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Martin and Osswald [15] have recently proposed many gener-

alizations of combination rules on quantitative beliefs in order to

manage the conflict and to consider the specificity of the responses

of the experts. Since the experts express themselves usually in nat-

ural language with linguistic labels, Smarandache and Dezert [13]

have introduced a mathematical framework for dealing directly also
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1. INTRODUCTION

Many fusion theories have been studied for the com-
bination of the experts opinions expressed either quan-
titatively or qualitatively such as voting rules [11], [31],
possibility theory [6], [35], and belief functions theory
[2], [17]. All these fusion approaches can be divided
basically into four steps: modeling, parameters estima-
tion (depending on the model, not always necessary)),
combination and decision. The most difficult step is pre-
sumably the first one which depends highly on the prob-
lem and application we have to cope with. However, it
is only at the combination step that we can take into
account useful information such as the conflict (partial
or total) between the experts and/or the specificity of
the expert’s response.
The voting rules are not adapted to the modeling of

conflict between experts [31]. Although both possibility
and probability-based theories can model imprecise and
uncertain data at the same time, in many applications,
the experts are only able to express their “certainty” (or
belief) only from their partial knowledge, experience
and from their own perception of the reality. In such
context, the belief function-based theories provide an
appealing general mathematical framework for dealing
with quantitative and qualitative beliefs.
In this paper we present the most recent advances

in belief functions theory for managing the conflict be-
tween the sources of evidence/experts and their speci-
ficity. For the first time in the literature both the quanti-
tative and qualitative aspects of beliefs are presented in
a unified mathematical framework. This paper actually
extends the work in two papers [13], [15] presented dur-
ing the 10th International Conference on Information
Fusion (Fusion 2007) in Québec City, Canada on July
9—12, 2007 in the session “Combination in Evidence
Theory.”
Section 2 briefly recalls the basis of belief functions

theories, i.e. the Mathematical Theory of Evidence or
Dempster-Shafer theory (DST) developed by Shafer in
1976 [2], [17], and its natural extension called Dezert-
Smarandache Theory (DSmT) [18], [19], [20]. We in-
troduce in this section the notion of quantitative and
qualitative beliefs and the operators on linguistic la-
bels for dealing directly with qualitative beliefs. Sec-
tion 3 presents the main classical quantitative combina-
tion rules used so far, i.e. Dempster’s rule, Yager’s rule,
Dubois-Prade’s rule and the recent Proportional Con-
flict Redistribution rules (PCR) proposed by Smaran-
dache and Dezert [22] and extended by Martin and Os-
swald in [19]. Some examples are given to illustrate how
these rules work. Section 4 explains through different
examples how all the classical quantitative combination
rules can be directly and simply translated/extended into
the qualitative domain in order to combine easily any
qualitative beliefs expressed in natural language by lin-
guistic labels. Section 5 proposes new general quan-
titative rules of combination which allow to take into
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account both the discounting of the sources (if any) and
the proportional conflict redistribution. The direct ex-
tension of these general rules into the qualitative do-
main is then presented in details on several examples in
Section 6.

2. BASIS OF DST AND DSmT

A. Power Set and Hyper-Power Set

In DST framework, one considers a frame of dis-
cernment £ = fμ1, : : : ,μng as a finite set of n exclusive
and exhaustive elements (i.e. Shafer’s model denoted
M0(£)). The power set of £ is the set of all subsets of
£. The order of a power set of a set of order/cardinality
j£j= n is 2n. The power set of £ is denoted 2£. For
example, if £ = fμ1,μ2g, then 2£ = fØ,μ1,μ2,μ1 [ μ2g.
In DSmT framework, one considers £ = fμ1, : : : ,μng

be a finite set of n exhaustive elements only (i.e.
free DSm-model denotedMf(£)). Eventually some in-
tegrity constraints can be introduced in this free model
depending on the nature of the problem of interest. The
hyper-power set of £ (i.e. the free Dedekind’s lattice)
denoted D£ [18] is defined as

1) Ø,μ1, : : : ,μn 2D£,
2) If A,B 2D£, then A\B, A[B 2D£,
3) No other elements belong to D£, except those

obtained by using rules 1 or 2.

If j£j= n, then jD£j · 22n . Since for any finite set
£, jD£j ¸ j2£j, we call D£ the hyper-power set of
£. For example, if £ = fμ1,μ2g, then D£ = fØ,μ1 \
μ2,μ1,μ2,μ1 [ μ2g. The free DSm model Mf(£) corre-
sponding to D£ allows to work with vague concepts
which exhibit a continuous and relative intrinsic nature.
Such concepts cannot be precisely refined in an abso-
lute interpretation because of the unreachable universal
truth.
It is clear that Shafer’s modelM0(£) which assumes

that all elements of £ are truly exclusive is a more con-
strained model than the free-DSm model Mf(£) and
the power set 2£ can be obtained from hyper-power set
D£ by introducing inMf(£) all exclusivity constraints
between elements of £. Between the free-DSm model
Mf(£) and Shafer’s modelM0(£), there exists a wide
class of fusion problems represented in term of the DSm
hybrid models denoted M(£) where £ involves both
fuzzy continuous and discrete hypotheses. The main
differences between DST and DSmT frameworks are
(i) the model on which one works with, and (ii) the
choice of the combination rule and conditioning rules
[18], [19]. In the sequel, we use the generic notation G£

for denoting either D£ (when working in DSmT with
free DSm model) or 2£ (when working in DST with
Shafer’s model).

B. Quantitative Basic Belief Assignment (BBA)

The (quantitative) basic belief assignment (BBA)
m(¢) has been introduced for the first time in 1976 by

Shafer [17] in his Mathematical Theory of Evidence
(i.e. DST). m(¢) is defined as a mapping function from
2£! [0,1] provided by a given source of evidence B
satisfying the conditions

m(Ø) = 0, (1)X
A22£

m(A) = 1: (2)

The elements of 2£ having a strictly positive mass
are called focal elements of B. The set of focal elements
of m(¢) is called the core of m(¢) and is usually denoted
F(m). The equation (1) corresponds to the closed-world
assumption [17]. As introduced by Smets [25], we can
also define the belief function only withX

A22£
m(A) = 1 (3)

and thus we can have m(Ø)> 0, working with the
open-world assumption. In order to change an open
world to a closed world, we can always add one extra
closure element in the open discriminant space £. In
the following, we assume that we always work within a
closed-world £.
The (quantitative) basic belief assignment (BBA)

m(¢) can also be defined similarly in the DSmT frame-
work by working on hyper-power set D£ instead on
classical power-set 2£ as within DST. More generally
for taking into account some integrity constraints on
(closed-world) £ (if any), m(¢) can be defined on G£ as

m(Ø) = 0, (4)X
A2G£

m(A) = 1: (5)

The conditions (1)—(5) give a large panel of defini-
tions of the belief functions, which is one of the dif-
ficulties of the theories. From any basic belief assign-
ments m(¢), other belief functions can be defined
such as the credibility Bel(¢) and the plausibility Pl(¢)
[17], [18] which are in one-to-one correspondence with
m(¢).
After combining several BBAs provided by several

sources of evidence into a single one with some cho-
sen fusion rule (see next section), one usually has also
to make a final decision to select the “best” hypoth-
esis representing the unknown truth for the problem
under consideration. Several approaches are generally
adopted for decision-making from belief functions m(¢),
Bel(¢) or Pl(¢). The maximum of the credibility function
Bel(¢) is known to provide a pessimistic decision, while
the maximum of the plausibility function Pl(¢) is often
considered as too optimistic. A common solution for
decision-making in these frameworks is to use the pig-
nistic probability denoted BetP(X) [25] which offers a
good compromise between the max of Bel(¢) and the
max of Pl(¢). The pignistic probability in DST frame-
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work is given for all X 2 2£, with X 6=Ø by

BetP(X) =
X

Y22£ ,Y 6=Ø

jX \Yj
jYj

m(Y)
1¡m(Ø) , (6)

for m(Ø) 6= 1. The pignistic probability can also be
defined in DSmT framework as well (see Chapter 7 of
[18] for details).
When we can quantify/estimate the reliability of

each source of evidence, we can weaken the basic be-
lief assignment before the combination by the classical
discounting procedure [17]

m0(X) = ®m(X), 8 X 2 2£ n f£g
m0(£) = ®m(£)+1¡®,

(7)

where ® 2 [0,1] is the discounting factor of the source of
evidence B that is in this case the reliability of the source
of evidence B, eventually as a function of X 2 2£. Same
procedure can be applied for BBAs defined on G£ in
DSmT framework.

C. Qualitative Basic Belief Assignment (QBBA)

1) Qualitative operators on linguistic lables

Recently Smarandache and Dezert [13], [19] have
proposed an extension of classical quantitative belief
assignments and numerical operators to qualitative be-
liefs expressed by linguistic labels and qualitative op-
erators in order to be closer to what human experts
can easily provide. In order to compute directly with
words/linguistic labels and qualitative belief assign-
ments instead of quantitative belief assignments over
G£, Smarandache and Dezert have defined in [19]
a qualitative basic belief assignment qm(¢) as a map-
ping function from G£ into a set of linguistic labels
L= fL0, L̃,Ln+1g where L̃= fL1, : : : ,Lng is a finite set
of linguistic labels and where n¸ 2 is an integer. For
example, L1 can take the linguistic value “poor,” L2 the
linguistic value “good,” etc. L̃ is endowed with a to-
tal order relationship Á, so that L1 Á L2 Á ¢¢ ¢ Á Ln. To
work on a true closed linguistic set L under linguis-
tic addition and multiplication operators, Smarandache
and Dezert extended naturally L̃ with two extreme val-
ues L0 = Lmin and Ln+1 = Lmax, where L0 corresponds
to the minimal qualitative value and Ln+1 corresponds
to the maximal qualitative value, in such a way that
L0 Á L1 Á L2 Á ¢¢ ¢ Á Ln Á Ln+1, where Á means inferior
to, less (in quality) than, or smaller than, etc. Labels
L0,L1,L2, : : : ,Ln,Ln+1 are called linguistically equidistant
if: Li+1¡Li = Li¡Li¡1 for all i= 1,2, : : : ,n where the
definition of subtraction of labels is given in the se-
quel by (14). In the sequel Li 2 L are assumed lin-
guistically equidistant1 labels such that we can make
an isomorphism between L= fL0,L1,L2, : : : ,Ln,Ln+1g

1If the labels are not equidistant, the q-operators still work, but they
are less accurate.

and f0,1=(n+1),2=(n+1), : : : ,n=(n+1),1g, defined as
Li = i=(n+1) for all i= 0,1,2, : : : ,n,n+1. Using this
isomorphism, and making an analogy to the classical
operations of real numbers, we are able to justify and
define precisely the following qualitative operators (or
q-operators for short).

² q-addition of linguistic labels

Li+Lj =
i

n+1
+

j

n+1
=
i+ j
n+1

= Li+j , (8)

we set the restriction that i+ j < n+1; in the case
when i+ j ¸ n+1 we restrict Li+j = Ln+1 = Lmax.
This is the justification of the qualitative addition we
have defined.

² q-multiplication of linguistic labels2
a) Since

Li ¢Lj =
i

n+1
¢ j

n+1
=
(i ¢ j)=(n+1)

n+1
,

the best approximation would be L[(i¢j)=(n+1)], where
[x] means the closest integer to x (with [n+0:5] =
n+1, 8n 2N), i.e.

