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Abstract

Given i, 7,k € {1,2,3, 4}, the notion of (i, j, k)-length neutrosophic subalgebras in
BCK/BC1I-algebras is introduced, and their properties are investigated. Char-
acterizations of length neutrosophic subalgebras are discussed by using level sets
of interval neutrosophic sets. Conditions for level sets of interval neutrosophic
sets to be subalgebras are provided.
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1. Introduction

The intuitionistic fuzzy set, which has been introduced by Atanassov [1],
consider both truth-membership and falsity membership. The neutrosophic
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set developed by Smarandache [6, 7, 8] is a formal framework which gen-
eralizes the concept of the classic set, fuzzy set, interval valued fuzzy set,
intuitionistic fuzzy set, interval valued intuitionistic fuzzy set and paracon-
sistent set etc. Neutrosophic set theory is applied to various part, includ-
ing algebra, topology, control theory, decision making problems, medicines
and in many real life problems. Wang et al. [9, 11] presented the con-
cept of interval neutrosophic sets, which is more precise and more flex-
ible than the single-valued neutrosophic set. An interval-valued neutro-
sophic set is a generalization of the concept of single-valued neutrosophic
set, in which three membership (¢,4, f) functions are independent, and
their values belong to the unit interval [0,1]. The interval neutrosophic
set can represent uncertain, imprecise, incomplete and inconsistent in-
formation which exists in real world. Jun et al. [4] discussed interval
neutrosophic sets in BCK/BCI-algebras. They introduced the notion of
(T'(i,7),I(k,1), F(m,n))-interval neutrosophic subalgebras in BCK/BC1I-
algebras for ,7,k,l,m,n € {1,2,3,4}, and investigated several properties
and relations. They also introduced the notion of interval neutrosophic
length of an interval neutrosophic set, and investigated related properties.

In this paper, we introduce the notion of (i, j, k)-length neutrosophic
subalgebras in BCK/BC1I-algebras for ¢, j, k € {1,2, 3,4}, and investigate
several properties. We consider relations of (i, 7, k)-length neutrosophic
subalgebras, and discuss characterizations of (i, j, k)-length neutrosophic
subalgebras. Using subalgebras of a BC K-algebra, we construct (4, j, k)-
length neutrosophic subalgebras for i, j, k € {1,4}. We consider conditions
for level sets of interval neutrosophic set to be subalgebras of a BCK/BC1I-
algebra.

2. Preliminaries

By a BCI-algebra we mean a system X := (X,*,0) € K(7) in which the
following axioms hold:

(M ((x*y)* (xx2)*(zxy) =0,
(1) (zx*(z*y))*xy =0,
(111

T *xT =

)
)
)
)

V) zxy=yxax=0 = =y
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for all x,y, z € X. If a BCI-algebra X satisfies Oxx = 0 for all x € X, then
we say that X is a BCK -algebra.

A non-empty subset S of a BCK/BCI-algebra X is called a subalgebra
of Xifxxye Sforall z,y € S.

The collection of all BC K-algebras and all BCI-algebras are denoted
by Br(X) and Br(X), respectively. Also B(X) := Bx(X) U Br(X).

We refer the reader to the books [2] and [5] for further information
regarding BC K/BCI-algebras.

By a fuzzy structure over a nonempty set X we mean an ordered pair
(X, p) of X and a fuzzy set p on X.

DEFINITION 2.1 ([3]). For any (X, *,0) € B(X), a fuzzy structure (X, p)
over (X, #,0) is called a

o fuzzy subalgebra of (X, *,0) with type 1 (briefly, 1-fuzzy subalgebra of

(X, ,0)) if
(Va,y € X) (u(z +y) = min{u(z), u(y)}) , (2.1)
o fuzzy subalgebra of (X, *,0) with type 2 (briefly, 2-fuzzy subalgebra of
(X, *,0)) if
(Va,y € X) (u(x xy) < min{u(z), u(y)}), (2.2)
o fuzzy subalgebra of (X, *,0) with type 3 (briefly, 3-fuzzy subalgebra of
(X,%,0)) if
(Va,y € X) (u(x x y) = max{u(z), u(y)}) , (2.3)
o fuzzy subalgebra of (X, *,0) with type 4 (briefly, 4-fuzzy subalgebra of
(X,%,0)) if
(Vo,y € X) (u(z +y) < max{u(z), u(y)}) - (24)

Let X be a non-empty set. A neutrosophic set (NS) in X (see [7]) is a
structure of the form:

A= {{z; Ar(2), Ar (@), Ap(2)) | « € X}

where Ay : X — [0,1] is a truth membership function, A; : X — [0, 1]
is an indeterminate membership function, and Ar : X — [0,1] is a false
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membership function.

An interval neutrosophic set (INS) A in X is characterized by truth-
membership function T4, indeterminacy membership function 74 and falsi-
ty-membership function F4. For each point z in X, Ta(x), [4(x), Fa(x) €
[0,1] (see [11, 10]).

