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Abstract  

In this paper, the concepts of Neutro-𝐵𝐸-algebra and Anti-𝐵𝐸-algebra are introduced, and some related properties 

and four theorems are investigated. We show that the classes of Neutro-𝐵𝐸-algebra and Anti-𝐵𝐸-algebras are 

alternatives of the class of 𝐵𝐸-algebras. 
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1. Introduction  

Neutrosophy, introduced by F. Smarandache in 1998, is a new branch of philosophy that generalized the 

dialectics and took into consideration not only the dynamics of opposites, but the dynamics of opposites and their 

neutrals [8]. Neutrosophic Logic / Set / Probability / Statistics / Measure / Algebraic Structures etc. are all based on 

it. One of the most striking trends in the neutrosophic theory is the hybridization of neutrosophic set with other 

potential sets such as rough set, bipolar set, soft set, vague set, etc. The different hybrid structures such as rough 

neutrosophic set, single valued neutrosophic rough set, bipolar neutrosophic set, single valued neutrosophic vague set, 

etc. are proposed in the literature in a short period of time. Neutrosophic set has been a very important tool in all 

various areas of data mining, decision making, e-learning, engineering, computer science, graph theory, medical 

diagnosis, probability theory, topology, social science, etc.  

A classical Algebra may be transformed into a NeutroAlgebra by a process called neutro-sophication, and into 

an AntiAlgebra by a process called anti-sophication. 

In [2], H.S. Kim et al. introduced the notion of a 𝐵𝐸-algebra as a generalization of a 𝐵𝐶𝐾-algebra. S.S. Ahn et 

al. introduced the notion of ideals in 𝐵𝐸-algebras, and they stated and proved several properties of such ideals [1]. A. 

Borumand Saeid et al defined some filters in 𝐵𝐸-algebras and investigated relation between them [3]. A. Rezaei et al. 

investigated the relationship between Hilbert algebras and 𝐵𝐸-algebras and showed that commutative self-distributive 

𝐵𝐸-algebras and Hilbert algebras are equivalent [4]. In this paper, the concepts of a Neutro-𝐵𝐸-algebra and Anti-𝐵𝐸-

algebra are introduced, and some related properties are investigated. We show that the class of Neutro-𝐵𝐸-algebra is 

an alternative of the class of 𝐵𝐸-algebras. 
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2.  NeutroLaw, NeutroOperation, NeutroAxiom, and NeutroAlgebra 

In this section, we review the basic definitions and some elementary aspects that are necessary for this 

paper. 

The Neutrosophy’s Triplet is (<A>, <neutroA>, <antiA>), where <A> may be an item (concept, idea, 

proposition, theory, structure, algebra, etc.), <antiA> the opposite of <A>, while <neutroA> {also the 

notation <neutA> was employed before} the neutral between these opposites. Based on the above triplet 

the following Neutrosophic Principle one has: a law of composition defined on a given set may be true (𝑇) 

for some set elements, indeterminate (𝐼) for other set’s elements, and false (𝐹) for the remainder of the set’s 

elements; we call it NeutroLaw. A law of composition defined on a given sets, such that the law is false (𝐹) 

for all set’s elements is called AntiLaw. Similarly, an operation defined on a given set may be well-defined 

for some set elements, indeterminate for other set’s elements, and undefined for the remainder of the set’s 

elements; we call it NeutroOperation. While, an operation defined on a given set that is undefined for all 

set’s elements is called AntiOperation. 

In classical algebraic structures, the laws of compositions or operations defined on a given set are 

automatically well-defined [i.e. true (𝑇) for all set’s elements], but this is idealistic. Consequently, an axiom 

(let’s say Commutativity, or Associativity, etc.) defined on a given set, may be true (𝑇) for some set’s 

elements, indeterminate (𝐼) for other set’s elements, and false (𝐹) for the remainder of the set’s elements; 

we call it NeutroAxiom. In classical algebraic structures, similarly an axiom defined on a given set is 

automatically true (𝑇) for all set’s elements, but this is idealistic too. A NeutroAlgebra is a set endowed 

with some NeutroLaw (NeutroOperation) or some NeutroAxiom. The NeutroLaw, NeutroOperation, 

NeutroAxiom, NeutroAlgebra and respectively AntiLaw, AntiOperation, AntiAxiom and AntiAlgebra 

were introduced by Smarandache in 2019 [6] and afterwards he recalled, improved and extended them in 

2020 [7]. Recently, the concept of a Neutrosophic Triplet of 𝐵𝐼-algebra was defined [5]. 

3. Neutro-𝑩𝑬-algebras, Anti-𝑩𝑬-Algebras 

Definition 3.1. (Definition of classical 𝑩𝑬-algebras [1]) 

An algebra (𝑋,∗, 0) of type (2, 0) (i.e. 𝑋 is a nonempty set, ∗ is a binary operation and 0 is a constant 

element of 𝑋) is said to be a 𝐵𝐸-algebra if:  

(𝐿) The law ∗ is well-defined, i.e. (∀𝑥, 𝑦 ∈ 𝑋)(𝑥 ∗ 𝑦 ∊ 𝑋). 

