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In graph theory, the concept of domination is essen-
tial in a variety of domains. It has broad applications
in diverse fields such as coding theory, computer net-
work models, and school bus routing and facility lo-
cation problems. If a fuzzy graph fails to obtain ac-
ceptable results, neutrosophic sets and neutrosophic
graphs can be used to model uncertainty correlated
with indeterminate and inconsistent information in ar-
bitrary real-world scenario. In this study, we consider
the concept of domination as it relates to single-valued
neutrosophic incidence graphs (SVNIGs). Given the
importance of domination and its utilization in numer-
ous fields, we propose the application of dominating
sets in SVNIG with valid edges. We present some rel-
evant definitions such as those of valid edges, cardi-
nality, and isolated vertices in SVNIG along with some
examples. Furthermore, we also show a few signifi-
cant sets connected to the dominating set in an SVNIG
such as independent and irredundant sets. We also in-
vestigate a relationship between the concepts of dom-
inating sets and domination numbers as well as irre-
dundant and independence sets in SVNIGs. Finally, a
real-life deployment of domination in SVNIGs is inves-
tigated in relation to COVID-19 vaccination locations
as a practical application.

Keywords: dominating set, domination number, neutro-
sophic graph, single-valued neutrosophic incidence graph

1. Introduction
In recent decades, graph theory has been increasingly
considered important as a branch of applied mathemat-

ics, generally referred to as combinatorics. In fields as di-
verse as topology, number theory, algebra, optimization,
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and geometry, graphs are commonly utilized as a tool for
addressing combinatorial issues, and their importance in
computer science is well known. Weighted graphs rep-
resent the strength of links between the vertices, and can
be utilized to define any model that consists of points and
lines. The concept of domination was first established for
the game of chess in the 1850s. Several chess players in
Europe debated the matter of deciding the least number
of queens that could be substituted on a chessboard to en-
sure that all of the squares were occupied by a queen. As
a solution to this problem, Ore [1] and Berge [2] first pro-
posed the concept of domination in graphs in 1962.

In graph theory, domination may be utilized to model a
wide variety of systems, such as in abstract formalizations
like the facility location problem, social network analy-
sis, and problems in matching and coding theory, as well
as the operation of real technologies such as communica-
tion networks, security systems, clutters, and block cut-
ters. For example, it aims to address problems about fa-
cility location problems in which the number of facilities
such as police stations, fire stations, hospitals, and super-
markets, and to shorten the routes that travelers must take
to reach the nearest facility. In abstract terms, if the max-
imum distance to a facility is defined and efforts to lower
the number of facilities required to accommodate every-
one are made, similar situations may be expected to de-
velop. Furthermore, the concept of domination has been
considered in applications such as in monitoring commu-
nication or electrical networks, finding sets of representa-
tives, and surveying land.

If vertices are considered to symbolize different cities,
edges can indicate roads that link them. The result of this
arrangement is a fuzzy graph (FG) that depicts the volume
of traffic from one city to another. Here, the city with the
most residents will have the most entrance ramps. If A
and B are two cities and AB denotes the road that connects
them, we can consider that (A, AB) can display a ramp
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system from road AB to city A. Both A and B exhibit a
one-to-one influence on AB in unweighted graphs. The
impact of A on AB represented by (A, AB) on a directed
graph is 1, but (B, AB) is 0. Dinesh [3] presented fuzzy
incidence graphs (FIGs) as an expansion of this concept.
An FIG depicts the extent of the connections between ver-
tices in a set and the effect of a vertex on a relation pair.

In 1965, the concept of fuzzy sets (FSs) was proposed
by Zadeh [4], and subsequently generalized to model
fuzziness and uncertainty. Since then, FS theory has
been widely explored in a variety of fields. For exam-
ple, Rosenfeld [5] established FG theory and also pre-
sented FGs and many important notions such as fuzzy
trees, fuzzy cycles, fuzzy paths, etc., based on Zadeh’s no-
tions on the FS. In addition, Kaufmann [6] presented FGs
based on Zadeh’s fuzzy relation. However, because the
features of graph issues are frequently indeterminate and
inconsistent, it is considered preferable to handle them
utilizing the approach of neutrosophic logic, which pro-
vides the system greater precision in comparison to the
classic set and FS.

To cope with the difficulty, Smarandache [7] proposed
the idea of neutrosophic set (NS) theory as an extension
of the classic FSs, as well as that of intuitionistic FSs
(IFSs). In NSs, falsity membership functions (F'), inde-
terminacy membership functions (/), and truth member-
ship functions (T') comprise a membership value. Here,
each membership value is a non-standard or real-standard
subset of the non-standard unit interval |0~, 1], and their
sum is not restricted. To model real-world issues more
easily by using NS, Wang et al. [8] introduced the idea of
single-valued NSs (SVNSs), which have three indepen-
dent components with values in the standard unit inter-
val [0, 1].

