αp f m f u p f m f u
d dIF IF1 1 1 1
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= ′ ′min{ ( ) ( , ), ( ) ( , )}α αp m u p m u
d dIF IF1 1 1 1

 

Also,

α α( ) ( , ) ( ) ( , )p m u p m u
d dIF IF1 1

1
1
1

1
1− − −=  

= ′ − −α( ) ( ( ), ( ))p f m f u
dIF 1

1
1
1  

= ′ − −α( ) ( ( ) , ( ) )p f m f u
dIF 1

1
1
1  

= ′ −α( ) ( ( ), ( ))p f m f u
dIF 1 1

1  

≥ ′α( ) ( ( ), ( ))p f m f u
dIF 1 1

 

= α( ) ( , )p m u
dIF 1 1

 

So, by and α( )p
dF

 satisfies conditions (i) and (ii) of Definition 4.2.

Again,

∀ ′ ′ ∈ ×( , ),( , )m u m u P V
1 1 1 1 ψ , 

β β( ) (( , ) ( , )) ( ) ( , )p m u m u p m m u u
d dIF IF1 1 1 1 1 1 1 1

⋅ ′ ′ = ′ ′  

= ′ ′ ′β( ) ( ( ), ( ))p f m m f u u
dIF 1 1 1 1

 

= ′ ′ ′β( ) ( ( ) ( ), ( ) ( ))p f m f m f u f u
dIF 1 1 1 1

 

= ′ ⋅ ′ ′β( ) (( ( ), ( )) ( ( ), ( )))p f m f u f m f u
dIF 1 1 1 1

 

≤ ′ ′ ′ ′max{ ( ) ( ( ), ( )), ( ) ( ( ), ( ))}β βp f m f u p f m f u
d dIF IF1 1 1 1
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= ′ ′max{ ( ) ( , ), ( ) ( , )}β βp m u p m u
d dIF IF1 1 1 1

 

Also,

β β( ) ( , ) ( ) ( , )p m u p m u
d dIF IF1 1

1
1
1

1
1− − −=  

= ′ − −β( ) ( ( ), ( ))p f m f u
dIF 1

1
1
1  

= ′ − −β( ) ( ( ) , ( ) )p f m f u
dIF 1

1
1
1  

= ′ −β( ) ( ( ), ( ))p f m f u
dIF 1 1

1  

≤ ′β( ) ( ( ), ( ))p f m f u
dIF 1 1

 

= β( ) ( , )p m u
dIF 1 1

 

So, by and β( )p
dIF

satisfies conditions (iii) and (iv) of Definition 4.2.

Hence,

p m u p p m u P V
d d dIF IF IF
= ∈ ×{(( , ), ( ) , ( ) ) : ( , ) }α β ψ  

forms an IFSG. Again, as ′p
cF

 is a FS its preimage under i.e. p
cF

 is a FS and hence, 

P
s

 is a PIFSG of U.
Theorem 4.5 Homomorphic image of a PIFSG is a PIFSG (provided for α( )p

dIF

and p
cF

supremum property hold and for β( )p
dIF

infimum property holds).

Proof: Let ψ be an attribute and Vψ be the corresponding range of attribute’s 
values and

P P V p p
s d cIF F
= ( , , , , )ψ ψ  

be a PFSG of a group U and f be a homomorphism defined on U V∪ ψ .
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Here,

p P V
dIF
: [ , ]× →ψ 0 1 2  

is defined as

p m u p p m u P V
d d dIF IF IF
= ∈ ×{(( , ), ( ) , ( ) ) : ( , ) }α β ψ . 

Then the image of P
s

 is denoted as

′= ′ ′ ′ ′P P V p p
s d cIF F
( , , , , )ψ ψ . 

Here

′ = ′ ′ ∈ ′× ′p m u p p m u P V
d d dIF IF IF

{(( , ), ( ) , ( ) ) : ( , ) }α β ψ , 

where

α α( ) ( , ) sup ( ) ( , )

( )

( )

′ =

∈ −

∈ −

p m u p m u
d dIF

u f u

m f m
IF2 2 1 1

1
1
2

1
1
2

 

and

β β( ) ( , ) inf ( ) ( , )

( )

( )

′ =

∈ −

∈ −
p m u p m u
d dIF

u f u

m f m IF2 2 1 1

1
1
2

1
1
2

. 

Also, ′p
cF

 is defined as

′ =

∈ −

∈ −

p u u p u u
c cF

u f u

u f u
F

( , ) sup ( , )

( )

( )

3 4 1 2

2
1
4

1
1
3

. 