Li ¢Lj = L[(i¢j)=(n+1)]: (9)

For example, if we have L0, L1, L2, L3, L4, L5,
corresponding to respectively 0, 0.2, 0.4, 0.6, 0.8,
1, then L2 ¢L3 = L[(2¢3)=5] = L[6=5] = L[1:2] = L1; using
numbers: 0:4 ¢ 0:6 = 0:24¼ 0:2 = L1; also L3 ¢L3 =
L[(3¢3)=5] = L[9=5] = L[1:8] = L2; using numbers 0:6 ¢ 0:6
= 0:36¼ 0:4 = L2.
b) A simpler approximation of the multiplication, but
less accurate (as proposed in [19]) is thus

Li ¢Lj = Lminfi,jg: (10)

² Scalar multiplication of a linguistic label
Let a be a real number. We define the multiplication
of a linguistic label by a scalar as follows

a ¢Li =
a ¢ i
n+1

¼
½
L[a¢i] if [a ¢ i]¸ 0,
L¡[a¢i] otherwise:

(11)

² Division of linguistic labels
a) Division as an internal operator: = : L ¢L! L. Let
j 6= 0, then

Li=Lj =
½
L[(i=j)¢(n+1)] if [(i=j) ¢ (n+1)]< n+1,
Ln+1 otherwise:

(12)

The first equality in (12) is well justified because
when [(i=j) ¢ (n+1)]< n+1, one has

Li=Lj =
i=(n+1)
j=(n+1)

=
(i=j) ¢ (n+1)

n+1
= L[(i=j)¢(n+1)]:

2The q-multiplication of two linguistic labels defined here can be
extended directly to the multiplication of n > 2 linguistic labels. For
example the product of three linguistic label will be defined as Li ¢
Lj ¢Lk = L[(i¢j¢k)=(n+1)(n+1)], etc.
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For example, if we have L0, L1, L2, L3, L4, L5, cor-
responding to respectively 0, 0.2, 0.4, 0.6, 0.8, 1,
then: L1=L3 = L[(1=3)¢5] = L[5=3] = L[1:66] ¼ L2. L4=L2 =
L[(4=2)¢5] = L[2¢5] = Lmax = L5 since 10> 5.
b) Division as an external operator: ® : L ¢L!R+.
Let j 6= 0. Since Li®Lj = (i=(n+1))=(j=(n+1)) =
i=j, we simply define

Li®Lj = i=j: (13)

Justification of b): When we divide say L4=L1 in the
above example, we get 0:8=0:2 = 4, but no label is
corresponding to number 4 which is not included in
the interval [0,1], hence the division as an internal
operator we need to get as a response label, so in
our example we approximate it to Lmax = L5, which
is a very rough approximation! Therefore, depending
on the fusion combination rules, it may be better
to consider the qualitative division as an external
operator, which gives us the exact result.

² q-subtraction of linguistic labels given by ¡ : L ¢L!
fL,¡Lg,

Li¡Lj =
½
Li¡j if i¸ j,
¡Lj¡i if i < j:

(14)

where ¡L= f¡L1,¡L2, : : : ,¡Ln,¡Ln+1g. The q-sub-
traction above is well justified since when i¸ j, one
has Li¡Lj = i=(n+1)¡ j=(n+1) = (i¡ j)=(n+1).
The previous qualitative operators are logical due to

the isomorphism between the set of linguistic equidis-
tant labels and a set of equidistant numbers in the in-
terval [0,1]. These qualitative operators are built exactly
on the track of their corresponding numerical operators,
so they are more mathematically defined than the ad-
hoc definitions of qualitative operators proposed in the
literature so far. The extension of these operators for
handling quantitative or qualitative enriched linguistic
labels can be found in [13].

Remark about doing multi-operations on labels

When working with labels, no matter how many
operations we have, the best (most accurate) result is
obtained if we do only one approximation. That one
should be at the end. For example, if we have to
compute terms like LiLjLk=(Lp+Lq) as for qualitative
proportional conflict redistribution (QPCR) rule (see
example in Section 4), we compute all operations as
defined above. Without any approximations (i.e. not
even calculating the integer part of indexes, neither
replacing by n+1 if the intermediate results is bigger
than n+1). Then

LiLjLk
Lp+Lq

=
L(ijk)=(n+1)2

Lp+q

= L (ijk)=(n+1)2

p+q ¢(n+1)

= L (ijk)=(n+1)
p+q

= L ijk
(n+1)(p+q)

, (15)

and now, when all work is done, we compute the
integer part of the index, i.e. [ijk=((n+1)(p+ q))] or
replace it by n+1 if the final result is bigger than
n+1. Therefore, the term LiLjLk=(Lp+Lq) will take the
linguistic value Ln+1 whenever [ijk=((n+1)(p+ q))]>
n+1. This method also insures us of a unique result,
and it is mathematically closer to the result that would
be obtained if working with corresponding numerical
masses. Otherwise, if one approximates either at the
beginning or end of each operation or in the middle
of calculations, the inaccuracy propagates (becomes
bigger) and we obtain different results, depending on
the places where the approximations were done. If we
need to round the labels’ indexes to integer indexes, for
a better accuracy of the result, this rounding must be
done at the very end. If we work with fractional/decimal
indexes (therefore no approximations), then we can
normally apply the qualitative operators one by one
in the order they are needed; in this way the quasi-
normalization is always kept.

2) Quasi-normalization of qm(¢)
There is no known way to define a normalized qm(¢),

but a qualitative quasi-normalization [19], [24] is never-
theless possible when considering equidistant linguistic
labels because in such case, qm(Xi) = Li, is equivalent
to a quantitative mass m(Xi) = i=(n+1) which is nor-
malized if X

X2G£
m(X) =

X
k

ik=(n+1) = 1,

but this one is equivalent toX
X2G£

qm(X) =
X
k

Lik = Ln+1:

In this case, we have a qualitative normalization, similar
to the (classical) numerical normalization. However, if
the previous labels L0,L1,L2, : : : ,Ln,Ln+1 from the set L
are not equidistant, the interval [0,1] cannot be split into
equal parts according to the distribution of the labels.
Then it makes sense to consider a qualitative quasi-
normalization, i.e. an approximation of the (classical)
numerical normalization for the qualitative masses in
the same way X

X2G£
qm(X) = Ln+1:

In general, if we don’t know if the labels are equidis-
tant or not, we say that a qualitative mass is quasi-
normalized when the above summation holds. In the
sequel, for simplicity, one assumes to work with quasi-
normalized qualitative basic belief assignments.
From these very simple qualitative operators, it is

possible to extend directly all the quantitative combi-
nation rules to their qualitative counterparts as we will
show in the sequel.
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3) Working with refined labels

² We can further extend the standard labels (those with
positive integer indexes) to refined labels, i.e. labels
with fractional/decimal indexes. In such a way, we
get a more exact result, and the quasi-normalization
is kept.
Consider a simple example: If L2 = good and L3 =
best, then L2:5 = better, which is a qualitative (a re-
fined label) in between L2 and L3.

² Further, we consider the confidence degree in a label,
and give more interpretations/approximations to the
qualitative information.
For example: L2=5 = (1=5) ¢L2, which means that we
are 20% confident in label L2; or L2=5 = (2=5) ¢L1,
which means that we are 40% confident in label
L1, so L1 is closer to reality than L2; we get 100%
confidence in L2=5 = 1 ¢L2=5.
4) Working with non-equidistant labels: We are not

able to find (for non-equidistant labels) exact corre-
sponding numerical values in the interval [0,1] in order
to reduce the qualitative fusion to a quantitative fusion,
but only approximations. We, herfore, prefer the use of
labels.

3. CLASSICAL QUANTITATIVE COMBINATION
RULES

The normalized conjunctive combination rule also
called Dempster-Shafer (DS) rule is the first rule pro-
posed in the belief theory by Shafer following Demp-
ster’s works in sixties [2]. In the belief functions theory
one of the major problems is the conflict repartition en-
lightened by the famous Zadeh’s example [36]. Since
Zadeh’s paper, many combination rules have been pro-
posed, building a solution to this problem [4], [5], [7]—
[9], [14], [21], [26], [27], [34]. In recent years, some
unification rules have been proposed [1], [12], [29].
We briefly browse the major rules developed and used
in the fusion community working with belief functions
through last past thirty years (see [30] and [19] for a
more comprehensive survey).
To simplify the notations, we consider only two

independent sources of evidence B1 and B2 over the
same frame £ with their corresponding BBAs m1(¢)
and m2(¢). Most of the fusion operators proposed in
the literature use either the conjunctive operator, the
disjunctive operator or a particular combination of them.
These operators are respectively defined 8A 2G£, by

m_(A) = (m1 _m2)(A) =
X
X,Y2G£
X[Y=A

m1(X)m2(Y),

(16)

m^(A) = (m1 ^m2)(A) =
X
X,Y2G£
X\Y=A

m1(X)m2(Y):

(17)

The global/total degree of conflict between the sources
B1 and B2 is defined by

k
¢
=m^(Ø) =

X
X ,Y2G£
X\Y=Ø

m1(X)m2(Y): (18)

If k is close to 0, the BBAs m1(¢) and m2(¢) are almost
not in conflict, while if k is close to 1, the BBAs are
almost in total conflict. Next, we briefly review the
main common quantitative fusion rules encountered in
the literature and used in engineering applications.

EXAMPLE 1 Let’s consider the 2D frame £ = fA,Bg
and two experts providing the following quantitative
belief assignments (masses) m1(¢) and m2(¢) as described
in Table I.

TABLE I
Quantitative Inputs for Example 1

A B A[B
m1(¢) 1=6 3=6 2=6
m2(¢) 4=6 1=6 1=6

The disjunctive operator yields the following result

m_(A) =m1(A)m2(A) = (1=6) ¢ (4=6) = 4=36,
m_(B) =m1(B)m2(B) = (3=6) ¢ (1=6) = 3=36,

m_(A[B) =m1(A)m2(B) +m1(B)m2(A)
+m1(A)m2(A[B) +m2(A)m1(A[B)
+m1(B)m2(A[B) +m2(B)m1(A[B)
+m1(A[B)m2(A[B)

= (1=6) ¢ (1=6)+ (3=6) ¢ (4=6)
+ (1=6) ¢ (1=6)+ (4=6) ¢ (2=6)
+ (3=6) ¢ (1=6)+ (1=6) ¢ (2=6)
+ (2=6) ¢ (1=6)

= 29=36,

while the conjunctive operator yields

m^(A) =m1(A)m2(A) +m1(A)m2(A[B)
+m2(A)m1(A[B)

= (1=6) ¢ (4=6)+ (1=6) ¢ (1=6)+ (4=6) ¢ (2=6)
= 13=36,

m^(B) =m1(B)m2(B) +m1(B)m2(A[B)
+m2(B)m1(A[B)

= (3=6) ¢ (1=6)+ (3=6) ¢ (1=6)+ (1=6) ¢ (2=6)
= 8=36,
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m^(A[B) =m1(A[B)m2(A[B) = (2=6) ¢ (1=6)=2=36,

m^(A\B)
¢
=m^(A\B) =m1(A)m2(B)
+m2(B)m1(B)

= (1=6) ¢ (1=6)+ (4=6) ¢ (3=6) = 13=36:
² Dempster’s rule [3]
This combination rule has been initially proposed

by Dempster and then used by Shafer in DST frame-
work. We assume (without loss of generality) that the
sources of evidence are equally reliable. Otherwise a
discounting preprocessing is first applied. It is defined
on G£ = 2£ by forcing mDS(Ø)

¢
=0 and 8A 2G£ n fØg

by
mDS(A) =

1
1¡ km^(A) =

m^(A)
1¡m^(Ø)