Considering the concept of neutrosophic graphs (NGs)
is highly effective compared to FGs, it expands the range
of applications of graph theory across various fields such
as in decision-making problems [9-12]. In real-life set-
tings, NGs, together with the theory of NSs and the con-
cept of domination, serve an important role in implying
and dealing with inconsistent, indeterminate, and impre-
cise information. In recent years, the study of domi-
nation in the context of NGs has attracted attention as
a topic of active research. Hussain et al. [13] studied
domination numbers (DNs) in neutrosophic soft graphs.
Moreover, Devi [14] introduced minimal domination via
neutrosophic over graphs. Mullai and Broumi [15] in-
troduced dominating energy in NGs, and more recently,
Khan et al. [16] utilized strong edges to introduce the no-
tions of paired domination, matching, and covering in a
single-valued NG (SVNG). To the best of our knowledge,
no prior works have analyzed the concept of domination
in the context of neutrosophic incidence graphs. There-
fore, motivated by [17, 18], in this study, we consider
valid edges to expand the concept of domination to single-
valued neutrosophic incidence graphs (SVNIGs). The key
contributions of this study are summarized as follows:
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Table 1. Basic notations.

Abbreviations Description
SVNIG Single-valued neutrosophic incidence graph
SVNIDS Single-valued neutrosophic incidence domi-
nating set
SVNIDN Single-valued neutrosophic incidence domina-
tion number
SVNIIRS Single-valued neutrosophic incidence irredun-
dant set
SVNIPN Single-valued neutrosophic incidence valid
private neighborhood
SVNIIDS Single-valued neutrosophic incidence inde-
pendent set
Table 2. The list of symbols.
Symbols Description

G(V,E,I) | Incidence graph
£(A,B,C) | SVNIG

Sivn Minimum cardinality single-valued neutrosophic
incidence valid neighborhood degrees of & (A,B,C)

AN Maximum cardinality single-valued neutrosophic
incidence valid neighborhood degrees of & (A,B,C)

Yipn(€) | Minimum cardinality of SVNIDS

Iipn(€) | Maximum cardinality of the minimal SVNIDS

iry(§) |Minimum cardinality among all ~maximal
SVNIIRSs

Iry(€) |Maximum cardinality among all maximal
SVNIIRSs

oyps(€) | Minimum cardinality among all maximal SVNIIDS

Bips(§) |Maximum cardinality among all maximal
SVNIIDS

e An original conceptualization of domination on
SVNIG based on valid edges is introduced.

« The descriptions of valid edges, cardinality, and iso-
lated vertices in SVNIGs are explained along with
instances.

o We consider a few significant sets connected to the
dominating set (DS) in SVNIGs, such as indepen-
dent and irredundant sets. All basic notation is
shown in Table 1, and the symbols used are shown
in Table 2.

o We establish a relationship between the concepts of
DS and DN as well as those of irredundant and inde-
pendent sets in the context of SVNIGs.

« Real-life applications of the concept of domination
in SVNIGs are discussed.

The remainder of this study is organized as follows. In
this introduction, we discussed the historical background
of incidence and domination graphs, as well as the con-
cepts of the FSs and NSs. In Section 2, we briefly review
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the relevant literature on incidence graphs in fuzzy and
neutrosophic environments, and present the concepts of
domination in FGs as well as in FIGs and NGs. Section 3
offers a brief introduction to graphs and NSs as used in
this work. In Section 4, we formulate the concept of dom-
ination in SVNIGs and derive some key aspects. In Sec-
tion 5, we implement the proposed approach to construct a
model of the optimal locations for COVID-19 vaccination
administration centers (CVACs). Finally, in Section 6, we
summarize our findings and conclude with a discussion
of the limitations of this work along with some suggested
avenues for further research.

2. Literature Review

Brualdi and Massey [19] first presented the concept of
an incidence graph in their work on incidence and in-
cidence chromatic numbers. Such incidence graphs can
typically be depicted as a triplet, in which one aspect rep-
resents a fine set of vertices, a second denotes a finite
set of edges, and a third refers to an incidence function.
Dinesh [3] further developed the theory for unordered
pairs of vertices that are not incident with end vertices.
In contrast, fuzzy incidence depicts the relationships be-
tween vertices and offers data on the effect of the vertex
on edges’ influence. Subsequently, Dinesh [20] expanded
on the idea of FIGs and introduced some additional con-
cepts related to this body of knowledge.

Furthermore, Mathew and Mordeson [21] also exam-
ined concepts of connectivity in FIGs. In interconnected
networks with influenced flows, connectivity is crucial.
Hence, investigating the connectivity qualities of graphs
is important. The theory of FIGs was then explored
by Malik et al. [22] to address human trafficking prob-
lems. They argued that the importance of this work is its
quantification of a country’s vulnerability and of govern-
ments’ actions in response to human trafficking. Simi-
larly, Mathew et al. [23] investigated certain connectivity
and incidence cuts properties in FIGs. In graphs modeling
human trafficking networks, incidence is used to model
flows. Finally, Mathew and Moderson [24] described
fuzzy incidence blocks (FIBs) and discussed their appli-
cation to the problem of illegal migration. They applied
FIBs to prevent a network’s susceptible linkages from be-
ing ignored, utilizing FIGs as a non-deterministic net-
work model with supporting links. Subsequently, Akram
et al. [25] extended FIGs to a neutrosophic environ-
ment, and presented the concept of SVNIGs and exam-
ined their connectivity. Building on this research, Akram
et al. [26] investigated the application of bipolar NSs to
incidence graphs and developed a few relevant features.
Subsequently, the theory of neutrosophic vague incidence
graphs (VIGs) was then developed by Hussain et al. [27],
who formulated pair, vertex, and edge connectivity in
neutrosophic VIGs. Furthermore, Mohamad et al. [28]
applied the concept of innovative interval-valued neutro-
sophic incidence graphs to the safe root travelling prob-
lem.
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Ore [1] and Berge [2] began researching DSs in graphs
in 1962. Cockayne and Hedetniemi [29] subsequently de-
rived irredundant numbers, independent domination, and
the concept of domination. A. Somasundaram and S.
Somasundaram [30] were the first to establish the con-
cept of domination in FGs. They utilized effective edges
to identify domination and total DNs (TDNs) for various
classes in FGs. Subsequently, Somasundaram [31] found
domination in the product of two graphs and investigated
their domination parameter, as well as many FG opera-
tions such as Cartesian product, composition, joining, and
union. Additionally, Gani and Ahamed [32] pioneered the
concepts of weak and strong domination in FGs and de-
scribed their various characteristics.