Then
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∀ ′ ′ ∈ ′× ′( ( ), ( )),( ( ), ( )) ,f m f u f m f u P V
1 1 1 1 ψ  

∃ ∈ −m f f m
0

1
1

( ( )) and ∃ ∈ −u f f u
0

1
1

( ( ))  

such that

α α( ) ( , ) sup ( ) ( , )

( ( ))

( ( ))

p m u p m u
d d t tIF

ut f f u

mt f f m
IF0 0

1
1

1
1

=

∈ −
∈ −

. 

Also,

∃ ′ ∈ ′−m f f m
0

1
1

( ( )) and ∃ ′ ∈ ′−u f f u
0

1
1

( ( ))  

such that

α α( ) ( , ) sup ( ) (

( ( ))

( ( ))

p m u p m
d d tIF

ut f f u

mt f f m
IF

′ ′ =

∈ − ′

∈ − ′
0 0

1
1

1
1

,, )u
t

. 

So,

α( ) ( ( ), ( )) ( ( ), ( ))′ ⋅ ′ ′p f m f u f m f u
dIF 1 1 1 1

= ′ ⋅ ′ ⋅ ′α( ) ( ( ) ( ), ( ) ( ))p f m f m f u f u
dIF 1 1 1 1

 

=

∈ − ⋅ ′

∈ − ⋅ ′

sup ( ) ( , )

( ( ) ( ))

( ( ) ( ))

uz f f u f u

mz f f m f m
IF

p m u
d z z

1
1 1

1
1 1

α  

≥ ′ ′min{ ( ) ( , ), ( ) ( , )}α αp m u p m u
d dIF IF0 0 0 0

 

= ′ ′ ′ ′min{ ( ) ( ( ), ( )), ( ) ( ( ), ( ))}α αp f m f u p f m f u
d dIF IF1 1 1 1

 

Again,

α α( ) ( ( ), ( )) ( ) ( ( ) , ( ) )′ = ′− − −p f m f u p f m f u
d dIF IF1 1

1
1
1

1
1  
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=

∈ − −
∈ − −
sup ( ) ( , )

( ( ) )

( ( ) )

uz f f u

mz f f m
IF

p m u
d z z

1
1
1

1
1
1

α  

= − −α( ) ( , )p m u
dIF 0

1
0
1  

= −α( ) ( , )p m u
dIF 0 0

1  

≥ α( ) ( , )p m u
dIF 0 0

 

= ′α( ) ( ( ), ( ))p f m f u
dIF 1 1

 

So, by and α( )′p
dIF

satisfies conditions (i) and (ii) of Definition 4.2.

Again, let

∀ ′ ′ ∈ ′× ′( ( ), ( )),( ( ), ( )) ,f m f u f m f u P V
1 1 1 1 ψ  

∃ ∈ −m f f m
0

1
1

( ( )) and ∃ ∈ −u f f u
0

1
1

( ( ))  

such that

β β( ) ( , ) inf ( ) ( , )
( ( ))

( ( ))

p m u p m u
d d t tIF

ut f f u

mt f f m IF0 0

1
1

1
1

=
∈ −
∈ −

. 

Also,

∃ ′ ∈ ′−m f f m
0

1
1

( ( )) and ∃ ′ ∈ ′−u f f u
0

1
1

( ( ))  

such that

β β( ) ( , ) inf ( ) (
( ( ))

( ( ))

p m u p m
d d tIF

ut f f u

mt f f m IF

′ ′ =
∈ − ′

∈ − ′0 0

1
1

1
1

,, )u
t

. 
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β( ) ( ( ), ( )) ( ( ), ( ))′ ⋅ ′ ′p f m f u f m f u
dIF 1 1 1 1

= ′ ⋅ ′ ⋅ ′β( ) ( ( ) ( ), ( ) ( ))p f m f m f u f u
dIF 1 1 1 1

 

=
∈ − ⋅ ′

∈ − ⋅ ′
inf ( ) ( , )
( ( ) ( ))

( ( ) ( ))

uz f f u f u

mz f f m f m IF
p m u
d z z

1
1 1

1
1 1

β  

≤ ′ ′max{ ( ) ( , ), ( ) ( , )}β βp m u p m u
d dIF IF0 0 0 0

 

= ′ ′ ′ ′max{ ( ) ( ( ), ( )), ( ) ( ( ), ( ))}β βp f m f u p f m f u
d dIF IF1 1 1 1

 

Again,

β β( ) ( ( ), ( )) ( ) ( ( ) , ( ) )′ = ′− − −p f m f u p f m f u
d dIF IF1 1

1
1
1

1
1  

=
∈ − −
∈ − −
inf ( ) ( , )
( ( ) )

( ( ) )

uz f f u

mz f f m IF
p m u
d z z

1
1
1

1
1
1
α  

= − −β( ) ( , )p m u
dIF 0

1
0
1  

= −β( ) ( , )p m u
dIF 0 0

1  

≤ β( ) ( , )p m u
dIF 0 0

 

= ′β( ) ( ( ), ( ))p f m f u
dIF 1 1

 

So, by and β( )′p
dF

satisfies conditions (iii) and (iv) of Definition 4.2.