In what follows, let (X, ,0) € B(X) and P*([0,1]) be the family of all
subintervals of [0, 1] unless otherwise specified.

DEFINITION 2.2 ([11, 10]). An interval neutrosophic set in a nonempty set
X is a structure of the form:

T = {(, I[T)(x), Z[I)(2), I[F](2)) | = € X}
where
Z[T) : X — P*([0,1])
which is called interval truth-membership function,
Il : X — P*([0,1])
which is called interval indeterminacy-membership function, and
I[F]: X = P*([0,1])

which is called interval falsity-membership function.

For the sake of simplicity, we will use the notation Z := (Z[T|,Z[I],Z[F))
for the interval neutrosophic set

T = {(z, I[T)(x), Z[I)(2), Z[F](x)) | = € X}.

Given an interval neutrosophic set Z := (Z[T),Z[I],Z[F]) in X, we con-
sider the following functions (see [4]):
Z[T)int : X — [0,1], @ — inf{Z[T](x)}
Iing : X — [0,1], — inf{Z[I](x)}
Z[Flint : X = [0,1], z — inf{Z[F](z)}

and
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I T)sup : X = [0,1], z — sup{Z[T](x)}
I sup : X = [0,1], x — sup{Z[I](x)}
Z[F)sup : X — [0,1], z — sup{Z[F|(z)}.
DEFINITION 2.3 ([4]). Given an interval neutrosophic set 7 := (Z[T],Z[I],

Z[F]) in X, we define the interval neutrosophic length of T as an ordered
triple Zy := (Z[T¢, Z[I]¢, Z[F]¢) where

ZiT)e: X = [0,1], 2= Z[T]sup(x) — Z[T)int (),

I X = [0,1], = Z[]sup(x) — Z[L]int (),
and
ZIF)e: X = [0,1], 2 — Z[F)sup(z) — Z[Flint (),

which are called interval neutrosophic T-length, interval neutrosophic I-
length and interval neutrosophic F-length of Z, respectively.

3. Length neutrosophic subalgebras

DEFINITION 3.1. Given 4,5,k € {1,2,3,4}, an interval neutrosophic set
T := (Z[T], Z|I], Z[F)) in X is called an (4,7, k)-length neutrosophic sub-
algebra of (X, *,0) if the interval neutrosophic T-length of Z is an i-fuzzy
subalgebra of (X, ,0), the interval neutrosophic I-length of 7 is a j-fuzzy
subalgebra of (X,#,0), and the interval neutrosophic F-length of Z is a
k-fuzzy subalgebra of (X, x,0).

Ezample 3.2. Consider a BCK-algebra X = {0, 1,2, 3,4} with the binary
operation * which is given in Table 1 (see [5]).

Let Z := (Z[T], Z[I], Z[F)) be an interval neutrosophic set in (X, *,0) where
Z[T], Z|I] and Z[F] are given as follows:

0.1,0.8) if2z=0,
(0.3,0.7] ifz=1,
I[T]: X — P*([0,1]), x+ < [0.0,0.6] ifz=2,
0.4,0.8] ifz=3,
0.2,0.5] ifx=4,
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Table 1: Cayley table for the binary operation “x

* 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 3 4 1 0
[0.2,0.8) ifxz=0,
(04,0.8] ifx=1,
7 : X = P*([0,1]), =+~ [0.1,0.6] if x =2,
[0.6,0.9] if x =3,
[0.3,0.5] if x =4,

and

0.1,04) ifz=0,
(0.4,0.8] ifx=1,
I[F]): X - P*([0,1]), z— [0.1,0.5] ifx=2,
[0.2,0.7) ifx =3,
[0.3,0.9] ifx=4.

Then the interval neutrosophic length Z, := (Z[T',, Z[I]¢, Z[F]¢) of T is
given by Table 2.

Table 2: Interval neutrosophic length of 7

X Z[Te I, I[F]e
0 0.7 0.6 0.3
1 0.4 0.4 0.4
2 0.6 0.5 0.4
3 0.4 0.3 0.5
4 0.3 0.2 0.6

It is routine to verify that Z := (Z[T], Z|I], Z[F]) is a (1,1, 4)-length neu-
trosophic subalgebra of (X, *,0).
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PROPOSITION 3.3. Given an (4, j, k)-length neutrosophic subalgebra Z :=
(Z[T), Z[1], Z[F)) of (X, *,0), we have the following assertions.