Furthermore, Natarajan and Ayyaswamy [33] devel-
oped the idea of strong (weak) domination in FGs, ex-
plaining several intriguing findings for this new parameter
in FGs. In addition, Vimala and Sathya [34] considered
FG point set DNs and utilized the FGs neighborhood de-
grees to acquire some limitations. Besides that, Manjusha
and Sunitha [35-40] have provided some proofs on dom-
ination in FGs. Moreover, Ponnappan et al. [41] estab-
lished the concept of the total edge DN, the edge DN,
total edge domination, and edge domination for various
types of FGs. In addition, Dharmalingam and Rani [42]
suggested the concepts of fuzzy equitable independent
sets in equitable FGs, fuzzy equitable independent sets,
strong (weak) fuzzy equitable DSs, minimal fuzzy eq-
uitable DSs, and fuzzy equitable DSs. They presented
several remarkable insights for this new parameter. Ac-
cordingly, Dharmalingam and Nithya [43,44] established
the concepts of excellent and very excellent domination
in FGs. Here, the notion of a DS was proposed by
Bozhenyuk et al. [45] as an invariant of an intuitionistic
FG (IFG).

Nazeer et al. [46] utilized a new concept of domina-
tion in FIGs developed in their previous work and ap-
plied it to the choice of an adequate medical lab among
a range of laboratories. Then, Nazeer et al. [47] expand
on the idea of domination idea by combining FIGs with
strong pairings and applying it to diverse nations’ trading
systems. Subsequently, Afsharmanesh and Borzooei [17]
utilized incidence valid edges to establish DSs in FIGs
and examined numerous significant sets pertaining to DS,
such as irredundant and independent sets. Rao et al. [18]
expanded the concept of domination concept in FIGs to
VIGs, utilizing valid edges and applying their approach
to the optimal locations of COVID-19 testing facilities in
another investigation.

3. Preliminaries

In this section, we recall some fundamental definitions
with respect to SVNSs, FIGs, and domination. In this
study, maximum and minimum operators are represented
by V or max, and A or min, respectively.

Definition 1— [48]: An FG G = (o,) is a pair of
functions together with an underlying set of vertices V and
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a set of edges E, where 6 : V — [0,1] and p : V XV —
[0,1] such that pu(uv) < o(u) Ao(v), Vu,v € V.

Definition 2— [31]: Let G = (o, 1) denote an FG on
V with u,v € V. Note that u dominates v in G if u(u,v) =
o(u) Ao(v). A subset S of V is known as a DS in G
provided that for every u € V — S there exists an u € §
given that u dominates v. Meanwhile, a subset S of V is
known as a total DS in G provided that foreveryu € V—S
there exists an u# € S given that u dominates v.

Definition 3— [31]: The minimum fuzzy cardinality
of a DS in G = (o, ) is known as the DN of FGs G =
(o,u), which is expressed by y; or 77(G). Meanwhile,
the minimum fuzzy cardinality of a total DS in G = (o, 1)
is known as the TDN of FGs G = (o, 1), which is ex-
pressed by ¥ or % (G).

Definition 4— [20]: Let graph G = (V,E), where p
and o are FSs of E and V, respectively. Let V X E pos-
sess an FS 6. Provided that 6(v,e) < o(v) A u(e) for ev-
ery e € E and v € V, then § is known as the fuzzy inci-
dence of G, while (o,u) is referred to as a fuzzy sub-
graph of G. Let & be a fuzzy incidence of G. Then,
G = (o, U, 0) is known as an FIG of G.

Definition 5— [8]: Consider X as a universal set. An
SVNS A in R is denoted by a falsity-membership func-
tion Fj(x), an indeterminacy-membership function I4(x),
and a truth-membership function T4 (x). An SVNS A may
be expressed as

A ={x,Ta(x),1a(x), Fa(x)|x € X},
where T (x),Ia(x), Fa(x) € [0,1] for each x in X. There-
fore, the sum of Ty (x), I4(x), and F4(x) satisfies the con-
dition 0 < Ty (x) +1a(x) + F4(x) < 3. Now, foran SVNS A
in X, the triplets Ty(x),I4(x),Fs(x) are denoted as a
single-valued neutrosophic number, resembling a funda-
mental element in SVNS.

Definition 6— [49, 50]: An SVNG denotes a pair G =
(V,E), where V is an SVNS in X expressed as V =
{v1,v2,...,v,}. This is known as the set of vertices
denoting a truth-membership value Ty : V — [0,1], an
indeterminacy-membership value I : V — [0,1], and a
falsity-membership value Fy : V — [0, 1] provided that
Tx(vi) +1a(vi) + Fa(vi) € [0,3], forallv; € V.

