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Abstract: Several neutrosophic combination rules based on the Dempster-Shafer theory (DST) and Dezert-
Smarandache theory (DSmT) are presented in this study. The new information fusing approaches proposed
the neutrosophic belief assignment to represent the evidences and comnect the DST and DSmT with
neutrosophic theory. Neutrosophic theory used the components truth, indeterminacy and falsity to represent
any idea, which provides a better approach to express the real world. The DST-based and DSmT-based
combination rules can fuse information more effectively. The new combination rules utilized the advantages
of DST, DSmT and neutrosophic theory. They are more adapted to describing the human mind and helping to
make correct decisions. To fuse the information expressed in natural language, the qualitative neutrosophic
combination rules of information have been proposed in this study too. Some application examples have been
given to support the proposed combination rules. Compared with the original DST-based and DSmT-based
combination rules, the neutrosophic combination rules can provide more useful information and have wider

application field.
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INTRODUCTION

Nowadays, many fusion theories have been studied
for the combination of information and some information
fusing technologies have been applied in many fields
successfully, such as defense, economy and medicine. Tn
real application, the information provided by multiple
sources is often fuzzy, imprecise and even conflicting.
Belief function can be used to represent the uncertain
mformation effectively. As a result, the belief function
theory is more adapted to the real and complex fusion of
information.

Shafer (1976) proposed the Dempster-Shafer
Theory (DST). Some improvement of DST has been
presented in the past years (Bauer, 1997, Lucas and
Araabi, 1999, Muphy, 2000). As a mathematical
theory of evidence, the DST provides a classical
information fusing method and has been applied widely
(Beynon et al., 2001, Foucher et al., 2002; Rombaut and
Zhu, 2002). Belief function and Shafer’s model are the
foundations of DST. In the Shafer’s model, all elements of
the frame are exhaustive and fully exclusive and the
bodies of evidence are associated with basic belief
assignment (bba). On the other hand, the Dempster’s rule
is used in DST to combine independent sources of
evidence. The DST is suitable for combining uncertain

information with low conflict. However, when the conflict
between sources of information becomes very high, the
combination result is unreliable.

To overcome the weakness of DST, Smarandache
and Dezert (2004) presented the Dezert-Smarandache
theory (DSmMT). The DSmT, which can be regarded as an
extension of DST, proposed some new useful combination
rules of information and can resolve the complex fusion
problems. It also represents the information in terms of
belief fimction just as DST. However, it can work in the
Shafer’s model, the free DSm model and the hybrid DSm
model. In the free DSm model, the elements of the frame
can overlap and change with time. The hybrid DSm model
is between free DSm model and Shfter’s model and takes
account of some real exclusivity constraints. The main
combination rules in DSmT include the classic DSm rule
(DSmMC), the hybrid DSm rule (D SmH) and the proportional
conflict redistribution rule (PCR) (Smarandache and
Dezert, 2006). The DSmH and PCR can work in any
models.

Smarandache (2003) presented neutrosphy to study
the origin, nature and scope of neutralities, as well as
their interactions with different ideational spectra.
Neutrosphy is a new branch of philosophy and considers
every idea to be represented by three components truth,
indeterminacy and falsity. Tt provides a better definition
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approach to the real world. The neutrosophic logic, the
neutrosophic set, the neutrosophic probability and the
neutrosophic statistics are all its derivatives and can be
applied in the information processing.

Smarandache and Dezert (2006) have used the
N-norms and N-conorms to connect the conjunctive rule
and disjunctive rule with neutrosophic logic. In this
research, we connect the DST-based combination rules
and the DSmT-based combination rules with neutrosophic
logic and propose the neutrosophic combination rules
based on DST and DSmT. We also present the
neutrosophic set based on linguistic label and apply the
new combination rules in the fusion of qualitative
neutrosophic beliefs.