: (19)

When k = 1, this rule cannot be used. Dempster’s rule
of combination can be directly extended for the combi-
nation of N independent and equally reliable sources of
evidence and its major interest comes essentially from
its commutativity and associativity properties. Demp-
ster’s rule corresponds to the normalized conjunctive
rule by reassigning the mass of total conflict onto all
focal elements through the conjunctive operator. The
problem enlightened by the famous Zadeh’s exam-
ple [36] is the repartition of the global conflict. In-
deed, consider £ = fA,B,Cg and two experts opinions
given by m1(A) = 0:9, m1(C) = 0:1, and m2(B) = 0:9,
m2(C) = 0:1, the mass given by Dempster’s combina-
tion is mDS(C) = 1 which looks very counter-intuitive
since it reflects the minority opinion. The generalized
Zadeh’s example proposed by Smarandache and Dez-
ert in [18], shows that the results obtained by Demp-
ster’s rule can moreover become totally independent of
the numerical values taken by m1(¢) and m2(¢) which
is much more surprising and difficult to accept with-
out reserve for practical fusion applications. To resolve
this problem, Smets [26] suggested in his Transferable
Belief Model (TBM) framework [28] to consider £ as
an open-world and therefore to use the conjunctive rule
instead Dempster’s rule at the credal level. At credal
level m^(Ø) is interpreted as a non-expected solution.
The problem is actually just postponed by Smets at the
decision/pignistic level since the normalization (division
by 1¡m^(Ø)) is also required in order to compute the
pignistic probabilities of elements of £. In other words,
the non-normalized version of Dempster’s rule corre-
sponds to the Smets’ fusion rule in the TBM frame-
work working under an open-world assumption, i.e.
mS(Ø) = k =m^(Ø) and 8A 2G£ n fØg,mS(A) =m^(A).
EXAMPLE 2 Let’s consider the 2D frame and quantita-
tive masses as given in example 1 and assume Shafer’s
model (i.e. A\B =Ø), then the conflicting quantitative
mass k =m^(A\B) = 13=36 is redistributed to the sets

A, B, A[B proportionally with their m^(¢) masses, i.e.
m^(A) = 13=36, m^(B) = 8=36 and m^(A[B) = 2=36
respectively through Demspter’s rule (19). One thus
gets

mDS(Ø) = 0,

mDS(A) = (13=36)=(1¡ (13=36)) = 13=23,
mDS(B) = (8=36)=(1¡ (13=36)) = 8=23,

mDS(A[B) = (2=36)=(1¡ (13=36)) = 2=23:
If one prefers to adopt Smets’ TBM approach, at the
credal level the empty set is now allowed to have
positive mass. In this case, one gets

mTBM(Ø) =m^(A\B) = 13=36,
mTBM(A) = 13=36,

mTBM(B) = 8=36,

mTBM(A[B) = 2=36:
² Yager’s rule [32]—[34]
Yager admits that in case of high conflict Dempster’s

rule provides counter-intuitive results. Thus, k plays the
role of an absolute discounting term added to the weight
of ignorance. The commutative and quasi-associative3

Yager’s rule is given by mY(Ø) = 0 and 8A 2G£ n fØg
by

mY(A) =m^(A),

mY(£) =m^(£) +m^(Ø):
(20)

EXAMPLE 3 Let’s consider the 2D frame and quantita-
tive masses as given in example 1 and assume Shafer’s
model (i.e. A\B =Ø), then the conflicting quantitative
mass k =m^(A\B) = 13=36 is transferred to total ig-
norance A[B. One thus gets

mY(A) = 13=36,

mY(B) = 8=36,

mY(A[B) = (2=36)+ (13=36) = 15=36:
² Dubois & Prade’s rule [5]
This rule supposes that the two sources are reliable

when they are not in conflict and at least one of them
is right when a conflict occurs. Then if one believes
that a value is in a set X while the other believes that
this value is in a set Y, the truth lies in X \Y as long
X \Y 6=Ø. If X \Y =Ø, then the truth lies in X [Y.
According to this principle, the commutative and quasi-
associative Dubois & Prade hybrid rule of combination,
which is a reasonable trade-off between precision and
reliability, is defined by mDP(Ø) = 0 and 8A 2G£ n fØg

3Quasi-associativity was defined by Yager in [34], and Smarandache
and Dezert in [22].
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by

mDP(A) =m^(A) +
X
X,Y2G£
X[Y=A
X\Y=Ø

m1(X)m2(Y): (21)

In Dubois & Prade’s rule, the conflicting information
is considered more precisely than in Dempster’s or
Yager’s rules since all partial conflicts involved the
total conflict are taken into account separately through
(21).

The repartition of the conflict is very important be-
cause of the non-idempotency of the rules (except the
Denœux’ rule [4] that can be applied when the depen-
dency between experts is high) and due to the responses
of the experts that can be conflicting. Hence, we have
defined the auto-conflict [16] in order to quantify the
intrinsic conflict of a mass and the distribution of the
conflict according to the number of experts.

EXAMPLE 4 Taking back example 1 and assuming
Shafer’s model for £, the quantitative Dubois & Prade’s
rule gives the same result as quantitative Yager’s rule
since the conflicting mass, m^(A\B) = 13=36, is trans-
ferred to A[B, while the other quantitative masses re-
main unchanged.

² Proportional Conflict Redistribution (PCR) rules
PCR5 for combining two sources
Smarandache and Dezert proposed five proportional

conflict redistribution (PCR) methods [21], [22] to re-
distribute the partial conflict on the elements implied
in the partial conflict. The most efficient for combining
two basic belief assignmentsm1(¢) and m2(¢) is the PCR5
rule given by mPCR5(Ø) = 0 and for all X 2G£, X 6=Ø
by

mPCR5(X)

=m^(X) +
X
Y2G£
X\Y´Ø

μ
m1(X)

2m2(Y)
m1(X) +m2(Y)

+
m2(X)

2m1(Y)
m2(X) +m1(Y)

¶
,

(22)

where m^(¢) is the conjunctive rule given by (17).
EXAMPLE 5 Let’s consider the 2D frame and quantita-
tive masses as given in Example 1 and assume Shafer’s
model (i.e. A\B =Ø), then the conflicting quantitative
mass k =m^(A\B) = 13=36 is redistributed only to el-
ements involved in conflict, A and B (not to A[B). We
repeat that

m^(A\B) =m1(A)m2(B) +m2(B)m1(B)
= (1=6) ¢ (1=6)+ (4=6) ¢ (3=6) = 13=36:

So (1=6) ¢ (1=6) = 1=36 is redistributed to A and B
proportionally to their quantitative masses assigned
by the sources (or experts) m1(A) = 1=6 and m2(B)

= 1=6
x1,A
1=6

=
y1,B
1=6

=
1=36

(1=6)+ (1=6)
= 1=12,

hence
x1,A = (1=6) ¢ (1=12) = 1=72,

and
y1,B = (1=6) ¢ (1=12) = 1=72:

Similarly (4=6) ¢ (3=6) = 12=36 is redistributed to A and
B proportionally to their quantitative masses assigned
by the sources (or experts) m2(A) = 4=6 and m1(B) =
3=6

x2,A
4=6

=
y2,B
3=6

=
12=36

(4=6)+ (3=6)
= 2=7,

hence
x2,A = (4=6) ¢ (2=7) = 4=21,

and
y2,B = (3=6) ¢ (2=7) = 1=7:

It is easy to check that

x1,A+ y1,B + x2,A+ y2,B = 13=36 =m^(A\B):
Summing, we get

mPCR5(A) = (13=36)+ (1=72)+ (4=21)

= 285=504' 0:57,
mPCR5(B) = (8=36)+ (1=72)+ (1=7)

= 191=504' 0:38,
mPCR5(A[B) = 2=36' 0:05,

mPCR5(A\B =Ø) = 0:
PCR6 for combining more than two sources
A generalization of PCR5 fusion rule for combining

altogether more than two experts has been proposed
by Smarandache and Dezert in [22]. Recently Martin
and Osswald [14], [16] studied and formulated a new
version of the PCR5 rule, denoted PCR6, for combining
more than two sources, say M sources with M ¸ 2.
Martin and Osswald have shown that PCR6 exhibits a
better behavior than PCR5 in specific interesting cases.
PCR6 rule is defined as follows: mPCR6(Ø) = 0 and for
all X 2G£, X 6=Ø,

mPCR6(X) =m^(X) +
MX
i=1

mi(X)
2

XTM¡1
k=1

Y¾i (k)
\X´Ø

(Y¾i (1)
,:::,Y¾i (M¡1))2(G

£ )M¡1

¢
Ã QM¡1

j=1 m¾i(j)
(Y¾

i
(j))

mi(X) +
PM¡1

j=1 m¾i(j)
(Y¾

i
(j))

!
, (23)

where Yj 2G£ is the response of the expert j, mj(Yj)
the associated belief function and ¾i counts from 1 to
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M avoiding i

¾i(j) = j if j < i,

¾i(j) = j+1 if j ¸ i:
(24)

The idea is here to redistribute the masses of the
focal elements giving a partial conflict proportionally
to the initial masses on these elements.
In general, for M ¸ 3 sources, one calculates the

total conflict, which is a sum of products; if each
product is formed by factors of masses of distinct
hypothesis, then PCR6 coincides with PCR5; if at
least a product is formed by at least two factors of
masses of same hypotheses, then PCR6 is different from
PCR5:
² for example: a product like m1(A)m2(A)m3(B), herein
we have two masses of hypothesis A;

² or m1(A[B)m2(B [C)m3(B [C)m4(B [C), herein
we have three masses of hypothesis B [C from four
sources.

EXAMPLE 6 For instance, consider three experts
expressing their opinion on £ = fA,B,C,Dg in the
Shafer’s model as described in Table II.

TABLE II
Quantitative Inputs for Example 6

A B A[C A[B [C [D
m1(¢) 0.7 0 0 0.3
m2(¢) 0 0.5 0 0.5
m3(¢) 0 0 0.6 0.4

The global conflict is given here by 0:21+0:14+
0:09 = 0:44, coming from

–A, B and A[C for the partial conflict 0.21,
–A, B and A[B [C [D for 0.14,

–and B, A[C and A[B [C [D for 0.09.
With the generalized PCR6 rule (23), we obtain:

mPCR6(A) = 0:14+0:21+0:21 ¢ 718 +0:14 ¢ 716
' 0:493,

mPCR6(B) = 0:06+0:21 ¢ 518 +0:14 ¢ 516 + 0:09 ¢ 514
' 0:194,

mPCR6(A[C) = 0:09+0:21 ¢ 618 +0:09 ¢ 614 ' 0:199,
mPCR6(A[B [C [D) = 0:06+0:14 ¢ 416 +0:09 ¢ 314 ' 0:114:

EXAMPLE 7 Let’s consider three sources providing
quantitative belief masses only on unions.
The conflict is given here by

m^(Ø) =m1(A[B)m2(A[C)m3(B [C)
= 0:7 ¢ 0:6 ¢ 0:5 = 0:21:

TABLE III
Quantitative Inputs for Example 7

A[B B [C A[C A[B [C
m1(¢) 0.7 0 0 0.3
m2(¢) 0 0 0.6 0.4
m3(¢) 0 0.5 0 0.5

With the generalized PCR rule, i.e. PCR6, we obtain

mPCR6(A) = 0:21,

mPCR6(B) = 0:14,

mPCR6(C) = 0:09,

mPCR6(A[B) = 0:14+0:21: 718 ' 0:2217,

mPCR6(B [C) = 0:06+0:21: 518 ' 0:1183,

mPCR6(A[C) = 0:09+0:21: 618 = 0:16,

mPCR6(A[B [C) = 0:06:
In the sequel, we use the notation PCR for two and more
sources.