For ECV xV = {(vi,vj)|v,-,vj eV, i,j= 1,2,...,]’1}
is referred to as the set of edges that denotes a truth-
membership value 7z : V x V — [0, 1], an indeterminacy-
membership value Iz : V xV — [0,1], and a falsity-
membership value Fg : V x V — [0, 1] such that

Tp (V,’,Vj) <Ty(vi) ATy (vj)’

Ig (viyvj) < Ia(vi) AMa(v)),
Fp (Vi, Vj) < Ey (v,') V Ey (Vj) .

This holds provided that
s (v,',Vj) +1Ip (V,’,Vj) + Fp (V,’,vj) € [0,3],
forall v;,v; € E.
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Fig. 1. Incidence graph G.

4. Domination in SVNIGs

4.1. Domination in SVNIGs Based on Valid Edges

Definition 7: & = (A,B,C) is called an SVNIG of an
underlying incidence graph G = (V,E,I) if
A ={(Ta(v),1a(v), Fx(v)) [v €V},
B = {(Ts(xy),1p(xy), Fp(xy)) [xy € E},
C = {{Te(v,xy), lc(v,xy), Fe(v,.xy)) |(v,.xy) € 1},

such that
Tg(xy) < min{7Tx(x),Ta(y)},
Ig(xy) < min{la(x),2a(y)},
Fp(xy) < max{F(x),Fa(y)},
Te(v,xy) < min{Zx(v), T(xy) },

c(v,xy)
IC(Vaxy) < mm{IA( >7IB(xy)}v

Fe(v,xy) < max{Fx(v),Fp(xy)},
where Ty, I4,Fy : V — [0,1] and
0<Ty+Ixs+Fy <3,

0<Tg+Ip+Fp <3,

0<Te+Ic+F <3.

Example 1: Let G = (V,E,I) denote an incidence
graph as shown in Fig. 1, in which V = {a,b,c,d}, E =
{ab,bc,bd,cd,ad}, and

I = {(a,ab),(b,ab),(b,bc),(c,bc),(b,bd),
(d,bd),(c,cd),(d,cd),(a,ad),(d,ad)}.

From this, it is clear to indicate that & = (A, B,C) is an
SVNIG of G as shown in Fig. 2, we have

A = {(a,0.1,0.3,0.5),(5,0.2,0.3,0.4),

¢,0.3,0.4,0.5), (d,0.4,0.6,0.5)},

B = {(ab,0.1,0.3,0.5), (bc,0.2,0.3,0.5),
bd,0.2,0.3,0.5), (cd,0.3,0.4,0.5),
ad,0.1,0.3,0.5)},
(a,ab),0.1,0.3,0.5), ((b,ab),0.1,0.3,0.5),
(b,bc),0.2,0.3,0.5), ((c,bc),0.2,0.3,0.5),
(b,bd),0.2,0.3,0.5), ((d, bd),0.2,0.3,0.5),
( ) (
( ) (

YveV, xy€eE,

¢,cd),0.3,0.4,0.5),((d,cd),0.3,0.4,0.5),

(
(
(
(
Cc=A{(
(
(
(
((a,ad),0.1,0.3,0.5), ((d,ad),0.1,0.3,0.5)}.
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(04,0.6,0.5) . (02,0.3,04)
(02,0.3,08) (02,03,09)

(03,04,05)

Fig. 2. SVNIG & in Examples 1 and 2.

Definition 8: The SVNIG & = (A,B,C) support is
sup(&) = (sup(A),sup(B),sup(C)) such that
sup(A) = {x|T4(x) > 0,14(x) > 0, F4(x) > 0},
sup( ) = {xy(Ts(xy) > 0,15(xy) > 0, Fg(xy) > 0},
up(C) = {(v,xy) [T (v,xy) > 0,15(v,xy) >0
Fg(v,xy) > 0}.

Definition 9: Let & = (A,B,C) be denoted as
an SVNIG. Thus, H = (A,B,C) denotes as an
SVNI-subgraph of & provided that A C A, B C B,
aswellas C C C.

Definition 10: Let & = (A,B,C) denote an SVNIG.
Following from there, a single-valued neutrosophic inci-
dence edge xy of & is known as a single-valued neutro-
sophic incidence valid edge provided that

. Tp(xy) > 0.5,
min (7 (x)vTA()’))
TC(x Xy) TC(yvxy)>07
Ip(xy )
>0.5,
min a9, 1) *
Ic(x,xy) >0, Ic(y,xy) >0,
F
B(xy) <05,
1+ max (Fx (x), F4(y))
Fe(x,xy) >0, Fe(y,xy) > 0.
In another way, it is considered as a single-valued neutro-
sophic incidence invalid edge.