(1) If i, 4,k € {1, 3}, then
(Vz € X)(Z[T1(0) = Z[Tle(), Z[1]¢(0)

(2) If 4,5,k € {2,4}, then
(Vo € X)(Z[T]¢(0) < Z[T]e(x), Z[I]¢(0)

(3) If i,j € {1,3} and k € {2,4}, then
(Vo € X)(Z[T¢(0) = Z[T]e(x), Z11]¢(0)

(4) If i,j € {2,4} and k € {1, 3}, then
(Vo € X)(Z[T¢(0) < Z[T]e(x), Z11]¢(0)

ProoOF: Let T := (Z[T],
algebra of (X, x,0). If (i,

Z[T]e(0) = Z[T]e(x * ) = min{ Z[TTe(x), Z[T]e(2)} = Z[T]e()
Z[1)e(0) = Z[I]e(2 + x) > max{Z{I]¢(x), Z[I]¢(2)} = Z[I]e(z)

Z[F1e(0) = Z[F)e(z * ) > min{Z[F]¢(x),Z[Fle(x)} = Z[F]e(x)

for all z € X. Similarly, we can verify that (3.1) is true for other cases of
(1,7, k). Using the similar way to the proof of (1), we can prove that (2),
(3) and (4) hold. O

THEOREM 3.4. Given a subalgebra S of (X,*,0) and Ay, As, By, B,
Cy,Cy € P*([0,1]), let T := (Z[T), Z[I], Z[F]) be an interval neutrosophic
set in (X, *,0) given by
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if z €S,

. * A2
I[T) : X — P*(]0,1]), =+ { A, otherwise, (3.5)
. * By if z € S,
T[] : X = P*([0,1]), = — { B oherwie. (3.6)
. « Cy if x € S,
I[F]: X = P*([0,1]), = — { O, otherwise. (3.7)
(1) If Ay € As, B1 € By and Cy C Cy, then T := (Z[T], Z[I), Z[F]) is a
(1,1, 1) length neutrosophic subalgebm of (X,%,0).
(2) If Ay 2 As, By 2 By and Cy 2 Cy, then T := (Z[T], Z[I], Z[F]) is a
(4,4 4) length neutrosophzc subalgebm of (X, %,0).
(3) If Ay € As, By 2 By and Cy € Cy, then T := (Z[T], Z[I), Z[F]) is a
(1,4, 1) length neutrosophzc subalgebm of (X, *,0).
(4) If Ay 2 As, By € By and Cy 2 Cs, then T := (Z[T), Z[I], Z[F]) is a
(4,1 4) length neutmsophzc subalgebm of (X, %,0).
(5) If Ay € As, By € By and Cy 2 Cy, then T := (Z[T], Z|I), Z[F]) is a
(1,1 4) length neutmsophzc subalgebra of (X, *,0).
(6) IfAl D) AQ, Bl D B2 and Cl C CQ, then T := (I[T] [ ] [FD 5 @

0).

ProoOF: We will prove (3) only, and others can be obtained by the similar
way. Assume that Ay C Ag, By 2 By and C; € Cy. If z € S, then
I[T)(xz) = As, Z[I|(x) = By and Z[F](z) = C5. Hence

(4,4, 1) length neutrosophic subalgebra of (X,

I[Te(x) = Z[T]sup(x) — Z[T]ins(x) = sup{Az} — inf{ A5},
Ze(z) = Z[)sup(z) — Z[I]ine(x) = sup{ Bz} — inf{ B>},
Z[F)e(x) = Z[F)sup(x) — Z[Flint(x) = sup{Cs} — inf{C5}.
If « ¢ S, then Z[T)(x) = Ay, Z[I|(z) = By and Z[F](z) = C1, and so

ZT)e(x) = Z|T)sup(x) — Z[Tins (z) = sup{A1} — inf{A;},
ZIe(x) = Z[sup(2) — Z{]int(x) = sup{B1} — inf{B1},
Z[F)y(z) = Z[Fsup(x) — Z[Flint () = sup{C1 } — inf{C1 }.
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Since A; C As, B1 2 Bs and Cy € Cs, we have
sup{Aa} — inf{As} > sup{A;} — inf{A;},
sup{Bz} — inf{Bs} < sup{B;} — inf{B; },
sup{Cy} — inf{Cs} > sup{C1} — inf{C1 }.
Let z,y € X. If z,y € S, then x xy € S and so
Z[Te(x * y) = sup{Az} — inf{As} = min{Z[T]¢(x), Z[T]e(y)
Z[I]¢(x + y) = sup{Ba} — inf{ By} = max{Z[I]¢(x), Z[I]¢(y)},
T{F)o(w ) = sup{Ca} — inf{Ca} = min{Z[Fls(x), Z[F],(y)}.
If 2,y ¢ S, then
I[T)e(x +y) = sup{Ar} — inf{A;} = min{Z[T](z), Z[T]e(y)},
I[Ie(z * y) < sup{B1} — inf{B1} = max{Z[I]¢(z), Z[I]e(y)},
Z[F)e(z xy) > sup{C1} — inf{C1 } = min{Z[F)e(z),Z[F)e(y)}.

2

Assume that 2 € S and y ¢ S (or, ¢ S and y € S). Then
I[T)e(x +y) = sup{Ar} — inf{A;} = min{Z[T](), Z[T].(y)},
I]e(z = y) < sup{B1} — inf{B1} = max{Z[I]¢(2), Z[I]e(y)},
T[Fle(w +y) = sup{C1} — inf{C1} = min{Z[Fle(x), ZIFle(y)}.

