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§1. Introduction

Hyperbolic geometry appeared in the first half of the 19th century as an attempt to understand

Euclid’s axiomatic basis of geometry. It is also known as a type of non-euclidean geometry,

being in many respects similar to euclidean geometry. Hyperbolic geometry includes similar

concepts as distance and angle. Both these geometries have many results in common but

many are different. Several useful models of hyperbolic geometry are studied in the literature

as, for instance, the Poincaré disc and ball models, the Poincaré half-plane model, and the

Beltrami-Klein disc and ball models [3] etc. Following [6] and [7] and earlier discoveries, the

Beltrami-Klein model is also known as the Einstein relativistic velocity model. Menelaus of

Alexandria was a Greek mathematician and astronomer, the first to recognize geodesics on a

curved surface as natural analogs of straight lines. The well-known Menelaus theorem states

that if l is a line not through any vertex of a triangle ABC such that l meets BC in D, CA in

E, and AB in F , then DB
DC

· EC
EA

· FA
FB

= 1 [2]. Here, in this study, we give hyperbolic version of

Menelaus theorem for quadrilaterals in the Poincaré disc model. Also, we will give a reciprocal

hyperbolic version of this theorem. In [1] has been given proof of this theorem, but to use

Klein’s model of hyperbolic geometry.

We begin with the recall of some basic geometric notions and properties in the Poincaré

disc. Let D denote the unit disc in the complex z - plane, i.e.

D = {z ∈ C : |z| < 1}.
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The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the Möbius transformation of the disc to

be viewed as a Möbius left gyro-translation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the complex conjugate

of z0. Let Aut(D,⊕) be the automorphism group of the grupoid (D,⊕). If we define

gyr : D × D → Aut(D,⊕), gyr[a, b] =
a ⊕ b

b ⊕ a
=

1 + ab

1 + ab
,

then is true gyro-commutative law

a ⊕ b = gyr[a, b](b ⊕ a).

A gyro-vector space (G,⊕,⊗) is a gyro-commutative gyro-group (G,⊕) that obeys the

following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.

(2) G admits a scalar multiplication, ⊗, possessing the following properties. For all real

numbers r, r1, r2 ∈ R and all points a ∈G:

(G1) 1 ⊗ a = a;

(G2) (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a;

(G3) (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a);

(G4) |r|⊗a

‖r⊗a‖ = a

‖a‖ ;

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a;

(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1 ;

(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of one-dimensional ”vectors”

‖G‖ = {± ‖a‖ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R and a,b ∈ G,

(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖;
(G8) ‖a ⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖.

Definition 1. The hyperbolic distance function in D is defined by the equation

d(a, b) = |a ⊖ b| =

∣

∣

∣

∣

a − b

1 − ab

∣

∣

∣

∣

.

Here, a ⊖ b = a ⊕ (−b), for a, b ∈ D.

For further details we refer to the recent book of A.Ungar [7].
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Theorem 2(The Menelaus’s Theorem for Hyperbolic Gyrotriangle) Let ABC be a gyrotriangle

in a Möbius gyrovector space (Vs,⊕,⊗) with vertices A, B, C ∈ Vs, sides a,b, c ∈ Vs, and side

gyrolengths a, b, c ∈ (−s, s), a = ⊖B⊕C, b = ⊖C⊕A, c = ⊖A⊕B, a = ‖a‖ , b = ‖b‖ , c = ‖c‖ ,

and with gyroangles α, β, and γ at the vertices A, B, and C. If l is a gyroline not through any

vertex of an gyrotriangle ABC such that l meets BC in D, CA in E, and AB in F, then

(AF )γ

(BF )γ

· (BD)γ

(CD)γ

· (CE)γ

(AE)γ

= 1.

where vγ = v

1− v2

s2

[6].

§2. Main Results

In this section, we prove Menelaus’s theorem for hyperbolic quadrilateral.