THE RELATED THEORIES

Neutrosophic theory: The non-standard real unit interval
Forq is an important definition in the neutrosophic
theory (Smarandache, 2003). It arose from the non-
standard analysis. Let €>0 be a infinitesimal number.
Then, the non-standard numbers ~0 = O-g and 1" = 1+e.
Therefore, 0 and 1 belong to the non-standard unit
interval. In general, the left and the right borders of a non-
standard interval are vague and imprecise. In the
neutrosophic theory, as the neutrosophic components,
T, 1, F represent the truth, the indeterminacy and the
falsity respectively. They are all the standard or non-
standard real subsets of [F0,1{.

Neutrosophic logic is a generalization of the fuzzy
logic and estimates each proposition to be t% true, 1%
mndeterminate and % false (t% €T, 1% €I, % €F).
Compared with fuzzy logic, the neutrosophic logic
considers not only the truth and the falsity but also the
indeterminacy. Neutrosophic set is based on neutrosphy
and generalizes the fuzzy set. If M is a neutrosophic set
and the element x(T, T, F) belongs to M, x i3 t% true, i%
indeterminate and % false in the set M. Neutrosophic
probability extends the classical probability and imprecise
probability. Tn the neutrosophic probability, the occurring
chance of cne event 1s t% true, 1% indeterminate and
false. Therefore, the neutrosophic theory is more adapted
to the vagueness, the imprecision and the uncertainty in
real world and can represent the real proposition better.

DST and DSmT: The DST (Shafer, 1976) based on the
Shafer’s model. @ = {6, 0,...., 0.} is considered as the
frame of discernment of the fusion problem. In the
Shafer’s model, the n elements 6; in ® are fully
exclusive. All subsets of © are made up of the power set
2° If@={6,60,}, then 2° = {p, 6, 6, 6,u6,} The DST
associates each evidence with a basic belief assignment
(bba) and maps the power set 2% onto [0,1] to define the
bba:

m{¢)=0and 3 m{X)=1 (1)

Xez®

The definitions of the belief and plausibility functions are
both based on the bba:

Bel(Y)=

Xed® Xy

m(X)and PI{Y) = m(X)  (2)

Xed® XY =g

To get the combined global belief function of two
independent and equally reliable sources (m, and m,), we
can firstly combine the bba of the two sources of
information through the Dempster’s combination rule:

Mp (¢) =0
— 1 @
mys(Y) = [1_ K J”z2 m, (X, )m, (X,) vYe2®\{¢t 3)
Xk =Y
andk;, = > m (X )m,(X,)
XX =2
Hrky=d

In the equation, ki, 1s the degree of the conflict between
the two sources. The DST 1s fit for the combination of
uncertain information, but it also has some limitations.
When the conflict is absolute (k;,= 1), we cannot get the
result through the Dempster’s rule.

The DSmT (Smarandache and Dezert, 2004, 2006)
extends DST and overcomes the limitations of DST. The
DSmT can work in not only the Shafer’s model but also
the free DSm model and the hybrid DSm model. In the free
DSm model, the n elements 6, in ® are only exhaustive and
there 1s no other assumption. In the hybrid DSm model,
the existing constraints have been considered. In fact, the
Shafer’s model and the free DSm model can be considered
as the specific models of the hybrid DSm model. In the
DSmT, all subsets of @ are made up of the hyper-power
setD° If @ = {6, 6,2, thenD® = {$, 6,10, 6,0, 6,06,
Tust as DST, the DSmT associates each evidence with a
generalized basic belief assignment (ghba) and maps the
hyper-power set D® onto [0,1] to define the ghba:

m{6)=0mnd T m(x)=1 )

XeD®

The generalized belief and plausibility functions in DSmT
are also based on the ghba.

The main combination rules in DSmT imnclude DSmC,
DSmH and PCRS. Corresponding to the free DSm model,
the DSmC rule is:

mDSmc(Y): E m1(X1)m2(X2) vY eD® (5)

X, X,eD®
XeXa=Y
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Corresponding to the hybrid DSm model, the DSmH rule
18!