4. CLASSICAL QUALITATIVE COMBINATION RULES

The classical qualitative combination rules are di-
rect extensions of classical quantitative rules presented
in previous section. Since the formulas of qualitative
fusion rules are the same as for quantitative rules, they
will be not reported in this section. The main difference
between quantitative and qualitative approaches lies in
the addition, multiplication and division operators one
has to use. For quantitative fusion rules, one uses addi-
tion, multiplication and division operators on numbers
while for qualitative fusion rules one uses the addition,
multiplication and division operators on linguistic labels
defined as in Section 2.C1.

EXAMPLE 8 Below is a very simple example used
to show how classical qualitative fusion rules work.
Let’s consider the following set of linguistic labels L=
fLmin = L0,L1,L2,L3,L4,L5,Lmax = L6g and let’s assume
Shafer’s model for the frame £ = fA,Bg we want to
work on. In this example, we consider only two experts
providing the qualitative belief assignments (masses)
qm1(¢) and qm2(¢) as described in Table IV.

TABLE IV
Qualitative Inputs for Example 8

A B A[B
qm1(¢) L1 L3 L2
qm2(¢) L4 L1 L1

The qualitative belief assignments qm1(¢) and qm2(¢)
have been chosen quasi-normalized since L1 +L3 +
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L2 = L6 = Lmax and respectively L4 +L1 +L1 = L6
= Lmax.

² Qualitative Conjunctive rule (QCR)
This rule provides qm^(¢) according following

derivations

qm^(A) = qm1(A)qm2(A) + qm1(A)qm2(A[B)
+ qm2(A)qm1(A[B)

= L1L4 +L1L1 +L4L2 = L 1¢4
6
+L 1¢1

6
+L 4¢2

6

= L 4+1+8
6
= L 13

6
,

qm^(B) = qm1(B)qm2(B) +qm1(B)qm2(A[B)
+ qm2(B)qm1(A[B)

= L3L1 +L3L1 +L1L2 = L 3¢1
6
+L 3¢1

6
+L 1¢2

6

= L 3+3+2
6
= L 8

6
,

qm^(A[B) = qm1(A[B)qm2(A[B) = L2L1 = L 2¢1
6

= L 2
6
,

qm^(A\B) = qm1(A)qm2(B) +qm2(B)qm1(B)
= L1L1 +L4L3 = L 1¢1

6
+L 4¢3

6
= L 1+12

6
= L 13

6
:

We see that not approximating the indexes (i.e. work-
ing with refined labels), the quasi-normalization of the
qualitative conjunctive rule is kept

L 13
6
+L 8

6
+L 2

6
+L 13

6
= L 36

6
= L6 = Lmax:

But if we approximate each refined label, we get

L[ 136 ]
+L[ 86 ] +L[ 26 ] +L[ 136 ]

= L2 +L1 +L0 +L2 = L5 6= L6 = Lmax:

Let’s examine the transfer of the conflicting qualita-
tive mass qm^(A\B) = qm^(Ø) = L 13

6
to the non-empty

sets according to the main following combination
rules.

² Qualitative Dempster’s rule (extension of classical
numerical DS rule to qualitative masses)
Assuming Shafer’s model for the frame £ (i.e.

A\B =Ø) and according to DS rule, the conflicting
qualitative mass qm^(A\B) = L 13

6
is redistributed to the

sets A, B, A[B proportionally with their qm^(¢) masses
L 13

6
, L 8

6
, and L 2

6
respectively,

xA
L 13

6

=
yB
L 8
6

=
zA[B
L 2
6

=
L 13

6

L 13
6
+L 8

6
+L 2

6

=
L 13

6

L 23
6

= L( 136 ¥ 23
6 )¢6 = L( 1323 )¢6 = L 78

23
:

Therefore, one gets

xA = L 13
6
¢L 78

23
= L( 136 ¢ 7823 )¥6 = L 169

138
,

yB = L 8
6
¢L 78

23
= L( 86 ¢ 7823 )¥6 = L 104

138
,

zA[B = L 2
6
¢L 78

23
= L( 26 ¢ 7823 )¥6 = L 26

138
:

We can check that the qualitative conflicting mass,
L 13

6
, has been proportionally split into three qualitative

masses

L 169
138
+L 104

138
+L 26

138
= L 169+104+26

138
= L 299

138
= L 13

6
:

Thus,

qmDS(A) = L 13
6
+L 169

138
= L 13

6 +
169
138
= L 468

138
,

qmDS(B) = L 8
6
+L 104

138
= L 8

6+
104
138
= L 288

138
,

qmDS(A[B) = L 2
6
+L 26

138
= L 2

6 +
26
138
= L 72

138
,

qmDS(A\B =Ø) = L0:
qmDS(¢) is quasi-normalized since:

L 468
138
+L 288

138
+L 72

138
= L 828

138
= L6 = Lmax:

If we approximate the linguistic labels L 468
138
, L 288

138
and

L 72
138
in order to work with original labels in L, still

qmDS(¢) remains quasi-normalized since:
qmDS(A)¼ L[ 468138 ] = L3
qmDS(B)¼ L[ 288138 ] = L2

qmDS(A[B)¼ L[ 72138 ] = L1
and L3 +L2 +L1 = L6 = Lmax.

² Qualitative Yager’s rule
With Yager’s rule, the qualitative conflicting mass

L 13
6
is entirely transferred to the total ignorance A[B.

Thus,
qmY(A[B) = L 2

6
+L 13

6
= L 15

6

and
qmY(A\B) = qmY(Ø) = L0

while the others remain the same

qmY(A) = L 13
6
,

qmY(B) = L 8
6
:

qmY(¢) is quasi-normalized since
L 13

6
+L 8

6
+L 15

6
= L 36

6
= L6 = Lmax:

If we approximate the linguistic labels L 13
6
, L 8

6
and L 15

6
,

still qmY(¢) happens to remain quasi-normalized since
qmY(A)¼ L[ 136 ] = L2,
qmY(B)¼ L[ 86 ] = L1,

qmY(A[B)¼ L[ 156 ] = L3,
and L2 +L1 +L3 = L6 = Lmax.
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² Qualitative Dubois & Prade’s rule
In this example the Qualitative Dubois & Prade’s

rule gives the same result as qualitative Yager’s rule
since the conflicting mass, qm^(A\B) = L 13

6
, is trans-

ferred to A[B, while the other qualitative masses re-
main unchanged.

² Qualitative Smets’ TBM rule
Smets’ TBM approach allows keeping mass on the

empty set. One gets

qmTBM(A) = L 13
6
,

qmTBM(B) = L 8
6
,

qmTBM(A[B) = L 2
6
,

qmTBM(Ø) = L 13
6
:

Of course qmTBM(¢) is also quasi-normalized.
However if we approximate, qmTBM(¢) does not re-

main quasi-normalized in this case since

qmTBM(A)¼ L[ 136 ] = L2,

qmTBM(B)¼ L[ 86 ] = L1,

qmTBM(A[B)¼ L[ 26 ] = L0,

qmTBM(Ø)¼ L[ 136 ] = L2,
and L2 +L1 +L0 +L2 = L5 6= L6 = Lmax.
² Qualitative PCR (QPCR)
The conflicting qualitative mass, qm^(A\B) = L 13

6
,

is redistributed only to elements involved in conflict, A
and B (not to A[B). We repeat that
qmPCR(A\B) = qm1(A)qm2(B)+ qm2(B)qm1(B)

= L1L1 +L4L3 = L 1¢1
6
+L 4¢3

6
= L 1+12

6
= L 13

6
:

So L 1
6
is redistributed to A and B proportionally to their

qualitative masses assigned by the sources (or experts)
qm1(A) = L1 and qm2(B) = L1

x1,A
L1

=
y1,B
L1

=
L 1
6

L1 +L1
=
L 1
6

L2
= L( 16¥2)¢6 = L 1

2
:

Hence
x1,A = L1 ¢L 1

2
= L(1¢ 12 )¥6 = L 1

12

and
y1,B = L1 ¢L 1

2
= L 1

12
:

Similarly L 12
6
is redistributed to A and B proportionally

to their qualitative masses assigned by the sources (or
experts) qm2(A) = L4 and qm1(B) = L3

x2,A
L4

=
y2,B
L3

=
L 12

6

L4 +L3
=
L 12

6

L7
= L( 126 ¥7)¢6 = L 12

7
:

Hence
x2,A = L4 ¢L 12

7
= L(4¢ 127 )¥6 = L 8

7

and
y2,B = L3 ¢L 12

7
= L(3¢ 127 )¥6 = L 6

7
:

Summing, we get

qmPCR(A) = L 13
6
+L 1

12
+L 8

7
= L 285

84
,

qmPCR(B) = L 8
6
+L 1

12
+L 6

7
= L 191

84
,

qmPCR(A[B) = L 2
6
= L 28

84
,

qmPCR(A\B =Ø) = L0:
qmPCR(¢) is quasi-normalized since

L 285
84
+L 191

84
+L 28

84
= L 504

84
= L6 = Lmax:

However, if we approximate, it is not quasi-normalized
any longer since

L[ 28584 ]
+L[ 19184 ] +L[ 2884 ] = L3 +L2 +L0 = L5 6= L6 = Lmax:

In general, if we do not approximate, and we work
with quasi-normalized qualitative masses, no matter
what fusion rule we apply, the result will be quasi-
normalized. If we approximate, many times the quasi-
normalization is lost.

5. GENERALIZATION OF QUANTITATIVE FUSION
RULES

In [1], [29] we can find two propositions of a
general formulation of the combination rules. In the
first one, Smets considers the combination rules from
a matrix notation and find the shape of this matrix
according to some assumptions on the rule, such as
linearity, commutativity, associativity, etc. In the second
one, a generic operator is defined from the plausibility
functions.
A general formulation of the global conflict repar-

tition have been proposed in [8], [12] for all X 2 2£
by

mc(X) =m^(X) +w(X)m^(Ø), (25)

where
P
X22£ w(X) = 1. The problem is the choice of

the weights w(X).