Theorem 3(The Menelaus’s Theorem for Gyroquadrilateral) If l is a gyroline not through any

vertex of a gyroquadrilateral ABCD such that l meets AB in X, BC in Y , CD in Z, and DA

in W , then

(AX)γ

(BX)γ

· (BY )γ

(CY )γ

· (CZ)γ

(DZ)γ

· (DW )γ

(AW )γ

= 1. (1)

Proof Let T be the intersection point of the gyroline DB and the gyroline XY Z (See
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Figure 1). If we use Theorem 2 in the gyrotriangles ABD and BCD respectively, then

(AX)γ

(BX)γ

· (BT )γ

(DT )γ

· (DW )γ

(AW )γ

= 1 (2)

and
(DT )γ

(BT )γ

· (CZ)γ

(DZ)γ

· (BY )γ

(CY )γ

= 1. (3)

Multiplying relations (2) and (3) member with member, we obtain

(AX)γ

(BX)γ

· (BY )γ

(CY )γ

· (CZ)γ

(DZ)γ

· (DW )γ

(AW )γ

= 1.

�

Naturally, one may wonder whether the converse of Menelaus theorem for hyperbolic

quadrilateral exists. Indeed, a partially converse theorem does exist as we show in the fol-

lowing theorem.

Theorem 4(Converse of Menelaus’s Theorem for Gyroquadrilateral) Let ABCD be a gyro-

quadrilateral. Let the points X, Y, Z, and W be located on the gyrolines AB, BC, CD, and DA

respectively. If three of four gyropoints X, Y, Z, W are collinear and

(AX)γ

(BX)γ

· (BY )γ

(CY )γ

· (CZ)γ

(DZ)γ

· (DW )γ

(AW )γ

= 1,

then all four gyropoints are collinear.

Proof Let the points W, X, Z are collinear, and gyroline WXZ cuts gyroline BC, at Y ′

say. Using the already proven equality (1), we obtain

(AX)γ

(BX)γ

· (BY ′)γ

(CY ′)γ

· (CZ)γ

(DZ)γ

· (DW )γ

(AW )γ

= 1,

then we get
(BY )γ

(CY )γ

=
(BY ′)γ

(CY ′)γ

. (4)

This equation holds for Y = Y ′. Indeed, if we take x := |⊖B ⊕ Y ′| and b := |⊖B ⊕ C| , then

we get b ⊖ x = |⊖Y ′ ⊕ C| . For x ∈ (−1, 1) define

f(x) =
x

1 − x2
:

b ⊖ x

1 − (b ⊖ x)2
. (5)

Because b ⊖ x =
b − x

1 − bx
, then f(x) =

x(1 − b2)

(b − x)(1 − bx)
. Since the following equality holds

f(x) − f(y) =
b(1 − b2)(1 − xy)

(b − x)(1 − bx)(b − y)(1 − by)
(x − y), (6)

we get f(x) is an injective function. This implies Y = Y ′, so W, X, Z, and Y are collinear. �

We have thus obtained in (1) the following.
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Theorem 5(Transversal theorem for gyrotriangles) Let D be on gyroside BC, and l is a

gyroline not through any vertex of a gyrotriangle ABC such that l meets AB in M, AC in N ,

and AD in P , then
(BD)γ

(CD)γ

· (CA)γ

(NA)γ

· (NP )γ

(MP )γ

· (MA)γ

(BA)γ

= 1. (7)

Proof If we use a theorem 2 for gyroquadrilateral BCNM and collinear gyropoints D, A, P ,

and A (See Figure 2), we obtain the conclusion. �

The Einstein relativistic velocity model is another model of hyperbolic geometry. Many

of the theorems of Euclidean geometry are relatively similar form in the Poincaré model,

Menelaus’s theorem for hyperbolic gyroquadrilateral and the transversal theorem for gyro-

triangle are an examples in this respect. In the Euclidean limit of large s, s → ∞, gamma

factor vγ reduces to v, so that the gyroinequalities (1) and (7) reduces to the

AX

BX
· BY

CY
· CZ

DZ
· DW

AW
= 1

and
BD

CD
· CA

NA
· NP

MP
· MA

BA
= 1,

in Euclidean geometry. We observe that the previous equalities are identical with the equalities

of theorems of euclidian geometry.
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