Therefore Z := (Z[T], Z[I], Z[F)) is a (1,4, 1)-length neutrosophic subalge-

bra of (X, *,0).

Remark 3.5. We have the following relations.

(1) Every (4,J, k)-length neutrosophic subalgebra of (X, x,0) for 4, j,k €

{1,3} is a (1,1, 1)-length neutrosophic subalgebra of (X, *,0).

(2) Every (4,7, k)-length neutrosophic subalgebra of (X, x*,0) for ¢, j,k €

{2,4} is a (4,4, 4)-length neutrosophic subalgebra of (X, *,0).

3) Every (1,7, k)-length neutrosophic subalgebra of (X,x*,0) for ¢,;5 €
y %) g
{1,3} and k € {2,4} is a (1,1, 4)-length neutrosophic subalgebra of

(X, *,0).
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(4) Every (i,j,k)-length neutrosophic subalgebra of (X,x,0) for i,j €
{2,4} and k € {1,3} is a (4,4, 1)-length neutrosophic subalgebra of
(X, *,0).

(5) Every (4,7, k)-length neutrosophic subalgebra of (X, x*,0) for i,k €
{2,4} and j € {1,3} is a (4, 1,4)-length neutrosophic subalgebra of
(X, *,0).

(6) Every (4,J,k)-length neutrosophic subalgebra of (X,x,0) for i,k €

{1,3} and j € {2,4} is a (1,4, 1)-length neutrosophic subalgebra of
(X, *,0).

The following example shows that the converse in Remark 3.5 is not
true in general. We consider the cases (5) and (6) only in Remark 3.5.

Ezample 3.6. Consider the BC' K-algebra (X, *,0) in Example 3.2. Given
a subalgebra S = {0,1,2} of (X,%,0), let T := (Z[T], Z[I], Z[F]) be an
interval neutrosophic set in (X, *,0) given by

(0.2,0.7) if z €8,

ZIT] : X = P*([0,1]), { (0.1,0.8] otherwise,

. § [0.2,0.9) if z €S,
I X = P([0,1]), = — { (0.3,0.7]  otherwise,

and

0.4,05) if z €S,

I[F]: X = P*([0,1]), z — { (0.3,0.6] otherwise.

Then 7 := (Z[T], Z[I], Z[F)) is a (4,1, 4)-length neutrosophic subalgebra
of (X,*,0) by Theorem 3.4(4). Since
Ze(2) = I[)sup(2) = Z[]ine(2) = 0.9-0.2 = 0.7
and
Ze(3%2) =Z[]e(3) = I[{]sup(3) = Z[]int(3) = 0.7 — 0.3 = 0.4,

we have Z[I]¢(3 x2) = 0.4 < 0.7 = max{Z[I]¢(3),Z[I]¢(2)}. Hence T :=
(Z[T), Z[I], Z[F]) is not an (4, 3, k)-length neutrosophic subalgebra of (X, *,0)
for i,k € {2,4}. Given a subalgebra S = {0,1,2,3} of (X,x,0), let
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T := (Z[T), Z|I], Z[F]) be an interval neutrosophic set in (X, *,0) given
by

zir)s X s P, oo { 030D RS
otherwise,
. [0.4,0.6) if @€ S,
Il : X = PY( ) @ { 0.3, 08 otherwise,
and
. 0.2,08) if z €8,
ZIF]: X = P*([0,1]), CCH{ 0.3, ()6 otherwise.

Then 7 := (Z[T], Z[I], Z[F)) is a (1,4, 1)-length neutrosophic subalgebra of
(X, %,0) by Theorem 3.4(3). But it is not an (4,2, k)-length neutrosophic
subalgebra of (X, *,0) for ¢,k € {1,3} since

II)e(4%2) =1I[I],(4) =0.5> 0.2 = min{Z[I],(4),Z[I]¢(2)}.
Given an interval neutrosophic set Z := (Z[T], Z[I], Z|F]) in (X, *,0),

we consider the following level sets:
Ue(Z[T}; ar) :=A{z € X | Z[T]i(x) = ar},
sar) i={z € X | I[I]¢(z) = ar},
UZ[F);ar) :={x € X [ Z[F|i(z) = ar},

and

Ly(Z[T}); pr) := {x € X | Z[T]e(x) < Br},
Ly(ZUI); Br) i={x € X | T[I]e(2) < Br},
Le(Z[F); Br) = {z € X | I[Fle(x) < Br}-
THEOREM 3.7. Given an interval neutrosophic set T := (Z[T), Z[I], Z|F])

in (X,%,0) and for any ar, ar, ap € [0,1], the following assertions are
equivalent.

(1) Z:=(Z[T), Z|I], Z|F)) is a (1,1,1)-length neutrosophic subalgebra of
(X,,0).