Hence,

′ = ′ ′ ∈ ′× ′p m u p p m u P V
d d dIF IF IF

{(( , ), ( ) , ( ) ) : ( , ) }α β ψ  

forms an IFSG. Again, as p
cF

is a FS its preimage under f i.e. p
cF

is a FS and hence,

P
s

is a PIFSG of U.
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Notice that in Definition 4.2 IFDAF ( p
dIF

) and FDCF ( p
cF

) has been used. But, 

here instead of using an intuitionistic fuzzy setting one may wish to use a neutrosophic 
environment. In that case, the degree of appurtenance functions will be NDAF (
p
dN

). Also, one may wish to use other degrees of contradiction functions like IFDCF 

( p
cIF

) or NDCF ( p
cN

). In the next section using p
dN

and p
cF

the notion PNSG has 

been introduced and some of their homomorphic characteristics have been discussed.

4.3. Plithogenic Neutrosophic Subgroup

Definition 4.3 Let

P P V p p
s d cN F
= ( , , , , )ψ ψ  

be a PS of a group U. Where ψ is an attribute, Vψ is a range of all attribute’s values,

p P V
dN
: [ , ]× →ψ 0 1 3  

is the corresponding NDAF and

p V V
cF
: [ , ]ψ ψ× → 0 1  

is the corresponding FDCF. Then P
s

is called a PNSG of U iff

p m u t p i p f p m u P V
d d d dN N N N
= ∈ ×{(( , ), ( ) , ( ) , ( ) ) : ( , ) }ψ  

is a neutrosophic subgroup i.e. in other words iff

∀ ∈ ×( , ),( , ) ,m u m u P V
1 1 2 2 ψ  

the subsequent conditions are fulfilled:

(i) t p m u m u t p m u t p m u
d d dIF IF IF

( ) (( , ) ( , ) ) min{ ( ) ( , ), ( ) ( ,
1 1 2 2

1
1 1 2

⋅ ≥−
22
)}  
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(ii) i p m u m u i p m u i p m u
d d dIF IF IF

( ) (( , ) ( , ) ) min{ ( ) ( , ), ( ) ( ,
1 1 2 2

1
1 1 2

⋅ ≥−
22
)}  

(iii) f p m u m u f p m u f p m u
d d dIF IF IF

( ) (( , ) ( , ) ) max{ ( ) ( , ), ( ) ( ,
1 1 2 2

1
1 1 2

⋅ ≤−
22
)}  

A set of all PNSG of a group U is denoted as PNSG(U). Note that in Definition 
4.3 for simplicity the attribute value contradiction function p

cF
 has been chosen. 

But to generalize Definition 4.3 one may use p
cN
.

Example 4.5 Let

Table 13. NDAF with truth

t p dN( ) m u mu ′e

a 0.4 0.4 0.5 0.2

t p dN( ) m u mu ′e

e 0.4 0.4 0.6 0.2

Table 14. NDAF with indeterminacy

i p dN( ) m u mu ′e

a 0.3 0.3 0.3 0.2

e 0.4 0.4 0.5 0.2

Table 15. NDAF with falsity

f p dN( ) m u mu ′e

a 0.6 0.6 0.5 0.8

e 0.6 0.6 0.4 0.8
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P P V p p
s d cN F
= ( , , , , )ψ ψ  

bet a PS of a group U, where P a e= { , } (a e2= ) be a group, ψ  be an attribute, 

V m u mu eψ = ′{ , , , }  be the Klein’s four group. Also, let

p P V
dN
: [ , ]× →ψ 0 1 3 ( p m u

dN
= {(( , ), t p i p f p m u P V

d d dN N N
( ) , ( ) , ( ) ) : ( , ) }∈ × ψ ) 

and

p V V
cF
: [ , ]ψ ψ× → 0 1  

are respectively the corresponding NDAF and FDCF mentioned in Table 13, Table 
14, Table 15 and Table 16.

Then P
s
∈PNSG(U).