Mpgpy (Y) = ¢(Y) [Sl (Y) +5, (Y) +5; (Y):I vYeG,

8(Y)= . EDB m, (X, )m, (X; )
S,(Y)= o m, (¥,)m, (X,) and (6)

0,Ke
(A wenatr 1]

In the equation, G is the power set 2° ar the hyper-power
set D°, 1, =6,u6,u ... ub,_ If Yed, then ¢ (Y) = 0,
otherwise, ¢ (Y) = 1. If u(X) is the union of all singletons
0, that compose X, then U = u(X,Juu(>,).

Different from DSmH, the PCR transfers the
conflicting masses to the sets mvolved in the conflicts
proportionally. Smarandache and Dezert (2006) have
proposed five PCR rules and the PCR5 s the most
effective.

mPCRs(q’): 0
m(Y)'m,(2)  my(¥)'m(2Z)

.
2ot M (Y)+ my(2) my(Y)+ my(Z)

mPCRS(Y):ml2(Y)+ VYEG\{¢}

and m, (Y)= %> m(X;)m,(X,]
W, X6
X =Y

(7)

Compared with DST, the DSmT is more adapted to
combining the highly conflicting information.

THE NEUTROSOPHIC COMBINATION RULES
OF INFORMATION

The information acquired m real application 1s always
vague and uncertain. In the DST and DSmT, only the
degree of truth (as bba and gbba) 13 considered. However,
in the neutrosophic logic, not only the truth and the
falsity but also the indeterminacy 1s considered.
Therefore, the neutrosophic logic is more adapted to
representing the real proposition. In the following, we
connect the DST and DSmT with neutrosophic theory and
present the neutrosophic combination rules based on
DST and DSmT.

Fusion of quantitative information: T, T and F are
supposed to be the standard subsets of [0, 1]. We define
the neutrosophic basic belief assignment (nbba):

m, {):G - [01], m_, (X)=(t,.i..f, ) and ®
m_ {0)={0,01), >t =1

KeG

G represents the power set 2° or the hyper-power set D,
tx€T, ix€l, fxeF. Smarandache (2003) also provided the
extension of bba on neutrosophic sets and the defined
nbba is required to normalize all the truth, the
indeterminacy and the falsity values:

Sty +ig+£)=1 (9

XeG

The admissibility condition is different from that of our
defimtion In the DST and DSmT, the bba and ghba are
needed to be normalized. In fact, the bba and gbba only
represent the truth. Therefore, to get the coincident
results, we only normalize all the truth values. We think
that our definition of nbba can contain bba and ghba
better.

Let X, X,,...., X, be the n elements of G. m, (X)) is the
nbba of X and 1s provided by experts. In general, the sum
of truth value, indeterminacy value and falsity value
of X equals one, but the sum of truth values of all
¥, (1 = 1,2,...,n) 13 not one probably. Therefore, all the
nbba need to be normalized firstly. We define the
normalization as follows:

te =t o /thxj_m, iy =iy by (10)
-

fr, =y ot Mty o (1=1,2,.,m)

The operation not only normalizes the truth values
but also keeps the ratio between the truth value and the
indeterminacy value or the falsity value.

Let m,.,(.) = (t;, 1, f;) and m,,(.) = (&, 1, ;) be the
nbba of two sources of mformation. In this research, we
used the followed operations to compute the combination
of two nbba:

M () M () = (8 + L, +,,F + ) (11)
M ()= My (V= (4 = ti, i, 6 = F) (12)
My (I (= (b oy .6 ) (13)
kem ()= (k- t, ki k- £,) (14)
my, (/M () = (t 7.0 7,8 /8 (15)

Then, the neutrosophic Dempster’s combination rule
15!
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M, —ps (¢') = (0’0’1)

I
m..ns (Y) = [I m{; ] Z mml(xl)mm2 (xz) vY e2® \{¢}
nen-DS ~ Threul2 % Ky e2”
Tty
and I, ;= Z mml(xl)mmz(xz): Koz = Z mnﬁul(xl)mm\ﬂ(x2)
%, e K

x
b =)

(16)

In the equation, L. psKpw: 18 used to do the
nermalization which eliminates the conflicts between two
sources. When K, ,, = I... 1, the combined nbba does not
exist. The neutrosophic DSmC combination rule 1s:

Mgy psnc (Y) = Z M (Xl)mrmL\Z (XZ) VY eD? (1 7)

The neutrosophic DSmH combination rule is:

M- pses (9) =(0,0,1)
My rg (Y= S (¥) +8,,2 (V)+ 8,6 (Y) wYe G o}

2 m, (X)m, (X, )

X, X,eD”

NnXy=Y (1 8)
SnauZ (Y) = v m, .. (X1 )mneuZ (Xz)a

[I}::Y]i&UeMA[Y:Il)]
and Spes (Y) = Z , M (Xl)mneuZ (Xz)

Spea (Y) =

The meamngs of U and I, are the same as the original
DSmH. The neutrosophic PCR5 combination rule is:

mm—PCRj(¢) = [0'0'1)
e (1) o (2)

2 (7 e (2)

mm_pmj(Y) = ez (Y) * %{f}z\_(;{’ My (Y) + Mg [Z) My (Y) +m,m1( vres \{¢}
and My (T) = 25 ey (K Y (3 )
R
(19)

Although the above rules are for the combination of
two sowrces, they can be easily extended to combine N
sources of mformation.

Fusion of qualitative information: The classical belief
function theories all focus on the fusion of quantitative
information. However, in real world, much mformation,
especially provided by human sources, is the qualitative
information. Therefore, with the development of artificial
mtelligence, the qualitative fusion methods of information
have been received increasingly more attention.

Many researches about qualitative analysis have
been done in the past few years (Brewka et al, 2004;
Bryson and Mobolurin, 1998; Parsons, 1998; Zadeh, 2008).
In the DSmT, Smarandache and Dezert (2006) have also
mtroduced a new method to combine qualitative
information directly and proposed the qualitative DSmT.

L'= L, L,..., L} is a finite set of linguistic labels
and L <I.,<... <L, T,; (the minimal qualitative value) and
L., (the maximal qualitative value) are used to extend 1.".
Thenl. = 4L, L, ,L,....L,, L.} and L,<L,<L,<... <L <L,
L. can be mapped onto [0,1], L corresponds to the number
0 and L, corresponds to the number 1. The qualitative
addition, subtraction and multiplication defined in the
qualitative DSmT are shown as follows (Smarandache and
Dezert, 2006):

L, i+jsn+l
Lo+L. =4 ™ ! (20)
VoL, i+jrn+l
L., izj
L‘—L]={ b2l (21)
L, 1<]
LxLi=L.) (22)

Dezert and Smarandache (2006) also have defined the
qualitative belief assignment (gba), the qualitative DSmC
rule and the qualitative DSmH rule:

s (V)= 2 am(X)am,(X,) ¥YeD® (o3
X, ¥, €D
XKy =Y

Mg (V)= 6(Y)[ 65, (¥) +05, (Y) + 48, (Y)] wyec (2D

However, they did not propose the division operators of
linguistic labels. Therefore, they did not define the
mathematical expression of qualitative PCR rule.

In the neutrosophic theory, the truth T, the
indeterminacy 1 and the falsity F are all shown by
numerical values. For example, we use 80% truth, 0%
indeterminacy and 20% falsity to represent a proposition.
However, the received information sometimes 1s
qualitative. For example, the truth of a proposition is
probable, the indeterminacy is no and the falsity is
impossible. Therefore, we propose the T, T and F based on
linguistic labels. T, T and F are supposed to be the subsets
of Land T, = {L,, L, L,,..., L, L., }. We also define the
qualitative neutrosophic belief assignment (gnba):

am,,,, (-): G > L', qm,,, () = (t,, i 5y)

(25)
and qmnau(¢) = (Ln=Lu=Ln+1): Z tx = Ln+1
XeG

(3 represents the power set 2° or the hyper-power set D
ty€T, 1€l, f;€F. According to Eq. 11, 13, 17 and 18, we can
get the qualitative neutrosophic DSmC rule and the
qualitative neutrosophic DSmH rule:

M,y pene (V)= 25 am,, (X )am,,, (X;) VYe D", (26)

X, X,eD?
XK=V
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{qmnuu—DSmH (¢) = (LEHLEI =Ln+l)
[SLLLPNE (Y) =5, (Y) +05,., (Y) Rl ST (Y) vY e Gh {¢} ’
qsna'ul (Y) = E qm ., (Xl )qmneu2 (X2 ):
e 27
Q5,2 (Y) = qm,.,.,; (Xl) qm,,..; (Xz ):
X, Xy eh
[T=V]u[ (Uet)a(¥=1,)]
and g8, (Y) = Z am, (Xl)qmmu2 (Xz)
X, X,eD”

XX, =Y
X rXpet

It 18 very difficult to divide or normalize the hinguistic
labels and there are still no feasible definitions of the
division and normalization operation of lingustic labels.
Therefore, we do not define the qualitative neutrosophic
Dempster’s combmation rule and qualitative neutrosophic
PCR rule.

If the linguistic labels are equidistant, we can map
L onto {0, 1/(n+1), 2/(n+1), ..., n/(n+1), 1}. Then, we can
use the quantitative combination rules to fuse the
qualitative information represented by gnba and transfer
the fusion results into linguistic labels. In fact, the results
of this method are more precise than those of the above
combination rules. If the linguistic labels are not
equidistant, we can also apply the method, but the results
are lmprecise.

THE IMPLEMENTATION OF THE NEW
COMBINATION RULES

Example 1: Let us consider ® = {6, 8,}. The initial nbba
M., () and m,,,' () are provided as follows:

m'(0,)=(06,02, 02), m,, (0,)=(04,00,06),
m,.,' (8,08,)=(0.0,0.2,08),
m, (0,)=(04,0.4,02), m,, (0,)=(06 02,02,
m, (6,06,)= (02,02, 06).

We can extract the truth values of nbba as the mitial
bbam, () and m,' ()
m,(0)=06m,(0,)=04 m, (0GuB,)=00
m,' (0,)=04 m; (6,)=0.6, m, (B,u0,)=02.

Table 1: The combination results of different rules in the example 1

Before computing the combination results, we need
to normalize the mitial nbba and bba firstly. According to
Eq. 10, we can get the normalized nbba. The normalized
nbba (m,,(.), m_ () and the normalized bba (m,(.), m,(.))
are all shown in Table 1. TIf we hold the free DSm
model, then according to Eq. 5 and 17, we can get mpg,, ()

and mneu—DSmC('):

Mpec(0,) = 0300, mp -(0,) = 0.267, m ., 0 00, = 0,
Mpec(0,M0,) = 0.433,

My pencd 0,) = (0.300, 0.167, 0.267), m,,, pene (6,) = (0.267,
0.033, 0.534),

My ppee (0,00,) = (0, 0.033, 0.400), m,_, pe.c (0,10,) =
(0.433,0.033, 0.133).

If we hold the Shafer’s model, then according to Eq.
3,6,7,16, 18 and 19, we can get mpg(.), Mpgul.), Mpcps( ),
My pel )y My peer() @and My, o0ps(.). The combination
results are shown in Table 1.

From the data, we can see the combination results of
Dempster’s rule, DSmCrule, DSmH rule and PCRS5 rule are
the same as the truth values of combination results of the
corresponding neutrosophic  rules. Therefore, the
neutrosophic combination rules based on DST and DSmT
can be considered as the generalization of the original
DST-based and DSmT-based rules and provide more
information

Example 2: Tet us consider ® = {6,, 6,} and hold the
Shafer’s model. 6, represents that a patient has
contracted disease A. 0, represents that the patient has
contracted disease B. 0,00, represents that the patient
has contracted both A and B diseases at the same time.
m,..' () and m,.; () are the diagnosis provided by two
doctors respectively:

M, (6)=(06,0301), m,," (6,)=(04,01,0.5),
m,, (6,u0,)=(0.1,02,07),
m,, (6)=004,04,02),m,, (0,)=(06,02,02),
m,, (6,060,)=(02,02,06).