(2) Ug(Z|T); 1), Ue(Z[1); 1) and Up(Z[F); ap) are subalgebras of (X, *,0)
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whenever they are nonempty.

PROOF: Assume that 7 := (Z[T], Z[I], Z[F]) is a (1,1, 1)-length neutro-
sophic subalgebra of (X, #,0) and let ar, a;, ar € [0,1] be such that
Ul(Z[T);r), Ue(Z[I];0r) and Uy(Z[F);p) are nonempty. If z,y €
Ui(Z[T); ar), then Z[T]e(x) > ar and Z[T)¢(y) > ar. Hence

Z[T]e(x + y) = min{Z[T]e(x), Z[T]e(y)} = o,

that is, xxy € Up(Z[T]; ar). Similarly, we can see that if x,y € Uy(Z[I]; o),
then = x y € Uy(Z[I);ar), and if z,y € Up(Z[F];ar), then x * y
€ Uy(Z[F]; ap). Therefore Uy(Z[T]; ar), Ue(Z[I]; ar) and Uy (Z[F); ap) are
subalgebras of (X, *,0).

Conversely, suppose that (2) is valid. If there exist a,b € X such that

Z[T]e(a*b) < min{Z[T)e(a),Z[T)e(b)},

then a,b € Uy(Z[T];r) by taking ar = min{Z[T],(a),Z[T],(b)}, and so
axb e UlZ[T);ar). It follows that Z[T],(a « b) > ar, a contradiction.
Hence

Z[Te(x + y) = min{Z[T],(x), Z[T]e(y)}
for all z,y € X. Similarly, we can check that
Ze(z +y) = min{Z[I]¢(2), Z[I]e(y)}
and
Z[Fle(z *y) = min{Z[Fe(2), Z[Fle(y)}
for all 2,y € X. Thus T := (Z[T], Z[I], Z[F)) is a (1,1, 1)-length neutro-
sophic subalgebra of (X, ¥, 0). 0

COROLLARY 3.8. If T := (Z[T], Z[I], Z[F]) is an (i, 7, k)-length neutro-
sophic subalgebra of (X,x,0) for i,5,k € {1,3}, then Uy (Z[T];ar),
Ui(Z[I); 1) and Uy(Z[F); p) are subalgebras of (X,*,0) whenever they
are nonempty for all ar, ar, ap € [0,1].

The following example shows that the converse of Corollary 3.8 is not
true.

Ezample 3.9. Consider a BCI-algebra X = {0,1,2,a,b} with the binary
operation * which is given in Table 3 (see [5]).
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Table 3: Cayley table for the binary operation “x

Wy

* 0 1 2 a b
0 0 0 0 a a
1 1 0 1 b a
2 2 2 0 a a
a a a a 0 0
b b a b 1 0

Let Z := (Z[T), Z[I], Z|F]) be an interval neutrosophic set in (X, *,0) given

by

IIT): X — P*([0,1]), x —

I : X = P*([0,1]), z

and

I[F]: X = P*([0,1]), 2 —

[0.3,0.9)
(0.5,0.7]
[0.1,0.6]
[0.4,0.7]
(0.3,0.5)

N

jk\:Cﬂ)—l
oo
L 0. ©

238533

~

o =
o e N RS

AN AN N
e ==
ot Ot

if z =0,
ifx =1,
if v =2,
if z =a,
if z =0,
ifx =0,
if x =1,
if x =2,
if z = a,
if x =0,
if x =0,
ifx=1,
if x =2,
if x = a,
ifx=0.

Then the interval neutrosophic length Z, := (Z[T]s, Z[I]e, Z[F]¢) of T is

given by Table 4.
Hence we have



Young Bae Jun, Madad Khan, Florentin Smarandache, Seok-Zun Song

Table 4: Interval neutrosophic length of 7

X Z[T}, I, Z[F]
0 0.6 0.7 0.5
1 0.2 0.7 0.3
2 0.5 0.4 0.4
a 0.3 0.3 0.2
b 0.2 0.3 0.2
0 if ar € (0.6,1],
{0} if ar € (0.5,0.6],
U(Z[T);ar) = ¢ {0,2} if ar € (0.3,0.5],
{0,2,a} if ap € (0.2,0.3],
X if ap € [0,0.2],
] if a7 € (0.7,1],
) H{o,1} if ay € (0.4,0.7],
Ue(Zll]; ar) = {0,1,2} if a; € (0.3,0.4],
X if a; € [0,0.3],
and
0 if ap € (0.5,1],
{0} if ap € (0.4,0.5),
UlZ[Fl;ar) = { {0,2}  ifap € (0.3,0.4],
{0,1,2} if ap € (0.2,0.3],
X if ar €[0,0.2],

and so Ui (Z[T];ar), Ue(Z[I]; 1) and Uy(Z[F];ar) are subalgebras of
(X, %,0) for all ar, ay, ap € [0,1] such that U,(Z[T]; ar), Ue(Z[I]; ) and
Uo(Z[F); ap) are nonempty. But Z := (Z[T], Z[I], Z[F)) is not an (3, j, k)-
length neutrosophic subalgebra of (X, *,0) for ¢, j, k € {1,3} with (¢, j, k) #
(1,1,1) since

I[Te(bx2) = Z[T)e(b) = 0.2 % 0.5 = max{Z[T¢(b), Z[T].(2)},

I[Ie(a 1) =I[I]e(a) = 0.3 # 0.7 = max{Z[I],(a),Z[I]¢(1)},
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and/or
I[F)e(b*1) = Z[F]e(a) = 0.2 % 0.3 = max{Z[F|e(b), Z[F]¢(1)}.