4.3.1. Homomorphism on PNSG

Let ψ  be an attribute and Vψ  be the corresponding range of attribute’s values and

P P V p p
s d cN F
= ( , , , , )ψ ψ  

be a PS of a group U, where

p P V
dN
: [ , ]× →ψ 0 1 3 ( p m u t p i p f p m u P V

d d d dN N N N
= ∈ ×{(( , ), ( ) , ( ) , ( ) ) : ( , ) }ψ ) 

Table 16. FDCF

pcF m u mu ′e

m 0 0.1 0.9 1

u 0.1 0 0.5 0.7

mu 0.9 0.5 0 0.2

′e 1 0.7 0.2 0
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is the corresponding NDAF and

p V V
cF
: [ , ]ψ ψ× → 0 1  

is the corresponding FDCF. Also, let g be a function defined on U V∪ ψ . Then the 

image of P
s

 is denoted as

′= ′ ′ ′ ′P P V p p
s d cN F
( , , , , )ψ ψ , 

where

′ ′× ′p P V
dN
: ψ

→ [ , ]0 1 3 ( ′ = ′ ′ ′ ∈ ′× ′p m u t p i p f p m u P V
d d d dN N N N

{(( , ), ( ) , ( ) , ( ) ) : ( , ) }ψ ) 

is defined as

t p m u t p m u
d dN

u g u

m g m
N

( ) ( , ) sup ( ) ( , )

( )

( )

′ =

∈ −

∈ −
2 2 1 1

1
1
2

1
1
2

, 

i p m u i p m u
d dN

u g u

m g m
N

( ) ( , ) sup ( ) ( , )

( )

( )

′ =

∈ −

∈ −
2 2 1 1

1
1
2

1
1
2

, 

f p m u f p m u
d dN

u g u

m g m N
( ) ( , ) inf ( ) ( , )

( )

( )

′ =

∈ −

∈ −
2 2 1 1

1
1
2

1
1
2

 

and ′ ′× ′ →p V V
cF
: [ , ]ψ ψ 0 1  is defined as

′ =

∈ −

∈ −

p u u p u u
c cF

u g u

u g u
F

( , ) sup ( , )

( )

( )

3 4 1 2

2
1
4

1
1
3

. 

Also, if

′= ′ ′ ′ ′P P V p p
s d cN F
( , , , , )ψ ψ  
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is a PS of g( )U then the preimage of ′P
s

 will be denoted as

P P
s
= ( , ,ψ V p p

d cN Fψ, , ) . 

Here

p m u t p i p f p m u P V
d d d dN N N N
= ∈ ×{(( , ), ( ) , ( ) , ( ) ) : ( , ) }ψ , 

where

∀ ∈ × = ′( , ) , ( ) ( , ) ( ) (g( ), g( ))m u P V t p m u t p m u
d dN N1 1 1 1 1 1ψ , 

i p m u i p m u
d dN N

( ) ( , ) ( ) (g( ), g( ))
1 1 1 1

= ′ , 

f p m u f p g m g u
d dN N

( ) ( , ) ( ) ( ( ), ( ))
1 1 1 1

= ′  

and p
cF

 is defined as

∀ ∈ × = ′( , ) , ( , ) (g( ), g( ))u u V V p u u p u u
c cF F1 2 1 2 1 2ψ ψ . 

Theorem 4.6 Homomorphic preimage of a PNSG is a PNSG.
Proof: Using Theorem 4.2 and Theorem 4.4 this can be easily proved.
Theorem 4.7 Homomorphic image of a PNSG is a PNSG (provided for f p

dN
( ) , 

i p
dN

( ) and p
cF

supremum property hold and for f p
dN

( )  infimum property holds).

Proof: Using Theorem 4.3 and Theorem 4.5 this can be easily proved.

CONCLUSION

Group theory is a fundamental part of abstract algebra. To study algebraic 
characteristics of any object we need to understand functions which preserve 
its algebraic characteristics i.e. we need to study homomorphism. The notion of 
plithogenic subgroup is nothing but generalization of crisp subgroup, fuzzy subgroup, 
intuitionistic fuzzy subgroup, and neutrosophic subgroup. Hence, plithogenic 
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subgroups have been introduced and the effects of homomorphism on them have 
been studied. Most of the definitions mentioned in this chapter can further be 
generalized by using general T-norm and T-conorm. Again, most of the theorems, 
propositions mentioned here can also be proved by using those triangular norms. In 
future, one may extend research by introducing normal forms of different plithogenic 
subgroups i.e. normal plithogenic fuzzy subgroup, normal plithogenic intuitionistic 
fuzzy subgroup, and normal plithogenic neutrosophic subgroup. Again, one can 
study their fundamental properties and homomorphic characteristics. In addition, 
one may introduce the notion of soft set theory in plithogenic subgroup and further 
generalize them.
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