A. How to Choose Conjunctive and Disjunctive Rules?

We have seen that conjunctive rule reduces the im-
precision and uncertainty but can be used only if one of
the experts is reliable, whereas the disjunctive rule can
be used when the experts are not reliable, but allows a
loss of specificity.
Hence, Florea [7] proposes a weighted sum of these

two rules according to the global conflict k =m^(Ø)
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given for X 2 2£ by:
mFlo(X) = ¯1(k)m_(X) +¯2(k)m^(X), (26)

where ¯1 and ¯2 can admit k =
1
2 as symmetric weight:

¯1(k) =
k

1¡ k+ k2 ,

¯2(k) =
1¡ k

1¡ k+ k2 :
(27)

Consequently, if the global conflict is high (k near 1)
the behavior of this rule will give more importance
to the disjunctive rule. Thus, this rule considers the
global conflict coming from the non-reliability of the
experts.
In order to take into account the weights more

precisely in each partial combination, we propose the
following new rule. For two basic belief assignments
m1 and m2 and for all X 2G£, X 6=Ø we have:

mMix(X) =
X

Y1[Y2=X
±1(Y1,Y2)m1(Y1)m2(Y2)

+
X

Y1\Y2=X
±2(Y1,Y2)m1(Y1)m2(Y2): (28)

Of course, if ±1(Y1,Y2) = ¯1(k) and ±2(Y1,Y2) = ¯2(k)
we obtain Florea’s rule. In the same manner, if ±1(Y1,Y2)
= 1¡ ±2(Y1,Y2) = 0 we obtain the conjunctive rule and
if ±1(Y1,Y2) = 1¡ ±2(Y1,Y2) = 1 the disjunctive rule. If
±1(Y1,Y2) = 1¡ ±2(Y1,Y2) = 1lY1\Y2=Ø we retrieve Dubois
and Prade’s rule and the partial conflict can be con-
sidered, whereas the rule (26).
The choice of ±1(Y1,Y2) = 1¡ ±2(Y1,Y2) can be done

by a dissimilarity such as:

±1(Y1,Y2) = ±(Y1,Y2)
¢
=1¡ C(Y1 \Y2)

minfC(Y1),C(Y2)g
,

(29)
or

±1(Y1,Y2) = ´(Y1,Y2)
¢
=1¡ C(Y1 \Y2)

maxfC(Y1),C(Y2)g
,

(30)

where C(Y1) is the cardinality of Y1. In the case of
the DST framework, C(Y1) is the number of distinct
elements of Y1. In the case of the DSmT, C(Y1) is the
DSm cardinality given by the number of parts of Y1
in the Venn diagram of the problem [18]. ±(¢, ¢) in
(29) is actually not a proper dissimilarity measure (e.g.
±(Y1,Y2) = 0 does not imply Y1 = Y2), but ´(¢, ¢) defined
in (30) is a proper dissimilarity measure. We can also
take for ±2(Y1,Y2), the Jaccard’s distance, i.e. ±2(Y1,Y2) =
d(Y1,Y2) given by

d(Y1,Y2) =
C(Y1 \Y2)
C(Y1 [Y2)

, (31)

used by [10] on the belief functions. Note that d is not
a distance in the case of DSmT. Thus, if we have a

partial conflict between Y1 and Y2, C(Y1 \Y2) = 0 and the
rule transfers the mass on Y1 [Y2. In the case Y1 ½ Y2
(or the contrary), Y1 \Y2 = Y1 and Y1 [Y2 = Y2, so with
±1(¢, ¢) = ±(¢, ¢) the rule transfers the mass on Y1 and with
±1(¢, ¢) = 1¡ d(¢, ¢) it transfers the mass on Y1 and Y2
according to the ratio (C(Y1)=C(Y2)) of the cardinalities.
In the case Y1 \Y2 6= Y1,Y2 and Ø, the rule transfers
the mass on Y1 \Y2 and Y1 [Y2 according to ±(¢, ¢) and
d(¢, ¢).
EXAMPLE 9 (on the derivation of the weights) Let’s
consider a frame of discernment £ = fA,B,Cg in
Shafer’s model (i.e. all intersections empty).
a) We compute the first similarity weights ±2(¢, ¢) =
1¡ ±(¢, ¢) using values presented in Table V.

TABLE V
Values for 1¡ ±(¢, ¢)

±2(¢, ¢) = 1¡ ±(¢, ¢) A B C A[B
A 1 0 0 1
B 0 1 0 1
C 0 0 1 0

A[B 1 1 0 1

We have

±2(A,A) =
C(A\A)

minfC(A),C(A)g =
C(A)
C(A) = 1,

±2(A,B) =
C(A\B)

minfC(A),C(B)g = 0,

because A\B =Ø and C(Ø) = 0. Then

±2(A,A[B) =
C(A\ (A[B))

minfC(A),C(A[B)g =
C(A)
C(A) = 1,

etc.
Whence, the first dissimilarity weights ±1(¢, ¢) de-

fined by (29), i.e. ±1(X,Y) = 1¡ ±2(X,Y) take the val-
ues as presented in Table VI.

TABLE VI
Values for ±(¢, ¢)

±1(¢, ¢) = ±(¢, ¢) A B C A[B
A 0 1 1 0
B 1 0 1 0
C 1 1 0 1

A[B 0 0 1 0

The first similarity and dissimilarity weights ±2(¢, ¢)
and ±1(¢, ¢) are not quite accurate, since for example:
±2(A,A[B) = 1, i.e. A and A[B are 100% similar
(which is not the case since A 6= A[B) and ±1(A,A[
B) = 1¡ ±2(A,A[B) = 1¡ 1 = 0, i.e. A and A[B are
100% dissimilar (which is not the case either since
A\ (A[B) 6=Ø).
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b) The second similarity weights ±2(¢, ¢) = 1¡ ´(¢, ¢)
given by (30) overcomes this problem. We obtain
on the previous example with values given in
Table VII.

TABLE VII
Values for 1¡ ´(¢, ¢)

±2(¢, ¢) = 1¡ ´(¢, ¢) A B C A[B
A 1 0 0 1/2
B 0 1 0 1/2
C 0 0 1 0

A[B 1/2 1/2 0 1

Then,

±2(A,A) = 1¡ ´(A,A) =
C(A\A)

maxfC(A),C(A)g =
C(A)
C(A) = 1,

±2(A,B) = 1¡ ´(A,B) =
C(A\B)

maxfC(A),C(B)g = 0,

because A\B =Ø and C(Ø) = 0. Hence,

±2(A,A[B) = 1¡ ´(A,A[B) =
C(A\ (A[B))

maxfC(A),C(A[B)g

=
C(A)

C(A[B) =
1
2

which is better than ±2(A,A[B) = 1¡ ±(A,A[B) = 1.
etc.
Whence, the second dissimilarity weights ´(¢, ¢)

take the values presented in Table VIII.

TABLE VIII
Values for ´(¢, ¢)

±1(¢, ¢) = ´(¢, ¢) A B C A[B
A 0 1 1 1/2
B 1 0 1 1/2
C 1 1 0 1

A[B 1/2 1/2 1 0

Then, ´(A,A[B) = 1¡ 1
2 =

1
2 , which is better than

±1(A,A[B) = ±(A,A[B) = 0.
The second similarity weight coincides with Jac-

card’s distance in Shafer’s model, but in hybrid and
free models, they are generally different. Hence if
we consider a Shafer’s model, one gets for all Y1, Y2
in G£

d(Y1,Y2) = 1¡ ´(Y1,Y2):
Smarandache defined in [23] the degree of intersec-
tion of two sets as Jaccard’s distance, and also the
degree of union of two sets, and the degree of in-
clusion of a set into another set and improved many
fusion rules by inserting these degrees in the fusion
rules’ formulas.

EXAMPLE 10 (with Shafer’s model) Consider the fol-
lowing example for two (quantitative) experts provid-
ing m1(¢) and m2(¢) on £ = fA,B,Cg and let’s assume
that Shafer’s model holds (i.e. A, B and C are truly
exclusive). Consider the following example given by
Table IX for two (quantitative) experts.

TABLE IX
Quantitative Inputs and Fusion Result

mMix,´
m1(¢) m2(¢) m^ mMix,± mMix,d

Ø 0 0 0.2 0 0
A 0.3 0 0.3 0.24 0.115
B 0 0.2 0.14 0.14 0.06

A[B 0.4 0 0.12 0.18 0.18
C 0 0.2 0.06 0.06 0.02

A[C 0 0.3 0.09 0.15 0.165
A[B [C 0.3 0.3 0.09 0.23 0.46

When taking ±1(¢, ¢) = ±(¢, ¢) according to (29), one
obtains the results given in Table X.

TABLE X
Values for ±(¢, ¢)

±1(¢, ¢) = ±(¢, ¢) A A[B A[B [C
B 1 0 0
C 1 1 0

A[C 0 1/2 0
A[B [C 0 0 0

where the columns are the focal elements of the basic
belief assignment given by the expert 1 and the rows are
the focal elements of the basic belief assignment given
by expert 2. The mass 0.2 on Ø come from the responses
A and C with a value of 0.06, from the responses A and
B with a value of 0.06 and from the responses A[B
and C with a value of 0.08. These three values are
transferred respectively on A[C, A[B and A[B [C.
The mass 0.12 on A given by the responses A[B and
A[C is transferred on A with a value of 0.06 and on
A[B [C with the same value.
When taking ±1(¢, ¢) = ´(¢, ¢) or ±1(¢, ¢) = 1¡ d(¢, ¢)

according to (30) and (31), one obtains the results pre-
sented in Table XI.

TABLE XI
Values for ´(¢, ¢) or 1¡ d(¢, ¢)

±1(¢, ¢) = ´(¢, ¢)
±1(¢, ¢) = 1¡ d(¢, ¢) A A[B A[B [C

B 1 1/2 2/3
C 1 1 2/3

A[C 1/2 2/3 1/3
A[B [C 2/3 1/3 0
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With ±1(¢, ¢) = ´ or ±1(¢, ¢) = 1¡ d(¢, ¢), the rule is more
disjunctive: more masses are transferred on the igno-
rance.
Note that ±1(¢, ¢) = ±(¢, ¢) can be used when the ex-

perts are considered reliable. In this case, we con-
sider the most precise response. With ±1(¢, ¢) = ´(¢, ¢)
or ±1(¢, ¢) = 1¡ d(¢, ¢), we get the conjunctive rule only
when the experts provide the same response, otherwise
we consider the doubtful responses and we transfer the
masses in proportion of the imprecision of the responses
(given by the cardinality of the responses) on the part
in agreement and on the partial ignorance.

EXAMPLE 11 (with a hybrid model) Consider the same
example with two (quantitative) experts providing m1(¢)
and m2(¢) on the frame of discernment £ = fA,B,Cg
with the following integrity constraints: A\B 6=Ø, A\
C =Ø and B \C =Ø (which defines a so-called
DSm-hybrid model [18]). The results are given in
Table XII.

TABLE XII
Quantitative Inputs and Fusion Result

m1(¢) m2(¢) m^ mMix,± mMix,´ mMix,d

Ø 0 0 0.14 0 0 0
A\B 0 0 0.06 0.03 0.03 0.02
A 0.3 0 0.3 0.26 0.205 0.185
B 0 0.2 0.14 0.14 0.084 0.084

A[B 0.4 0 0.12 0.15 0.146 0.156
C 0 0.2 0.06 0.06 0.015 0.015

A[C 0 0.3 0.09 0.15 0.1575 0.1575
A[B [C 0.3 0.3 0.09 0.21 0.3625 0.3825

When taking ±1(¢, ¢) = ±(¢, ¢) according to (29), one
obtains results presented in Table XIII.

TABLE XIII
Values for ±(¢, ¢)

±1(¢, ¢) = ±(¢, ¢) A A[B A[B [C
B 1/2 0 0
C 1 1 0

A[C 0 1/3 0
A[B [C 0 0 0

When taking ±1(¢, ¢) = ´(¢, ¢) according to (30), one
obtains results presented in Table XIV.

TABLE XIV
Values for ´(¢, ¢)

±1(¢, ¢) = ´(¢, ¢) A A[B A[B [C
B 1/2 1/3 1/2
C 1 1 3/4

A[C 1/3 1/3 1/4
A[B [C 1/2 1/4 0

When taking ±1(¢, ¢) = 1¡ d(¢, ¢) according to (31),
one obtains results presented in Table XV.