THEOREM 3.10. Given an interval neutrosophic set T := (Z[T, Z[I], Z|F])
in (X,*,0) and for any Br, B, Br € [0,1], the following assertions are
equivalent.
(1) Z:=(Z[T], I}, Z|F)) is a (4,4,4)-length neutrosophic subalgebra of
(X,%,0).

(2) Lo(Z[T); Br), Le(Z[I]; Br) and Le(Z[F); Br) are subalgebras of (X, *,0)
whenever they are nonempty.

PROOF: Suppose that Z := (Z[T], Z[I], Z[F)) is a (4,4, 4)-length neutro-
sophic subalgebra of (X,#,0) and let Sr, 81, fr € [0,1] be such that
Ly(Z[T); Br), Le(Z[I); Br) and L¢(Z[F); Br) are nonempty. For any z,y €
X, ifx,y € Lo(Z[T); Br), then Z[T),(x) < pr and Z[T],(y) < Br. It follows
that

Z[Te(z + y) < max{Z[T]e(x),Z[T]e(y)} < Pr

and so that z x y € Ly (Z[T]; Br). Similarly, if z,y € L¢(Z[I]; Br), then
xxy € Le(Z[I]; Br), and if z,y € Le(Z[F); Br), then x xy € Ly(Z[F]; Br).
Therefore (2) is valid.

Conversely, assume that L¢(Z[T]; Sr), Le(Z[I]; B1) and L¢(Z[F]; BF) are
subalgebras of (X, *,0) whenever they are nonempty for all S, 8, Br €
[0, 1]. If there are a,b € X such that

Z[Fle(axb) > max{Z[F]i(a), Z[Fle(b)},

then a,b € Ly(Z[F)]; Br) by taking fr = max{Z[F /(a),I[ le(b)}. Thus
axb € Ly(Z[F];Br), which implies that Z[F|,(a * b)) < fp. This is a
contradiction, and so

Z[Fle(z * y) < max{Z[F]¢(z), Z[F]e(y)}
for all z,y € X. Similarly, we get
IT)e(z * y) < max{Z[T]¢(z),Z[T]e(y)}

and
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I[]e(z * y) < max{Z[l]e(z), Z[I]e(y)}

for all x,y € X. Consequently, Z := (Z[T], Z[I], Z[F]) is a (4,4,4)-length
neutrosophic subalgebra of (X, x,0). O

CoroOLLARY 3.11. If Z := (Z[T)], Z[I], Z|F)) is an (i,7, k)-length neu-
trosophic subalgebra of (X,#,0) for i,5,k € {2,4}, then L,(Z[T];Br),
Ly(Z[I]; Br) and L¢(Z[F]; Br) are subalgebras of (X, *,0) whenever they
are nonempty for all B8r, B;, Br € [0,1].

The following example shows that the converse of Corollary 3.11 is not
true.

Ezample 3.12. Consider the BCI-algebra X = {0,1,2,a,b} in Example 3.9
and let Z := (Z[T], Z[I], Z|F]) be an interval neutrosophic set in (X, *,0)
given by

0.5,0.7) ifa=0,

(0.2,0.6] ifz=1,

I[T): X — P*([0,1]), x> { [0.3,0.6] ifx=2,
[0.1,0.7] ifz=aq,

(0.2,0.8] if z = b,

(0.66,0.99) if 2 =0,
(0.15,0.59] ifz =1,
I[]: X = P*([0,1]), 2+ { [0.22,0.88) ifz=2,
(0.35,0.90] ifz = a,
(0.20,0.75) ifz="b

)

and

0.75,0.90)  if z =0,
(0.45,0.90) ifz =1,
IIF]: X — P*([0,1]), 2 —~ { (0.25,0.50] if x =2,
[0.50,0.85] if x =a,
(0.15,0.60] if z = b.