Definition 11: Consider & = (A, B,C) as an SVNIG. Its

cardinality is expressed by
1+ Ta(v) +1a(v)
E=x :

—Fx(v)

xeVv

— Fp(xy)

n Z 1+T3(xy)+lg(xy)

xyeE

Novel Concepts on Domination in Neutrosophic Incidence Graphs

L+ Th(x) +1a (x) — Fy(x)
Al =Y 5 —p
xev
1+ Tp(xy) +Ip(xy) — Fp(xy
1= | L) )~ o)
xyeE
| = 1+Tc(v,xy)+IC2(v,xy)—Fc(v,xy) R
(vxy)el

Example 2: In Fig. 2, it may be clearly observed that
ab and bc are single-valued neutrosophic incidence valid

edges, from which we obtain

140.1403-05 1+024+03-04

Al =
A 3 + 5
14034+04-05 1+04+0.6-0.5
+ +
2 2
= 0.45+0.55+0.60+0.75
=2.35,
140.1403-05 1+02+03-0.5
|B| = 3 5
14024+03-08 1+03+0.4-0.8
+
2 2
140.1403-0.9
+ 2
= 0.45+0.50+0.35+0.45+0.25
= 2.00,
140.1403-05 1+40.1403-0.5
C| = > + .
1402403-05 1+02+03-0.5
+ 2 + 2
14024+03-08 1+0.2+03-0.9
+ 2 + 2
14034+04-08 1+0.3+04-0.9
+ 2 + 2
L 1401+403-09 140140309

2 2
=045+04540.540.540.35+0.3
+0.4540.4+0.2540.25
= 3.90.
Example 3: Consider an SVNIG & = (A,B,C) such
thatV = {eafagahaj}»E = {efafgaghahjaej}> and
I={(e,ef),(f,ef),(f.f8),(8./3), (g, 8h),
<h7gh)7 <h7hj)’ (j?hj)’ (e’ej)7 (j’ej)}’
as shown in Fig. 3. By routine calculation, the edges ef,
fg, and hg are the single-valued neutrosophic incidence
valid edges.
Definition 12: The SVNIG & =
to be complete provided that

Tp(xy) = min (T4 (x), T4 (y)),
Ip(xy) = min (I (x),14(y)),
Fp(xy) = max (Fa(x), Fa(y)),

(A,B,C) is considered

1+ Te(v,xy) +Ic(v,xy) — Fe (v, xy) Tc(v,xy) = min (Tx (v), Tp(xy)),
(vny)el 2 ‘ Ic(v,xy) = min (I4(v),Ig(xy)),
, edge cardinal- Fe(v,xy) = max (Fy(v), Fp(xy)),
, and incidence cardinality |C| expressed by YWweV, xycE.
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(01,03,02)

|n.1,o.z,o.7}\
(m,ovz,o.r}‘ ‘10.1,03,0.7)

(02,05,03) (01,04,06) (0.1,02,05)

(0.1,03,06) (0.1,04,07)
—_ —

Fig. 3. SVNIG £ in Example 3.

Definition 13: Let & = (A,B,C) denote an SVNIG.
Thus,

i

ii.

a single-valued incidence valid neighborhood of x is
expressed by Ny (x) = {y € V]xy is a single-valued
neutrosophic incidence valid edge}.

Note that Nguiy[x] = N,(x) U {x} denotes a closed
single-valued neutrosophic incidence valid neigh-
borhood of x. For non-empty set D C V, we now
have

Nsvniv(D) = {Nsvniv(x) |x € D}’
Nsvniv [D] = Nsvniv(D) UD.

the single-valued neutrosophic incidence valid
neighborhood degree of vertex x is expressed by

dNsyniv (x) = Z Ty (y> ) Z Iy (y> )

/€ Nguniv (%) YENspiv(X)
Y E ()’)> .
YENgpniv(X)

The maximum and minimum, and cardinality single-

(03,05,04)

(

01,02,08) (02,03,06 W’m

(03,05,06)

(omz,oy'

(01,03,0.5)

k |(04,04,05)

p— P —
(0.1,03,07) (03,04,07)

(01,03,07)

(01,02,07)’

‘ (0.,03,08)

‘102,0 3,07)

(0.1,03,06) (0.1,04,08)

(02,04,0.3) (0.1,04,08) (02,06,05)

Fig. 4. SVNIG & in Examples 4 and 5.

Definition 15: Let & = (A,B,C) denote an SVNIG
of G. Then,

1. x € V incidentally dominates y € V in &, provided
that y € Ny [x].

2. a non-empty set of vertices D C V denotes a single-
valued neutrosophic incidence DS (SVNIDS) in an
SVNIG &, provided that there exists y € D when-
ever x incidentally dominates y. In other words,
V = Ngiv[D], Vx € V — D.

3. The minimum cardinality of SVNIDS in an SVNIG
of G is expressed as a single-valued neutrosophic
incidence DN (SVNIDN) of &, which is expressed

by YIDN(g) Clearly, YIDN(g) <P.

4. A set with the minimum single-valued neutrosophic
cardinality of ypn (&) is denoted as an ypy-set or
minimal SVNIDS.

Example 5: Consider & = (A, B,C) to be denoted as an
SVNIG as shown in Fig. 4. By routine calculations, the
edges jk, kl, kn, and mn are single-valued neutrosophic
incidence valid edges. The sets
D, = {kam}a D; = {k,l’l}, D3 = {jalam}a Dy = {jalan}
are SVNIDSs. By calculating the cardinalities, we obtain

valued neutrosophic incidence valid neighborhood |D1| = 1+04+04-05 + 1+40.2+04-03

degrees of £ are expressed by Ayyy and 8yyy, accord- 2 2

ingly. =0.65+0.65=1.30,

Definition 14: Consider & = (A, B,C) to be denoted as 1+044+04—-05 1+0.1+03-0.5
an SVNIG. Then, the vertex cardinality of S C V is ex- |D2| = 2 + )
pressed as — 0.65+0.45 = 1.10,
si— |y LW L) — FaWw) 1403+0.5-04 1+024+0.6-05
| | = Z . |D | _ . . 4L . . .
xeS 2 3 2 2
Example 4: Let SVNIG & as shown in Fig. 4. Then, 1
+02+04-03