TABLE XV
Values for 1¡ d(¢, ¢)

±1(¢, ¢) = 1¡ d(¢, ¢) A A[B A[B [C
B 2/3 1/3 1/2
C 1 1 3/4

A[C 1/3 1/2 1/4
A[B [C 1/2 1/4 0

For more than two experts, say M > 2, if the inter-
section of the responses of the M experts is not empty,
we can still transfer on the intersection and the union,
and (29) and (30) become

±1(Y1, : : : ,YM) = ±(Y1, : : : ,YM) = 1¡
C(Y1 \ ¢¢ ¢ \YM)
min1·i·M C(Yi)

,

(32)
and

±1(Y1, : : : ,YM) = ´(Y1, : : : ,YM) = 1¡
C(Y1 \ ¢ ¢ ¢ \YM)
max1·i·M C(Yi)

:

(33)

From (31), we can define ±1 by:

±1(Y1, : : : ,YM) = 1¡
C(Y1 \ ¢ ¢ ¢ \YM)
C(Y1 [ ¢ ¢ ¢ [YM)

: (34)

Finally, the mixed rule for M ¸ 2 experts is given
by:

mMix(X) =
X

Y1[¢¢¢[YM=X
±1(Y1, : : : ,YM)

MY
j=1

mj(Yj)

+
X

Y1\¢¢¢\YM=X
(1¡ ±1(Y1, : : : ,YM))

MY
j=1

mj(Yj):

(35)

This formulation can be interesting according to the
coherence of the responses of the experts. However, it
does not allow the repartition of the partial conflict in
an other way than the Dubois and Prade’s rule.

B. A Discounting Proportional Conflict Repartition
Rule

The PCR6 redistributes the masses of the conflict-
ing focal elements proportionally to the initial masses
on these elements. First, the repartition concerns only
on the elements involved in the partial conflict. We
can apply a discounting procedure in the combination
rule in order to transfer a part of the partial conflict on
the partial ignorance. This new discounting PCR (noted
DPCR) can be expressed for two basic belief assign-
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ments m1(¢) and m2(¢) and for all X 2G£, X 6=Ø by
mDPCR(X) =m^(X)

+
X
Y2G£
X\Y´Ø

® ¢
μ
m1(X)

2m2(Y)
m1(X) +m2(Y)

+
m2(X)

2m1(Y)
m2(X) +m1(Y)

¶

+
X
Y1[Y2=X
Y1\Y2´Ø

(1¡®) ¢m1(Y1)m2(Y2), (36)

where ® 2 [0,1] is the discounting factor. Note that we
can also apply a discounting procedure on the masses
before the combination as shown in (7). Here the dis-
counting factor is introduced in order to transfer a part
of the partial conflict on partial ignorance. We propose
in (39) and (40) different ways for choosing this fac-
tor ®.
Hence, DPCR fusion rule is a combination of PCR

and Dubois-Prade (or DSmH4) rules. In an analogue
way we can combine other fusion rules, two or more in
the same formula, getting new mixed formulas. So that
in a general case, for M ¸ 2 experts, we can extend the
previous rule as

mDPCR(X) =m^(X) +
MX
i=1

mi(X)
2

XTM¡1
k=1

Y¾i (k)
\X=Ø

(Y¾i (1)
,:::,Y¾i (M¡1))2(G

£ )M¡1

¢® ¢
Ã QM¡1

j=1 m¾i(j)(Y¾i(j))

mi(X) +
PM¡1

j=1 m¾i(j)(Y¾i(j))

!

+
X

Y1[¢¢¢[YM=X
Y1\¢¢¢\YM´Ø

(1¡®) ¢
MY
j=1

mj(Yj), (37)

where Yj 2G£ is a response of the expert j, mj(Yj) its
assigned mass and ¾i is given by (24).
Hence, if we choose as discounting factor ®= 0:9 in

the previous example, we obtain

mDPCR(A) = 0:14+0:21+0:21 ¢ 718 ¢ 0:9

+0:14 ¢ 716 ¢ 0:9' 0:479,

mDPCR(B) = 0:06+0:21 ¢ 518 ¢0:9

+0:14 ¢ 516 ¢ 0:9+0:09 ¢ 514 ¢ 0:9

' 0:181,
mDPCR(A[C) = 0:09+0:21 ¢ 618 ¢0:9

+0:09 ¢ 614 ¢ 0:9' 0:187,

4The DSmH rule is an extension of Dubois-Prade’s rule which has
been proposed in the DSmT framework in order to work with hybrid
models including non-existential constraints. See [18] for details and
examples.

mDPCR(A[B [C) = 0:21 ¢ 0:1 = 0:021,

mDPCR(A[B [C [D) = 0:06+0:14 ¢ 416 ¢ 0:9

+0:09 ¢ 314 ¢ 0:9+0:14 ¢ 0:1

+0:09 ¢ 0:1' 0:132:

However, in this example, the partial conflict due
to the experts 1, 2 and 3 saying A, B, and A[C
respectively, the conflict is 0.21. Nonetheless, only the
experts 1 and 2 and the experts 2 and 3 are in conflict.
The experts 1 and 3 are not in conflict.
Now, consider another case where the experts 1, 2

and 3 say A, B, and C respectively with the same conflict
0.21. In both cases, the DPCR rule transfers the masses
with the same weight ®. Although, we could prefer
transfer more mass on £ in the second than in the first
case.
Consequently, the transfer of mass can depend on

the existence of conflict between each pair of experts.
We define the conflict function giving the number
of experts in conflict two by two for each response
Yi 2G£ of the expert i as the number of responses
of the other experts in conflict with i. A function fi
is defined by the mapping of (G£)M onto [0,1=M]
with

fi(Y1, : : : ,YM) =

PM
j=1 1lfYj\Yi=Øg
M(M ¡ 1) : (38)

Hence, we can choose ® depending on the response
of the experts such as

®(Y1, : : : ,YM) = 1¡
MX
i=1

fi(Y1, : : : ,YM): (39)

In this case ® 2 [0,1], we do not transfer the mass
on elements that can be written as the union of the
responses of the experts.
Therefore, if we consider again our previous exam-

ple we obtain

®(A,B,A[C) = 1¡ 2
3 =

1
3 ,

®(A,B,A[B [C [D) = 1¡ 1
3 =

2
3 ,

®(A[B [C [D,B,A[C) = 1¡ 1
3 =

2
3 :

Thus the provided mass by the DPCR is

mDPCR(A) = 0:14+0:21+0:21 ¢ 718 ¢ 13
+0:14 ¢ 716 ¢ 23 ' 0:418,

mDPCR(B) = 0:06+0:21 ¢ 518 ¢ 13 +0:14 ¢ 516 ¢ 23
+0:09 ¢ 514 ¢ 23 ' 0:130,
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mDPCR(A[C) = 0:09+0:21 ¢ 618 ¢ 13 + 0:09 ¢ 614 ¢ 23
' 0:139,

mDPCR(A[B [C) = 0:21 ¢ 23 = 0:140,

mDPCR(A[B [C [D) = 0:06+0:14 ¢ 416 ¢ 23 + 0:09 ¢ 314 ¢ 23
+0:14 ¢ 13 +0:09 ¢ 13 ' 0:173:

We want to take account of the degree of conflict (or
non-conflict) within each pair of expert differently for
each element. We can consider the non-conflict function
given for each expert i by the number of experts not
in conflict with i. Hence, we can choose ®i(Y1, : : : ,YM)
defined by the mapping of (G£)M onto [0,1=M]
with

®i(Y1, : : : ,YM) =
1
M
¡fi(Y1, : : : ,YM) =

PM

j=1,j 6=i 1lfYj\Yi 6´Øg

M(M ¡ 1) :

(40)

The discounting PCR rule (37) can be written for M
experts, for all X 2G£, X 6=Ø as:

mDPCR(X) =m^(X) +
MX
i=1

mi(X)
2

XTM¡1
k=1

Y¾i (k)
\X=Ø

(Y¾i (1)
,:::,Y¾i (M¡1))2(G

£ )M¡1

¢®i¸
Ã QM¡1

j=1 m¾i(j)(Y¾i(j))

mi(X) +
PM¡1
j=1 m¾i(j)(Y¾i(j))

!

+
X

Y1[¢¢¢[YM=X
Y1\¢¢¢\YM´Ø

Ã
1¡

MX
i=1

®i

!
MY
j=1

mj(Yj), (41)

where ®i(X,Y¾i(1), : : : ,Y¾i(M¡1)) is noted ®i for notations
convenience and ¸ depending on (X,Y¾i(1), : : : ,Y¾i(M¡1)),
is chosen to obtain the normalization given by (2). ¸ is
given when ®i 6= 0, 8i 2 f1, : : : ,Mg by:

¸=
PM
i=1®i
h®,°i , (42)

where h®,°i is the scalar product of ®= (®i)i2f1,:::,Mg
and ° = (°i)i2f1,:::,Mg with:

°i =
mi(X)

mi(X)+
PM¡1
j=1 m¾i(j)(Y¾i(j))

, (43)

where °i(X,Y¾i(1), : : : ,Y¾i(M¡1)) is noted °i for notations
convenience.
With this last version of the rule, for ®i given by

(40), we obtain on our illustrative example ¸= 36
13 when

the experts 1, 2 and 3 say A, B, and A[C respectively
(the conflict is 0.21), ¸= 16

5 when the conflict is 0.14
and ¸= 56

17 when the conflict is 0.09. Thus, the masses

are given by:

mDPCR(A) = 0:14+0:21+0:21 ¢ 718 ¢ 16 ¢ 3613
+0:14 ¢ 716 ¢ 16 ¢ 165 ' 0:420

mDPCR(B) = 0:06+0:14 ¢ 516 ¢ 16 ¢ 165
+0:09 ¢ 514 ¢ 16 ¢ 5617 ' 0:101

mDPCR(A[C) = 0:09+0:21 ¢ 618 ¢ 16 ¢ 3613
+0:09 ¢ 614 ¢ 16 ¢ 5617 ' 0:143

mDPCR(A[B [C) = 0:21 ¢ 23 = 0:14
mDPCR(A[B [C [D) = 0:06+0:14 ¢ 416 ¢ 13 ¢ 165

+0:09 ¢ 314 ¢ 13 ¢ 5617 +0:14 ¢ 13
+0:09 ¢ 13 ' 0:196:

This last rule of combination allows one to consider
a “kind of degree” of conflict (a degree of pair of non-
conflict), but this degree is not so easy to introduce in
the combination rule.

C. A Mixed Discounting Conflict Repartition Rule

In this section, we propose a combination of the
mixed rule (35) with the discounting PCR (37). This
new mixed discounting conflict repartition rule (MDPCR
for short) for two quantitative basic belief assignments
m1(¢) and m2(¢) is defined by mMDPCR(Ø) = 0 and for all
X 2G£, X 6=Ø by:
mMDPCR(X) =

X
Y1[Y2=X,
Y1\Y2 6´Ø

±1(Y1,Y2) ¢m1(Y1)m2(Y2)

+
X

Y1\Y2=X,
Y1\Y2 6´Ø

(1¡ ±1(Y1,Y2)) ¢m1(Y1)m2(Y2)

+
X
Y2G£ ,
X\Y´Ø

® ¢
μ
m1(X)

2m2(Y)
m1(X) +m2(Y)

+
m2(X)

2m1(Y)
m2(X) +m1(Y)

¶

+
X

Y1[Y2=X,
Y1\Y2´Ø

(1¡®) ¢m1(Y1)m2(Y2): (44)

® can be given by (39) and ±1(¢, ¢) by (32) or (34).
The weights must be taken in order to get a kind of con-
tinuity between the mixed and DPCR rules. In actuality,
when the intersection of the responses is almost empty
(but not empty) we use the mixed rule, and when this
intersection is empty we chose the DPCR rule. In the
first case, all the mass is transferred on the union, and
in the second case it will be the same according to the
partial conflict. Indeed, ®= 0 if the intersection is not
empty and ±1 = 1 if the intersection is empty. We can
also introduce ®i given by (40), and this continuity is
conserved.
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This rule is given in a general case for M experts,
by mMDPCR(Ø) = 0 and for all X 2G£, X 6=Ø by:

mMDPCR(X) =
X

Y1[¢¢¢[YM=X ,
Y1\¢¢¢\YM 6´Ø

±1(Y1, : : : ,YM) ¢
MY
j=1

mj(Yj)

+
X

Y1\¢¢¢\YM=X,
Y1\¢¢¢\YM 6´Ø

(1¡ ±1(Y1, : : : ,YM)) ¢
MY
j=1

mj(Yj)

+
MX
i=1

mi(X)
2

XTM¡1
k=1

Y¾i (k)
\X=Ø

(Y¾i (1)
,:::,Y¾i (M¡1))2(G

£ )M¡1

¢® ¢
Ã QM¡1

j=1 m¾i(j)(Y¾i(j))

mi(X) +
PM¡1

j=1 m¾i(j)(Y¾i(j))

!