Then the interval neutrosophic length Z, := (Z[T]¢, Z[I]e, Z[F]¢) of T is
given by Table 5.
Hence we have
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Table 5: Interval neutrosophic length of 7

X [T}, I, Z[F]
0 0.2 0.33 0.15
1 0.4 0.44 0.45
2 0.3 0.66 0.25
a 0.6 0.55 0.35
b 0.6 0.55 0.45
0 if Br € [0,0.2),
{0} if Br € [0.2,0.3),
LoZ[T):Br) = { 10,2} if By € [0.3,0.4),
0,1,2) if Br € [0.4,0.6),
X if B € [0.6,1],
0 it B; € [0,0.33),
(0} if B; € [0.33,0.44),
Lo(Z(I]; 81) = { {0,1} if B; € [0.44,0.55),
{0,1,a,b) i B € [0.55,0.66),
X if B; € [0.66, 1],
and
0 if B € [0,0.15),
{0} if Bp € [0.15,0.25),
LoTIF; ) = { {0.2}  if Br € [0.25,0.35),
0,2,a}  if B € [0.35,0.45),
X if B € [0.45,1],

which are subalgebras of (X, x*,0) for all 8y, B, Br € [0,1] such that
Ly(Z[T); Br), Le(Z[I]; Br) and L¢(Z[F); Br) are nonempty. But Z := (Z[T],
Z[I], Z[F)) is not an (3, j, k)-length neutrosophic subalgebra of (X, x,0) for
i,j,k € {2,4} with (4,7, k) # (4,4,4) since

I[Te(a 1) = 0.6 £ 0.4 = min{Z[T)e(a), Z[T]e(1)},

I[I¢(a=0) = 0.55 £ 0.33 = min{Z[I],(a),Z[1]¢(0)},
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and/or
I[F]¢(2 % a) = 0.35 £ 0.25 = min{Z[F|¢(2),Z[F](a)}.

Using the similar way to the proofs of Theorems 3.7 and 3.10, we have
the following theorem.

THEOREM 3.13. Given an (i, j, k)-length neutrosophic subalgebra T := (Z[T),
I, ZIF)) of (X,*,0) fori,j,k € {1,2,3,4}, the following assertions are
valid.
(1) If i,5 € {1,3} and k € {2,4}, then Up(Z|T); 1), Ue(Z[I]; 1) and
Ly(Z[F); Br) are subalgebras of (X, x,0) whenever they are nonempty.
(2) If i,k € {1,3} and j € {2,4}, then U(Z[T);ar), Le(Z[I]; Br) and
Ue(Z[F); ap) are subalgebras of (X, x,0) whenever they are nonempty.
(3) If i € {2,4} and j,k € {1,3}, then L(Z[T}; Br), Ue(Z[I]; 1) and
Ui(Z[F); aF) are subalgebras of (X, *,0) whenever they are nonempty.
(4) If i,j € {2,4} and k € {1,3}, then Lyo(Z[T); Br), Le(Z[I];Br) and
Ui(Z|F]; aF) are subalgebras of (X, x,0) whenever they are nonempty.
(5) If i,k € {2,4} and j € {1,3}, then Ly (Z[T);Br), Ue(Z[I];x1) and
Ly(Z[F); Br) are subalgebras of (X, *,0) whenever they are nonempty.

(6) If’L € {1,3} and Jak € {2>4}7 then UE(I[T];O‘T); LZ(I[ILﬂI) and
Ly(Z[F); Br) are subalgebras of (X, x,0) whenever they are nonempty.

THEOREM 3.14. If an interval neutrosophic set T := (Z[T], Z[I], Z|F]) is
a (2,3,2)-length neutrosophic subalgebra of (X,#,0), then Uy (Z[T); ar)c,
Ly(Z[1]; Br)¢ and Ue(Z[F); ap)¢ are subalgebras of (X, ,0) whenever they
are nonempty for all ar, By, ar € [0,1].

PROOF: Assume that Z := (Z[T], Z[I], Z[F]) is a (2,3,2)-length neu-
trosophic subalgebra of (X,#,0). Let ap, 81, ar € [0,1] be such that
Ue(Z[T); ar)®, Le(Z[I]; Br)¢ and Uy(Z[F];ap)¢ are nonempty. If x,y €
Ue(Z[T); ar)®, then Z[T)e(z) < ar and Z[T)¢(y) < ar. Hence

T(T)e(e * y) < min{Z[T)s(«), Z[T)e(y)} < ar,

and so zxy € Ug(Z[T]; ar)°. If z,y € Ly(Z[I); B1)°, then Z[I],(x) > Br and
Z[I¢(y) > Br. Thus
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Te(x + y) = max{Z{I]e(x), Z[I]e(y)} > Br,

which implies that @ xy € Ly(Z[I]; Br)¢. Let 2,y € Up(Z[F);ar)®. Then
Z[F)e(z) < ar and Z[F]¢(y) < ap. Hence

I[Fe(z + y) < min{Z[FJe(z), Z[Fle(y)} < ar,

and so x xy € Up(Z[F);ar). Therefore Uy(Z[T]; ar)®, Le(Z[I]; Br)¢ and
U¢(Z[F]; ap)© are subalgebras of (X, x,0) for all ar, 81, ar € [0,1]. O

The converse of Theorem 3.14 is not true in general as seen in the
following example.

Ezample 3.15. Consider a BCI-algebra X = {0,1,a,b,c} with the binary
operation * which is given in Table 6 (see [5]).