Nani(€) = {11, Mo (1) = .81, R

Nomn(8) = LS,k Now (1) = 18} — 0.7+0.65+0.65 = 2.00,

Nowniv (1) = 0. 1403+05-04 1402+0.6—0.5
Thus, |D4| = 5 + 5
dNgiv(e) = (0.3,0.4,0.5), dNgniv(f) = (0.4,0.9,0.9),

ANgmin(g) = (0.5,0.9,0.8), dNgymiv(h) = (0.1,0.4,0.5). L 14+01+03~ 0-5‘
Therefore, by routine calculation, it is obvious that 2
Svy = (0.1,0.4,0.5) and Ajyy = (0.5,0.9,0.8). =0.740.65+0.45=1.80.
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Hence, ypy (&) = 1.10 and D, = {k,n} is a ypy-set.

Theorem 1: In any SVNIG & = (A,B,C), vipn(&) <
P—App.

Proof: Letx €V inan SVNIG & = (A,B,C). Assume
that dNgypiv(x) = Ajyn. Then, V — Ny (x) is an SVNIDS
of &, such that

Yion (&) < |V — Nyymiv(x)| = P — Apyw.

|

Note that D denotes an incidence DS of the SVNIG & =
(A,B,C) as well as D; C V provided that D; D D. Thus,
D, also denotes an incidence DS. Subsequently, any sub-
set D, of D is not required to be an incidence DS. There-
fore, we are inclined to consider an SVNIG’s minimal in-
cidence DSs.

Definition 16: An SVNIDS D of the SVNIG & =
(A,B,C) is denoted as a minimal SVNIDS provided that
any proper subset of D is not included in an SVNIDS of &.

The upper SVNIDN I'jpy equals the maximum cardi-
nality of the minimal SVNIDS in &. Obviously, yipy de-
notes the minimum cardinality of the minimal SVNIDS
in&.

Example 6: In Example 3, the sets

Dl = {h7j7e}7 D2 = {g7j7e}7

D3 = {hajaf}a Dy = {fa]ag}
resemble the minimal SVNIDSs.
YiDnN = 1.7.

Definition 17: The vertex’s valid degree x € V in an
SVNIG & = (A,B,C) is expressed to denote the sum of
the falsity membership, indeterminacy membership, and
true membership degree of the single-valued neutrosophic
incidence valid edges (SVNIVE) incident at vertex x € V,
which is expressed as dgypiy(x). The maximum and min-
imum valid degree cardinalities of § = (A,B,C) are de-
noted as Agyyiy and Ogyyiy, respectively.

Definition 18: Let the SVNIG & = (A,B,C), a ver-
tex x € V is denoted as an isolated vertex provided that
Ngyniv(x) = 0. This implies that, for any y € V, where
y # x, xy is not a SVNIVE.

Example 7: As may be clearly observed from Fig. 4,
Jj denotes an isolated vertex due to Ny (j) = 0.

Theorem 2: In an SVNIG & = (A,B,C) possess no
isolated vertices. Provided that D denotes the minimal
SVNIDS in &, V — D thus resembles an SVNIDS.

Proof: Let D resemble any minimal SVNIDS of &.
Meanwhile, the vertex x € D incidentally is not dominated
by any vertex in V — D. Provided that & possesses no
isolated vertices, x is incidentally dominated by at least
one vertex in D — {x}. Thus, D— {x} denotes an SVNIDS,
which contradicts the minimality of D. Hence, any vertex
in D is incidentally dominated by at least one vertex in
V — D. Therefore, V — D resembles an SVNIDS. [ |

Corollary 1: For an SVNIG & = (A, B,C) with no iso-
lated vertex, we now have ypy < P/2.

Proof: Provided that D denotes a minimal SVNIDS
of &, so does V — D. Therefore, P = |V| = |D| + |V — D|.
Hence, at least one of the sets D or V — D has a cardinality
P/2 or less. [ |

Thus, FIDN =2 and
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4.2. Irredundant Sets in an SVNIG

Definition 19: Consider & = (A, B,C) to be denoted as
an SVNIG, S CV as well as x € S. The vertex y is
known as a single-valued neutrosophic incidence valid
private neighborhood (SVNIPN) of x into S provided that
Nyniv[x] NS = {x}. In addition, we express the SVNIPN
of x into S by PNgyniv(x,S). This expresses

PNsvniv(xas) = aniv [x] - U aniv b’]
yesS—{x}
= Nyvniv [x] — Novniv [S - {X}]
Clearly, provided that x € PN, (x,S), x is isolated
in (S).
Definition 20: Let & = (A,B,C) denote an SVNIG as
wellas@#SCV.

1. S is a single-valued neutrosophic incidence irredun-
dant set (SVNIIRS) provided that for any x € S,
PNsvniv(xas) ?é 0.

2. § is considered a maximal SVNIIRS provided that,
forany x € V — S, the set SU{x} is not an SVNIIRS,
which explains that there exists at least one ver-
tex y € SU{x} where it does not possess an SVNIPN.

3. The minimum cardinality among all maximal-
SVNIIRSs is considered as a single-valued neutro-
sophic incidence irredundant number (SVNIIRN)
and expressed by iry ().