+
X

Y1[¢¢¢[YM=X,
Y1\¢¢¢\YM´Ø

(1¡®) ¢
MY
j=1

mj(Yj), (45)

where Yj 2G£ is the response of the expert j, mj(Yj) the
associated belief function and ¾i is given by (24). This
formula could seem difficult to understand, but it can
be implemented easily as shown in [15].
If we take again the previous example, with ±1(¢, ¢)

given by (32), there is no difference with the DPCR. If
±1(¢, ¢) is calculated by (34), the only difference pertains
to the mass 0.09 coming from the responses of the three
experts: A[B [C [D, A[B [C [D and A[C. This
mass is transferred on A[C (0.06) and on A[B [C [D
(0.03).
The rules presented in the previous section, propose

a repartition of the masses giving a partial conflict only
(when at most two experts are in discord) and do not
take heed of the level of imprecision of the responses
of the experts (the non-specificity of the responses).
The imprecision of the responses of each expert is only
considered by the mixed and MDPCR rules when there
is no conflict between the experts. To try to overcome
these problems Martin and Osswald have proposed a
begin of solutions toward a more general rule [15].

6. GENERALIZATION OF QUALITATIVE FUSION
RULES

This section provides two simple examples to show
in detail how to extend the generalized quantitative fu-
sion rules proposed in the previous section (i.e. the
Mixed, the Discounted, and the Mixed Discounted fu-
sion rules) to their qualitative counterparts using our
operators on linguistic labels defined in Section 2.C1.

EXAMPLE 12 Fusion of two sources Consider a set of
labels L= fLmin = L0,L1,L2,L3,L4,L5,Lmax = L6g, and
a frame of discernment £ = fA,B,Cg in Shafer’s model

(i.e. all intersections empty). Consider the two following
qualitative sources of evidence described in Table XVI.

TABLE XVI
Qualitative Inputs for Example 12

A B C A[B
qm1(¢) L2 L0 L0 L4
qm2(¢) L3 L2 L1 L0

Now let’s apply the qualitative versions of Mixed,
Discounted, and Mixed Discounted Quantitative Fusion
rules (28), (36) and (44) respectively.

² Qualitative Mixed Dubois-Prade’s rule
From (28) and Table VI, one gets:

qm±Mix(A) = ±(A,A)qm1(A)qm2(A)

+ (1¡ ±(A,A))qm1(A)qm2(A)
+ (1¡ ±(A,A[B))qm1(A)qm2(A[B)
+ (1¡ ±(A[B,A))qm1(A[B)qm2(A)

= 0 ¢L2L3 +1 ¢L2L3 +1 ¢L2L0 +1 ¢L4L3
= L0 +L 2¢3

6
+L 2¢0

6
+L 4¢3

6
= L 6

6
+L 12

6
= L 18

6
:

Similarly, qm±Mix(B) = L 8
6
and

qm±Mix(C) = ±(C,C)qm1(C)qm2(C)

+ (1¡ ±(C,C))qm1(C)qm2(C)

= 0 ¢L0L1 +1 ¢L0L1 = L0,

qm±Mix(A[B) = ±(A[B,A[B)qm1(A[B)qm2(A[B)
+ ±(A,A[B)qm1(A)qm2(A[B)
+ ±(A[B,A)qm1(A[B)qm2(A)
+ ±(B,A[B)qm1(B)qm2(A[B)
+ ±(A[B,B)qm1(A[B)qm2(B)
+ ±(A,B)qm1(A)qm2(B)

+ ±(B,A)qm1(B)qm2(A)

+ (1¡ ±(A[B,A[B))qm1(A[B)qm2(A[B)

= L0 +L0 +L0 +L0 +L0 +1 ¢L2L2 +1 ¢L0L3
= L 2¢2

6
+L 0¢3

6
= L 4

6
:

Note: The first five terms of previous sum take value L0
since ±1(¢, ¢) = 0 for each of them. Then

qm±Mix(A[C) = ±(A,C)qm1(A)qm2(C)
+ (1¡ ±(C,A))qm1(C)qm2(A)

= 1 ¢L2L1 +1 ¢L0L3 = L 2¢1
6
+L 0¢3

6
= L 2

6
,
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qm±Mix(A[B [C) = ±(C,A[B)qm1(C)qm2(A[B)
+ ±(A[B,C)qm1(A[B)qm2(C)

= 1 ¢L0L0 +1 ¢L4L1 = L 4
6
:

This coincides with normal qualitative Dubois-
Prade’s and DSmH fusion rules. qm±Mix(¢) is quasi-nor-
malized both ways:
² without approximation, since

L 18
6
+L 8

6
+L 0

6
+L 4

6
+L 2

6
+L 4

6

= L 18+8+0+4+2+4
6

= L 36
6
= L6 = Lmax,

² and with approximations

L[ 186 ]
+L[ 86 ] +L[ 06 ] +L[ 46 ] +L[ 26 ] +L[ 46 ]

= L3 +L1 +L0 +L1 +L0 +L1 = L6 = Lmax:

Compute qmMix(¢) using the second similarity/dis-
similarity weights given by (30) (which are equal in
this case with Jaccard’s distance similarity/dissimi-
larity weights). In this case, we get better results.
Since from Table VIII and (28), one gets

qm´Mix(A) = ´(A,A)qm1(A)qm2(A)

+ (1¡ ´(A,A))qm1(A)qm2(A)
+ (1¡ ´(A,A[B))qm1(A)qm2(A[B)
+ (1¡ ´(A[B,A))qm1(A[B)qm2(A)

= 0 ¢L2L3 +1 ¢L2L3 + 1
2 ¢L2L0 + 1

2 ¢L4L3
= L0 +L 2¢3

6
+L 2¢0

6¢2
+L 4¢3

6¢2
= L0+ 6

6 +0+
6
6
= L 12

6
,

qm´Mix(B) = (1¡ ´(B,A[B))qm1(B)qm2(A[B)
= 1

2 ¢L2L4 = L 4¢2
6¢2
= L 4

6
,

qm´Mix(A[B) = ´(A[B,A[B)qm1(A[B)qm2(A[B)
+ ´(A,A[B)qm1(A)qm2(A[B)
+ ´(A[B,A)qm1(A[B)qm2(A)
+ ´(B,A[B)qm1(B)qm2(A[B)
+ ´(A[B,B)qm1(A[B)qm2(B)
+ ´(A,B)qm1(A)qm2(B)

+ ´(B,A)qm1(B)qm2(A)

+ (1¡ ´(A[B,A[B))qm1(A[B)
¢ qm2(A[B)

= 0 ¢L4L0 + 1
2 ¢L2L0 + 1

2 ¢L4L3 12 ¢L0L0
+ 1

2 ¢L4L2 + 1 ¢L2L2 +1 ¢L0L3 +1 ¢L4L0
= L0 +L0 +L 4¢3

6¢2
+L0 +L 4¢2

6¢2
+L 2¢2

6
+L0

= L 6+4+4
6
= L 14

6
,

qm´Mix(A[C) = ´(A,C)qm1(A)qm2(C)
+ (1¡ ´(C,A))qm1(C)qm2(A)

= 1 ¢L2L1 +1 ¢L0L3 = L 2¢1
6
+L 0¢3

6
= L 2

6
,

qm´Mix(A[B [C) = ´(C,A[B)qm1(C)qm2(A[B)
+ ´(A[B,C)qm1(A[B)qm2(C)

= 1 ¢L0L0 +1 ¢L4L1 = L 4
6
:

Similarly, qm´Mix(¢) is quasi-normalized both ways.

² Discounted Qualitative PCR (36)
We show how to apply the Discounted Qualitative

PCR rule (36) in this example with the fixed discount-
ing factor ®= 0:6, hence 1¡®= 0:4. First, apply the
qualitative conjunctive rule.

TABLE XVII
Qualitative Inputs and Conjunctive Rule

A B C A[B
qm1(¢) L2 L0 L0 L4
qm2(¢) L3 L2 L1 L0
qm^(¢) L 18

6
L 8
6

L0 L0

Indeed, one has

qm^(A) = L2L3 +L2L0 +L3L4 = L 2¢3
6 +0+

3¢4
6
= L 18

6
,

qm^(B) = L0L2 +L0L0 +L2L4 = L0+0+ 2¢4
6
= L 8

6
,

qm^(C) = L0L1 = L0,

qm^(A[B) = L4L0 = L0:

Applying the proportional conflict redistribution ac-
cording to PCR, one has

x1,A
L2

=
y1,B
L2

=
L2L2
L2 +L2

=
L 4
6

L4
= L( 46¥4)¢6 = L1:

Therefore,

x1,A = L2L1 = L 2
6
,

y1,B = L2L1 = L 2
6
,

x2,A
L2

=
z1,C
L1

=
L2L1
L2 +L1

=
L 2
6

L3
= L( 26¥3)¢6 = L 4

6
,

x2,A = L2L 4
6
= L 4=3

6
,

z1,C = L1L 4
6
= L 2=3

6
,

z2,C
L1

=
w1,A[B
L4

=
L1L4
L1 +L4

=
L 4
6

L5
= L( 46¥5)¢6 = L 4

5
,
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and

z2,C = L1L 4
5
= L 1¢4=5

6
= L 0:8

6
,

w1,A[B = L4L 4
5
= L 4¢4=5

6
= L 3:2

6
:

Summing, we get

qmDPCR(A) = L 18
6
+ 0:6 ¢

³
L 2
6
+L 4=3

6

´
= L 18

6
+ 0:6 ¢L 10=3

6
= L 18

6
+L 2

6
= L 20

6
,

qmDPCR(B) = L 8
6
+ 0:6 ¢ (L 2

6
) = L 8

6
+L 1:2

6
= L 9:2

6
,

qmDPCR(C) = L0 +0:6 ¢
³
L 4=3

6
+L 0:8

6

´
= L0 +L 0:62=3+0:8

6
= L 0:88

6
,

qmDPCR(A[B) = L0 +0:6 ¢ (L 3:2
6
+ 0:4 ¢ (L2L2 +L3L2)

= L 1:92
6
+ 0:4 ¢L 2¢2

6
= L 1:92

6 + 1:60
6
= L 3:52

6
,

qmDPCR(A[C) = 0:4 ¢ (L2L1 +L3L0)
= 0:4 ¢ (L 2¢1

6
+L0) = L 0:8

6
,

qmDPCR(A[B [C) = 0:4 ¢ (L0L0 +L1L4)

= 0:4 ¢
³
L0 +L 1¢4

6

´
= L 1:6

6
:

We can check that qmDPCR(¢) is quasi-normalized both
ways.
² Mixed Discounted Qualitative PCR (44)
In this example, we still set the discounting factor to

®= 0:6.
1) Using the first kind of similarity/dissimilarity
weights (see Table VI), one obtains

qm±MDPCR(A) = ±1(A,A)qm1(A)qm2(A)

+ ±2(A,A)qm1(A)qm2(A)

+ ±2(A,A[B)qm1(A)qm2(A[B)

+ ±2(A[B,A)qm1(A[B)qm2(A)

+® ¢
³
L 2
6
+L 4=3

6

´
= 0 ¢L2L3 +1 ¢L2L3 +1 ¢L2L0
+1 ¢L4L3 +0:6 ¢

³
L 2
6
+L 4=3

6

´
= L 18

6
+ 0:6 ¢L 10=3

6
= L 18

6
+L 2

6
= L 20

6
:

The term L 4=3
6
in the sum above comes from the

previous Discounted Qualitative PCR example.
One gets the same result as in the previous example
(Discounted Qualitative PCR).