Wy

Table 6: Cayley table for the binary operation “x

* 0 1 a b c
0 0 0 a b c
1 1 0 a b c
a a a 0 c b
b b b c 0 a
c c c b a 0

Let Z := (Z[T1], Z[I], Z[F]) be an interval neutrosophic set in (X, *,0) given
by

0.50,0.75) if 2 =0,
(0.25,0.70] ifz =1,
IIT] : X — P*([0,1]), =+ { [0.10,0.65] ifz =a,
0.05,0.70) if 2 = b,
(0.10,0.75] ifz =c,

0.05,0.80] if =0,
(0.10,0.80) if z = 1,
I : X — P([0,1]), =+ { [0.26,0.80] if z = a,
(0.16,0.79) if x = b,
(0.07,0.75] ifz =c¢,
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and
[0.23,0.67) ifxz=0,
(0.03,0.58] ifx=1,
I[F]: X — P*([0,1]), = — (0.18,0.73) if x = aq,
[0.14,0.80] if z =1,
(0.07,0.73] ifz=c.

Then the interval neutrosophic length Z, := (Z[T),, Z[1]e, Z[F)¢) of T is
given by Table 7.

Table 7: Interval neutrosophic length of 7

X Z[T, I, I[Fe
0 0.25 0.75 0.44
1 0.45 0.70 0.55
a 0.55 0.63 0.55
b 0.65 0.63 0.66
c 0.65 0.68 0.66
Then
0 if ap € [0,0.25],
{0} if ar € (0.25,0.45],
UlZ[T];ar) =4 {0,1}  if ap € (0.45,0.55],
{0,1,a}  if ar € (0.55,0.65),
X if ag € (0.65, 1],
0 if Br € [0.75, 1],
{0} if B; € [0.70,0.75),
Le(Z[1]; B1)° = {0,1} if Br € [0.68,0.70),
{0,1,¢}  if B € [0.63,0.68),
X if By € [0,0.63),

and
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0 if ap € [0,0.44],
RV B (i)' if ap € (0.44,0.55),
Ue(ZF];0p)" = {0,1,a} if ap € (0.55,0.66],
X if ap € (0.66,1]

are subalgebras of (X, #,0) whenever they are nonempty for all ap, Sy,
ap € [0,1]. But Z := (Z[T], Z[I], Z|F]) is not a (2, 3, 2)-length neutrosophic
subalgebra of (X, ,0) since

Z[T)e(b* a) = T[T)e(c) = 0.65 > 0.55 = min{Z[T],(b), Z[T]¢(a)},

Ze(bxc) =I[I)e(a) = 0.63 < 0.68 = max{Z[I]¢(),Z[I]¢e(c)},
and/or
Z[F)e(b*a) = Z[F]e(c) = 0.66 > 0.55 = min{Z[F],(b),Z[F]s(a)}.

By the similar way to the proof of Theorem 3.14, we have the following
theorem.

THEOREM 3.16. Given an (i, j, k)-length neutrosophic subalgebra T := (Z[T],
Z[I], ZF)) of (X,*,0), the following assertions are valid.
(1) [f (Za.jak) = (27272)7 then UE(I[T];QT)C7 UE(I[I];QI)C and
Uo(Z[F); ap)¢ are subalgebras of (X, x,0) whenever they are nonemp-
ty for all ar, ar, ap € [0,1].

(2) [f (Zvj7k) = (2a273); then UZ(I[T];O[T)C; UZ(Z[I];O[I)C
and Ly(Z[F); Br)¢ are subalgebras of (X, *,0) whenever they are non-
empty for all ar, ar, Br € [0,1].

(3) ]f (ia.jv k) = (273a3); then Uf(I[T];O‘T)C7 LZ(I[ILﬁI)C
and Ly(Z[F); Br)¢ are subalgebras of (X, *,0) whenever they are non-
empty for all ar, Br, Br € [0,1].

4) If (i,5,k) = (3,2,2), then LeZ[T];Br), UeZ[I];ar)®
and Ug(Z[F); ap)© are subalgebras of (X, *,0) whenever they are non-
empty for all Br, ar, ar € [0,1].

(5) If (iajv k) = (372a3)7 then LZ(I[TLBT)Ca UE(I[I];O‘I)C
and Lo(Z[F); Br)¢ are subalgebras of (X, *,0) whenever they are non-
empty for all Br, ar, Br € [0,1].
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(6) If (7;7ja k) = (37372)) then LE(I[T];BT)CJ LZ(I[I]7ﬁ1>C
and Uy(Z[F); ar)¢ are subalgebras of (X, *,0) whenever they are non-
empty for all Br, Br, ar € [0,1].

(7) ]f (Z7Ja k) = (37373)7 then L@(I[TLBT)C; LZ(I[I]vﬂI)C
and Ly(Z[F); Br)¢ are subalgebras of (X, *,0) whenever they are non-
empty for all Br, Br, Br € [0,1].
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