4. The maximum cardinality among all maximal-
SVNIIRSs is known as an upper SVNIIRN and ex-
pressed by Iry(&). Hence, it may be easily noted
that irN(ﬁ) - II"N(g).

Theorem 3: Let SVNIG & = (A, B,C) with vertex car-
dinality P and minimum cardinality single-valued neu-
trosophic incidence valid neighborhood (SVNIVN) de-
gree Oryy. Then,

Iry(&) < P—&yw.

Proof: Let S denote an SVNIIRS in & with x € S. Con-
clude that x resembles a valid neighborhood to k vertices
in S. Here, given that the degree of x denotes at least &y,
x must be valid neighborhood to at least &;yy — dNy ver-
tices in V — S in which dN; resembles the cardinality of k
valid neighborhood vertices x in S.

Provided that dN; =0, Syy < |V — S
Ovy as needed.

Provided that dNj > 0, each valid neighborhood of x
in § must possess a valid private neighborhood in V — §
and k must be distinct.

,ie, |S|<P—

Therefore,
(Oyyny —dNy) +dN < |V =5,
ovv < |V -5,
where
IS| < P— S,

II‘N(é) § P— 5[\/1\7.

|
Theorem 4: An SVNIDS in an SVNIG § = (A,B,C) is
a minimal SVNIDS provided that it is an SVNIIRS.
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Proof: Let S denote a minimal SVNIDS in £. Then,
for any vertex x € S, there exists a vertexz € V — (S — {x})
that is not dominated by S — {x}. Thus, for any x € S,
PNgpniv[x,S] # 0. Hence, any vertex x € S possesses at
least one incidence valid private neighborhood. There-
fore, S is both an SVNIIRS and an SVNIDS.

Therefore, provided that the set S is not a minimal
SVNIDS, there exists an x € S given that S — {x} is an
SVNIDS. Because S is an SVNIIRS, PNgypiv[x,S] # 0.
Given that z € PNgy,y[x, S], z is not a valid neighborhood
for any vertex in S — {x}. Provided that S — {x} is not an
SVNIDS, this leads to a contradiction. [ |

Theorem 5: Every minimal SVNIDS in an SVNIG & =
(A,B,C) is a maximal SVNIIRS.

Proof: By Theorem 4, any minimal SVNIDS is an
SVNIIRS. Thus, we need to show that S is a maximal
SVNIIRS provided that S is not maximal. Thus, there ex-
ists a vertex x € V — S in which SU {x} is an SVNIIRS.
This shows that PNy [x,S U {x}] # 0. Thus, there exists
at least one vertex y that is a valid private neighborhood
of x into SU{x}. Ultimately, no vertex in S is a neighbor-
hood to y. This contradicts S being an SVNIDS. |

Corollary 2: For any SVNIG & = (A,B,C),

irn(8) < Yion(8) < Tipn (&) < Irn(S).

Proof: By Theorem 5, every minimal SVNIDS in £ =
(A,B,C) is a maximal SVNIIRS in &. Thus, the result is
straightforward. |

4.3. Independent Sets in an SVNIG

Definition 21: Let & = (A,B,C) denote an SVNIG.
Then,

1. The vertices y and x are incidentally independent in &
provided that the edge xy is not an SVNIVE.

2. The subset S of V is a single-valued neutrosophic in-
cidence independent set (SVNIIDS) of & provided
that any two vertices of S are incidentally indepen-
dent. This shows that all of the vertices of (S) are
isolated.

3. S is referred to as a maximal SVNIIDS in which
for any x € V —§ the set SU {x} is not incidence-
independent.

4. The maximum cardinality among all maximal
SVNIIDS is referred to as a single-valued neutro-
sophic incidence-independent number (SVNIIDN)

of & given by Bips().

5. The minimum cardinality among all maximal
SVNIIDS is a lower SVNIIDN of & given
by oyps(&).

Theorem 6: Let & = (A,B,C) be an SVNIG. Then,
SVNIIDS denotes a maximal provided that it is an
SVNIDS.

Proof: Let D be a maximal SVNIIDS of §. Then,
D must be an SVNIDS of &. If not, there exists a ver-
tex x € V — D that incidentally is not dominated by D, and
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thus DU {x} denotes SVNIIDS of &, violating the max-
imality of D. Interchangeably, provided that D denotes
independent SVNIDS, for any x ¢ D, DU {x} is not an
SVNIIDS. Thus, D resembles a maximal SVNIIDS. W

Theorem 7: Every maximal SVNIIDS of & denotes a
minimal SVNIDS of &.

Proof: Proof. Let D be a maximal SVNIIDS of &.
Then, by Theorem 6, D is an SVNIDS of . Therefore, we
must determine whether D is a minimal SVNIDS. If not,
there exists at least one vertex x € D in which D — {x} is
an SVNIDS. Interchangeably, provided that D — {x} dom-
inates x, at least one vertex in D — {x} must be SVNIVN
of x, which contradicts D and resembles an SVNIIDS
of &. Moreover, D must be a minimal SVNIDS. |

Corollary 3: Each SVNIIDS of &£ is a minimal
SVNIDS of &.

Proof: Let S be an SVNIIDS of £. Then, Theorem 6
resembles a maximal independent set and Theorem 7 re-
sembles a minimal SVNIDS. |

The converse of Corollary 3 may not be accurate in gen-
eral, as shown in the example given below.