We extract the truth values of m,,,,' () and m,, ;' () as
the initial bba m,' (.) and m,' (.):

Belief agsignment 0, =5 0,00,

() 0.6 0.4 0

my(.) 0.333 0.500 0.167

mmpg(.) 0.520 0.471 0

Mpgan(.) 0.300 0.267 0.433

Hipegs(.) 0.524 0.476 0

M) (0.6, 0.2, 0.2) (0.4, 0,0.6) (0, 0.2, 0.8)

() (0.333, 0.333, 0.167) (0.500, 0.167, 0.167) (0.167, 0.167, 0.500)
My 15 () (0.529, 0.191, 0.298) (0.471, 0.038, 0.504) (0, 0.038, 0.444)
My, D) (0.300, 0.167, 0.267) (0.267, 0.033, 0.534) (0.433, 0.066, 0.533)
My pogsl.) (0.524, 0.185, 0.307) (0.476, 0.048, 0.627) (0, 0.033, 0.400)
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Table 2: The combination results of different rules in the example 2

Belief assignment 9, 24 8,08,
m() 0.545 0.364 0.091
mal) 0.333 0.500 0.167
mos() 0.498 0.477 0.025
Mpsas() 0.302 0.289 0.409
Mpors(.) 0.502 0.483 0.015
Maat () {0.545, 0.273, 0.091) (0.364, 0.081, 0.455) {0.091, 0.182, 0.638)

My5() (0.333, 0.333, 0.167)
My ps(.) (0.498, 0.250, 0.184)
My D5ran(-) €0.302, 0.198, 0.167)
My pens(.) (0.502, 0.251, 0.192)

(0.500, 0.167, 0.167)
(0.477, 0.076, 0.452)
(0.289, 0.060, 0.410)
(0.483, 0.083, 0.476)

{0.167, 0.167, 0.500)
{0.025, 0.038, 0.350)
{0,409, 0,106, 0.409)
{0.015, 0.030, 0.318)

m,'(0)=06m,(0,)=04 m,/ (0BuB)=01,
m,(0)=04 m,(6,)=06m,(BuB)=02

My (), Mep( ), my () and m,() are the normalizations
of m,,,,' (), my,; (.), m () andm,' () respectively. Then,
according to the above rules mentioned, we can fuse the
information provided by doctors. As shown in Table 2,
the combined bba of 6, is larger than and very close to
that of 6, We can diagnose the patient’s illness as
disease A. However, because the difference of the
combined bba of 0, and 0, i1s small, this diagnosis is
uncertain probably. The neutrosophic combination results
provide more information. The falsity value of combined
nbba of 6, is less than that of 8, obviously, which can
support the above diagnosis.

Example 3: The linguistic labels I. = {I.,, L, T, L, L, L}
L. L, L,, L, L,, L; represent no, impossible, improbable,
possible, probable and certain, respectively. ® = {6, 6,}
and the gnba and gba are as follows:

qmneul(el) =(L;, L, L), qmnem(ez) = (L, Lo, L3},
qm,,,(8,06,) = (L., L, Ly),

qM,es(0,) = (Lg Ly, L), qime,(8,) = (L, T, Ty,
qm,..(8,u6,) = (L,, L,, L,).

qm,(6,) =1, qm(6,) =L, qm,(6,u6,) =1,
qm,(0,) = L,, qm,(8,) = L,, qm,(6,u8,) = L,.

If we hold the free DSm model, then according to
Eq. 23 and 26, we can get qmpg, () and qm,,, pg.-():

qMpge(0)) = Ly, qpg,o(8,) = L, qmipg,o(0,08,) =L,
Mg, o(6,06,) =T,

M0 = (L3, L, La), qMlgepse (82) = (Ls, Ly, Ls),
QM e (6,060;) = (L, Ly, Ly), QM pse (6000, =
(Ly Ly, L)

If we hold the Shafer’s model, then according to
Eq. 24 and 27, we can get qmg,(.) and qm,, pg.sl.):

QM pgy (6)=L, QM pgy (6,)=L,, QM pgy 0,08, =L,
QMMyey psmH (0,)= (L, L, L), QL psans (6,) = (Ls, L, Ls),
My pmr (0,00,) = (L, Ly, L),

From the above results, we can see that the
qualitative neutrosophic combination rules based on
DSmT generalizes the original qualitative rules based on
DSmT. Because the limitation of operators of linguistic
labels, we cannot normalize the combination results and
the results are unprecise.