2) Using the second kind of similarity/dissimilarity
weights (see Table VIII), one obtains:

qm´MDPCR(A) = ´(A,A)qm1(A)qm2(A)

+ (1¡ ´(A,A))qm1(A)qm2(A)
+ (1¡ ´(A,A[B))qm1(A)qm2(A[B)
+ (1¡ ´(A[B,A))qm1(A[B)qm2(A)

+® ¢
³
L 2
6
+L 4=3

6

´
= 0 ¢L2L3 +1 ¢L2L3 + 1

2 ¢L2L0

+ 1
2 ¢L4L3 +0:6 ¢

³
L 2
6
+L 4=3

6

´
= L 12

6
+L 2

6
= L 14

6
:

Similarly

qm´MDPCR(B) = 0 ¢L0L2 +1 ¢L0L2 + 1
2 ¢L0L0

+ 1
2 ¢L4L2 +0:6 ¢L 2

6

= 1
2 ¢L4L2 +L 1:2

6
= L 4¢2

6¢2
+L 1:2

6

= L 4
6
+L 1:2

6
= L 5:2

6
,

qm´MDPCR(C) = 0 ¢L0L1 +1 ¢L0L1 +0:6 ¢
³
L 2=3

6
+L 0:8

6

´
= L0 +L0 +L 0:88

6
= L 0:88

6
:

The term L 0:8
6
in the sum above comes from the

previous Discounted Qualitative PCR example. We
get

qm´MDPCR(A[B) = ´(A[B,A[B)qm1(A[B)
¢ qm2(A[B)
+ ´(A,A[B)qm1(A)qm2(A[B)
+ ´(A[B,A)qm1(A[B)qm2(A)
+ ´(B,A[B)qm1(B)qm2(A[B)
+ ´(A[B,B)qm1(A[B)qm2(B)
+ (1¡ ´(A[B,A[B))qm1(A[B)
¢ qm2(A[B)
+® ¢L 3:2

6
+ (1¡®)qm1(A)qm2(B)

+ (1¡®)qm1(B)qm2(A),
= 0 ¢L4L0 + 1

2 ¢L0L1 + 1
2 ¢L4L3 12 ¢L0L0

+ 1
2 ¢L4L2 +1 ¢L4L0

+0:6 ¢L 3:2
6
+ 0:4 ¢L2L2 +0:4 ¢L0L3

= L 4¢3
6¢2
+L 4¢2

6¢2
+L 1:92

6
+L 1:60

6

= L 6
6
+L 4

6
+L 1:92

6
+L 1:60

6
= L 13:52

6
,
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qm´MDPCR(A[C) = (1¡®)qm1(A)qm2(C)
+ (1¡®)qm1(C)qm2(A)

= 0:4 ¢L2L1 +0:4 ¢L3L0 = L 0:8
6
,

qm´MDPCR(A[B [C) = (1¡®)qm1(C)qm2(A[B)
+ (1¡®)qm1(A[B)qm2(C)

= 0:4 ¢L0L0 +0:4 ¢L4L1 = L 1:6
6
:

qm´MDPCR(¢) is quasi-normalized without approxima-
tions, but it is not with approximations.

EXAMPLE 13 Fusion of three sources
Consider a set of labels L= fLmin = L0,L1,L2,L3,L4,L5,
Lmax = L6g, and a frame of discernment £ = fA,B,Cg
in Shafer’s model (i.e. all intersections empty). Let’s
take the three following qualitative sources of evidence
described in Table XVIII.

TABLE XVIII
Qualitative Inputs for Example 13

A B B [C A[B [C
qm1(¢) L2 L0 L0 L4
qm2(¢) L0 L3 L0 L3
qm3(¢) L0 L0 L5 L1

² Qualitative conjunctive rule
If one applies the Qualitative Conjunctive Rule

(QCR), one gets

qm^(A) = qm1(A)qm2(A[B [C [D)qm3(A[B [C [D)
= L2L3L1 = L 2¢3

6
L1 = L 2¢3¢1

6¢6
= L 1

6
:

Similarly,

qm^(B) = L4L3L1 +L4L3L5 = L 4¢3¢1
6¢6
+L 4¢3¢5

6¢6

= L 2
6
+L 10

6
= L 12

6
,

qm^(B [C) = L4L3L5 = L 4¢3¢5
6¢6
= L 10

6
,

qm^(A[B [C [D) = L4L3L1 = L 4¢3¢1
6¢6
= L 2

6
:

The total conflict is

qm^(Ø) = qm1(A)qm2(B)qm3(B [C)
+ qm1(A)qm2(B)qm3(A[B [C [D)
+ qm1(A)qm2(A[B [C [D)qm3(B [C)

= L2L3L5 +L2L3L1 +L2L3L5

= L 2¢3¢5
6¢6
+L 2¢3¢1

6¢6
+L 2¢3¢5

6¢6

= L 5
6
+L 1

6
+L 5

6
= L 11

6
:

² Qualitative PCR
Applying the proportional conflict redistribution for

the first partial conflict qm1(A)qm2(B)qm3(B [C), one
gets

x1,A
L2

=
y1,B
L3

=
z1,B[C
L5

=
L2L3L5

L2 +L3 +L5

=
L 5
6

L10
= L( 56¥10)¢6 = L 3

6
:

Therefore,

x1,A = L2L 3
6
= L 2¢3

6¢6
= L 1

6
,

y1,B = L3L 3
6
= L 3¢3

6¢6
= L 1:5

6
,

z1,B[C = L5L 3
6
= L 5¢3

6¢6
= L 2:5

6
:

Applying the proportional conflict redistribution for
the second partial conflict qm1(A)qm2(B)qm3(A[B[
C [D), one gets

x2,A
L2

=
y2,B
L3

=
w1,A[B[C[D

L1
=

L2L3L1
L2 +L3 +L1

=
L 1
6

L6
= L( 16¥6)¢6 = L 1

6
:

Therefore,

x2,A = L2L 1
6
= L 2¢1

6¢6
= L 1=3

6
,

y2,B = L3L 1
6
= L 3¢1

6¢6
= L 1=2

6
= L 0:5

6
,

w1,A[B[C[D = L1L 1
6
= L 1¢1

6¢6
= L 1=6

6
:

Applying the proportional conflict redistribution for
the third partial conflict qm1(A)qm2(A[B [C [D)
¢ qm3(B [C), one gets
x3,A
L2

=
w2,A[B[C[D

L3
=
z2,B[C
L5

=
L2L3L5

L2 +L3 +L5
= L 3

6
,

so,
x3,A = L2L 3

6
= L 1

6
,

w2,A[B[C[D = L3L 3
6
= L 1:5

6
,

z2,B[C = L5L 3
6
= L 2:5

6
:

Summing, we get

qmPCR(A) = L 1
6
+L 1

6
+L 1=3

6
+L 1

6
= L 10=3

6
,

qmPCR(B) = L 12
6
+L 1:5

6
+L 0:5

6
= L 14

6
,

qmPCR(B [C) = L 10
6
+L 2:5

6
+L 2:5

6
= L 15

6
,

qmPCR(A[B [C [D) = L 2
6
+L 1=6

6
+L 1:5

6
= L 22=6

6
:

We can check that qmPCR(¢) is quasi-normalized without
approximations (i.e. when working within the refined
set of linguistic labels by keeping fractional indexes),
but it is not quasi-normalized when using approxima-
tions of fractional indexes if we want to work back
within the original set of linguistic labels L= fLmin =
L0,L1,L2,L3,L4,L5,Lmax = L6g.
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² Discounted Qualitative PCR (37)
Let’s consider the discounting factor ®= 0:6. Con-

sider the previous example and discount it according to
(37) applied in the qualitative domain. One obtains:

qmDPCR(A) = L 1
6
+ 0:6 ¢

³
L 1
6
+L 1=3

6
+L 1

6

´
= L 1

6
+ 0:6 ¢L 7=3

6
= L 2:4

6
,

qmDPCR(B) = L 12
6
+ 0:6 ¢

³
L 1:5

6
+L 0:5

6

´
= L 1

6
+ 0:6 ¢L 2

6
= L 13:2

6
,

qmDPCR(B [C) = L 10
6
+ 0:6 ¢

³
L 2:5

6
+L 2:5

6

´
= L 10

6
+ 0:6 ¢L 5

6
= L 13

6
,

qmDPCR(A[B [C) = (1¡®)qm1(A)qm2(B)qm2(B [C)
= 0:4 ¢L2L3L5 = 0:4 ¢L 5

6
= L 2

6
,

qmDPCR(A[B [C [D) = L 2
6
+ 0:6 ¢

³
L 1=6

6
+L 1:5

6

´
+0:4 ¢ (L2L3L1 +L2L3L5)

= L 2
6
+ 0:6 ¢L 5=3

6
+ 0:4 ¢

³
L 1
6
+L 5

6

´
= L 2

6
+L 1

6
+ 0:4 ¢L 6

6

= L 3
6
+L 2:4

6
= L 5:4

6
:

qmDPCR(¢) is quasi-normalized without approximations,
but it is not with approximations.

7. CONCLUSIONS

With the recent development of qualitative methods
for reasoning under uncertainty developed in Artificial
Intelligence, more and more experts and scholars have
expressed great interest on qualitative information fu-
sion, especially those working in the development of
modern multi-source systems for defense, robot navi-
gation, mapping, localization and path planning and so
on. In this paper, we propose some solutions to han-
dle the conflict and to weigh the imprecision of the re-
sponses of the experts, from the classical combination
rules for qualitative and quantitative beliefs. Hence, we
have presented a mixed rule given by a weighted sum
of the conjunctive and disjunctive rules. The weights
are defined from a measure of non-specifity calculated
by the cardinality of the responses of the experts. This
rule transfers the partial conflict on partial ignorance.
Again, the proportional conflict distribution rule redis-
tributes the partial conflict on the element implied in
this conflict. We propose an extension of this rule by
a discounting procedure, thereby, a part of the partial
conflict is also redistributed on the partial ignorance.
We have introduced a measure of conflict between pair
of experts and another measure of non-conflict between
pair of experts, as to quantify this part. In order to take

heed of the non-specifity and to redistributed the partial
conflict, we propose a fused rule of these two new rules.
This rule is created in such way that we retain a kind of
continuity of the mass on the partial ignorance, between
both cases with and without partial conflict. Illustrating
examples have been presented in detail to explain how
the new rules work for quantitative and qualitative be-
liefs. The study of these new rules shows that the clas-
sical combination rules in the belief functions theory
cannot take precisely into account the non-specifity of
the experts and the partial conflict of the experts. This
is specially important for qualitative belief.
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