Corollary 4: For any SVNIG £ = (A,B,C), we have

Yion (8) < aups(8) < Bips(8) < Tipn(E).

Proof: By Theorem 7, any maximal SVNIIDS D of &
is a minimal SVNIDS of &. Then, the result is straightfor-
ward. |

By Corollaries 2 and 4, we obtain the following result.

Theorem 8: For any SVNIG & = (A,B,C), iry(&) <
Yion (8) < aups(8) < Bins(8) < Tipn(8) < Irn(§).

5. An Application of SVNIGs to Determining
Optimal Locations of CVACs

The COVID-19 pandemic is a global outbreak of se-
vere acute respiratory syndrome (SARS-CoV-2). Vacci-
nation is one of the most promising techniques to miti-
gate the impacts of the pandemic. Since the beginning of
the outbreak, many initiatives have been conducted world-
wide to create COVID-19 vaccines. The Special Com-
mittee for Ensuring Access to COVID-19 Vaccine Sup-
ply JKJAV), co-chaired by Malaysian Ministers of Health
and Science, Technology, and Innovation was formed to
assure the country’s immediate access to COVID-19 vac-
cine supplies. The government’s objective is to guaran-
tee as many Malaysians as possible attain vaccination to
minimize the mortality and morbidity of the disease as
quickly as possible. Universities, community halls, con-
vention centers, stadiums, and other suitable venues will
be established as temporary vaccine administration cen-
ters depending on demand. However, the issue of where to
locate these temporary vaccination administration centers
is very important. To reduce costs, the government must
choose the smallest number of cities that are the most ap-
pealing so that the remaining cities are connected to at
most one city with available vaccines by a usable travel-
ing route for better accessibility.

Therefore, in this section, we attempted to identify the
most suitable cities to construct CVACs using SVNIGs
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Fig. 5. Pictorial diagram of the application of SVNIG.

and DSs to save both expense and time. Moreover, the
cities have diverse circumstances in regards to the CVAC
location’s development, and differ considerably in terms
of their highways in relation to the safety, quality, dis-
tance, and the presence of checkpoints and traffic at var-
ious levels. The cities in the two regions are modeled as
the set of vertices (V), and the routes connecting cities are
represented by the set of edges (E). The city entry and exit
points (the ramp between the road and the city) are mod-
eled by the set of incidences (/) in this graph. Fig. 5 illus-
trates this application for the problem of locating CVACs.
We considered six cities designated as Cy, Cy, C3, Cy,
Cs, and Cg. In this notation, a vertex C»(0.2,0.6,0.5)
has 20% of the facilities required to set up a CVAC. A
value of 50% indicates a lack of necessary equipment,
while 60% indicates a correspondingly more notable in-
sufficiency. The edge C>C3(0.2,0.3,0.5) shows that 20%
of the route to the CVAC is not disrupted by any traffic.
Still, unfortunately, 50% of the route between these two
points is congested with vehicles, especially during the
rush hours, while 30% of the route is not disrupted by any
traffic. The DSs for Fig. 5 were calculated as follows:

Dy = {C,C3,C4}, Dy = {(C,,C5,Cs},

D3 = {C1,C,Cy}, Dy = {C1,C2,C3,C4},
Ds = {(5,C3,C4,Cs}, Dg = {C2,C3,C4,Cs},
D7 = {C,(3,C4,Cs}, Dg={C1,C3,C5,Cs},
Dy = {C>,C4,C5,Cs}, Dio = {C1,C3,C4,Cs}.

After calculating the cardinality of Dy,...,Djg, we ob-
tain

ID1| =2, |D2| = 1.6,
D3| =1.95, |D4| =226,
IDs| =23,  |Dg| =2.65,
|D7| =26,  |Dg| =22,
|Dy| =2.3, |Djo| =2.25.
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Because D, has a minimum scalar cardinality among
SVNIDSs, we conclude that C>, C3, and Cs5 can be se-
lected as the preferred cities in which to construct the
CVACs. Considering the facilities and equipment in all
the cities, these locations are most well supplied and
equipped. Thus, we conclude that the government must
allocate sufficient funds to these cities and provide more
health officers and volunteers to established CVACs in or-
der for our country to attain greater immunity as soon as
possible.

6. Conclusion and Future Research

In graph theory, the concept of domination is essential
from both theoretical and practical perspectives. Domi-
nation in incidence graphs has been utilized to formulate
and solve a variety of issues in science and technology,
such as in combinatorial analysis, artificial intelligence,
computer networks, etc. NSs are an extension of IFSs and
FS notion. In comparison to classical and fuzzy models,
NS models provide higher compatibility, flexibility, and
precision.

In this study, we integrated the concept of domina-
tion with the idea of SVNIGs and also covered several
important graph-theoretic concepts. Each of these con-
cepts wasexplored with appropriate instances. We also
introduced the concepts of single-valued neutrosophic in-
cidence valid edges and a definition of cardinality in
SVNIGs. In addition, we explored many key results re-
lating to these dominations, such as irredundant and inde-
pendent sets and DSs in SVNIGs employing valid edges.
Lastly, to demonstrate a real-world application of domi-
nation in an SVNIG model, we suggested an exemplary
scenario relating to the problem of selecting locations for
CVACs.

Further studies can be carried out to determine the dom-
ination in SVNIGs using strong or effective pairs. Fur-
thermore, we plan to continue our study of various domi-
nation parameters in NSs and identify the bounds of dom-
ination parameters.
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