Example 4: Tet us consider the previous example of
disease diagnosis. However, the diagnosis provided by
two doctors 18 qualitative. qm,,,' () and qm,,;' (.) are:

it (6,) = (Ls, Ly, L)), gy, (6,) = Ly, Lo, L),

qm,,,,' (6,u60;) = (L. L, L.),

Qe (0= (L, L, L), QMg (6 =(1;, L, L),

qm,,;' (6,06,) = (L, L, L;).

We extract the truth values of qm,,,' (.) and gm,,,' () as
the 1nitial gba gm,' (.) and qm,' (.):

gm,’ (6)="L, gm;' (6,)=L,, gm;' (6,00;) = L,

qm; (8,)=L,, qm,’ (6,)=L,, gm; (6,u6,) =L,

The meanings of L, L,, L,, L,, L,, L; are the same as
those in example 3. We suppose the linguistic labels are
equidistant and use {0, 0.2, 0.4, 0.6, 0.8, 1} to map {L,, L,
L,, Ls, Le, Ls}. Then, we use the quantitative combination
rules to fuse the qualitative information and transfer the
combmation results into linguistic labels. The
corresponding numerical values of gnba and gba are the
same as the values of nbba and bba in example 1.
Therefore, we can utilize the results in example 1 directly
and transfer the quantitative results into the closest
linguistic labels.

Table 3 shows the qualitative combination results.
We can diagnose the patient’s illness as disease A
through the results. Compared with the combination
results in example 3, the results are normalized and more
precise. However, this method needs to suppose the
linguistic labels to be equidistant.
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Table 3: The combination results of different qualitative rules in the example 4

Belief assignment. 9, 0, 0udy
qmyi.) L: L, Lo

qmy(.) L, Ls Ly

qmps(.) L: L, Lo
QMpsal.) L, Ly Ly
Qmipcrs(.) Ls L Ly
Qi) (L, Ly, Ly) (La, Lo, La) (Lo, Lo, L)
QMM o(.) (Lo, Lo, Ly) (Ls, Ly, Ly) (L, Ly, L)
Qi ps(.) (L, Ly, Ly) (La, Lo, La) (Lo, Lo, L)
QMM n psrr(-) (L., Li. Ly) (L1, Lo, Ls) (Lo, Lo, La)
QM pems(-) T, 1y, L) T, 1g, 1) (Lo, T, L)

CONCLUSIONS Brewka, G., S. Benferhat and D. Le Berre, 2004. Qualitative

In this study, we have developed the neutrosophic
combination rules based on DST and DSmT, which are
the generalizations of the original DST-based and
DSmT-based combination rules. In real world, the
acquired mformation 1s always vague, uncertan and
imprecise. Tt is incomplete that only the degree of truth is
considered. The three members including truth,
indeterminacy and falsity make the neutrosophic theory
be adapted to representing the real proposition.
Therefore, we propose the neutrosophic belief
assignment, which can represent the human mind more
effectively and connect the DST-based combination rules
and the DSmT-based combination rules with neutrosophic
logic. The information provided by human sources is
expressed in natural language sometimes. To fuse not
only the quantitative information but also the qualitative
mnformation, we have presented both quantitative and
qualitative neutrosophic combination rules. Because of
the limitations of qualitative operators, the qualitative
combination rules need more developments. We also have
provided some application examples. Compared with the
original DST-based and DSmT-based combination rules,
the neutrosophic combination rules based on DST and
DSmT can provide more important information and help to
make correct decisions. Certainly, the new neutrosophic
fusing approaches also need more computation.
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