And the following axioms are totally true on 𝑋: 

(𝐵𝐸1) (∀𝑥 ∈ 𝑋)(𝑥 ∗ 𝑥 = 0), 

(𝐵𝐸2) (∀𝑥 ∈ 𝑋)(0 ∗ 𝑥 = 𝑥), 

(𝐵𝐸3) (∀𝑥 ∈ 𝑋)(𝑥 ∗ 0 = 0), 

(𝐵𝐸4) (∀𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑤𝑖𝑡ℎ 𝑥 ≠ 𝑦)(𝑥 ∗ (𝑦 ∗ 𝑧) = 𝑦 ∗ (𝑥 ∗ 𝑧)). 

Example 3.2.  

( i )  Let ℕ be the set of all natural numbers and ∗ be the binary operation on ℕ defined by 

𝑥 ∗ 𝑦 = {
𝑦              𝑖𝑓 𝑥 = 1;
1              𝑖𝑓 𝑥 ≠ 1.

 

Then (ℕ,∗, 1) is a BE-algebra. 
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(ii) Let ℕ0 = ℕ⋃{0} and let ∗ be the binary operation on ℕ0 defined by 

𝑥 ∗ 𝑦 = {
0                     𝑖𝑓 𝑥 ≥ 𝑦;

𝑦 − 𝑥             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Then (ℕ0,∗ ,0) is a BE-algebra. 

Definition 3.3. (Neutro-sophications) 

The Neutro-sophication of the Law (degree of well-defined, degree of indeterminacy, degree of outer-

defined) 

(NL) (∃𝑥, 𝑦 ∈ 𝑋)(𝑥 ∗ 𝑦 ∊ 𝑋) and (∃𝑥, 𝑦 ∈ 𝑋)(𝑥 ∗ 𝑦 =  𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 or ∗ 𝑦 ∉ 𝑋), 

The Neutro-sophication of the Axioms (degree of truth, degree of indeterminacy, degree of falsehood) 

(𝑁𝐵𝐸1) (∃𝑥 ∈ 𝑋)(𝑥 ∗ 𝑥 = 0) and (∃𝑥 ∈ 𝑋)(𝑥 ∗ 𝑥 = indeterminate  or 𝑥 ∗ 𝑥 ≠ 0), 

(𝑁𝐵𝐸2) (∃𝑥 ∈ 𝑋)(0 ∗ 𝑥 = 𝑥) and (∃𝑥 ∈ 𝑋)(0 ∗ 𝑥= indeterminate  or 0 ∗ 𝑥 ≠ 𝑥), 

(𝑁𝐵𝐸3) (∃𝑥 ∈ 𝑋)(𝑥 ∗ 0 = 0) and (∃𝑥 ∈ 𝑋)(𝑥 ∗ 0 =  𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 or 𝑥 ∗ 0 ≠ 0), 

(𝑁𝐵𝐸4) (∃𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑤𝑖𝑡ℎ 𝑥 ≠ 𝑦)(𝑥 ∗ (𝑦 ∗ 𝑧) = 𝑦 ∗ (𝑥 ∗ 𝑧)) and 

(∃𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑤𝑖𝑡ℎ 𝑥 ≠ 𝑦)(𝑥 ∗ (𝑦 ∗ 𝑧) = 𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒  or 𝑥 ∗ (𝑦 ∗ 𝑧) ≠ 𝑦 ∗ (𝑥 ∗ 𝑧)). 

Definition 3.4. (Anti-sophications) 

The Anti-sophication of the Law (totally outer-defined)  

(AL) (∀𝑥, 𝑦 ∈ 𝑋)(𝑥 ∗ 𝑦 ∉ 𝑋).  

The Anti-sophication of the Axioms (totally false) 

(𝐴𝐵𝐸1) (∀𝑥 ∈ 𝑋)(𝑥 ∗ 𝑥 ≠ 0), 

(𝐴𝐵𝐸2) (∀𝑥 ∈ 𝑋)(0 ∗ 𝑥 ≠ 𝑥), 

(𝐴𝐵𝐸3) (∀𝑥 ∈ 𝑋)(𝑥 ∗ 0 ≠ 0), 

(𝐴𝐵𝐸4) (∀𝑥, 𝑦, 𝑧 ∈ 𝑋, with 𝑥 ≠ 𝑦)(𝑥 ∗ (𝑦 ∗ 𝑧) ≠ 𝑦 ∗ (𝑥 ∗ 𝑧)).  

Definition 3.5. (Neutro-𝑩𝑬-algebras) 

A Neutro-𝐵𝐸-algebra is an alternative of 𝐵𝐸-algebra that has at least a (𝑁𝐿) or at least one (𝑁𝐵𝐸𝑖), 𝑖 ∈
{1, 2, 3, 4}, with no anti-law and no anti-axiom. 

Example 3.6.  

(i) Let ℕ be the set of all natural numbers and ∗ be the Neutro-sophication of the Law ∗ on ℕ from Example 2.2. 
(i) defined by 

𝑥 ∗ 𝑦 = {

𝑦 𝑖𝑓 𝑥 = 1;
1

2
          𝑖𝑓 𝑥 ∈ {3,5,7}

1     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

; 
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Then (ℕ,∗, 1) is a Neutro-BE-algebra. Since 

(NL) if 𝑥 ∈ {3,5,7}, then 𝑥 ∗ 𝑦 =
1

2
∉ ℕ, for all 𝑦 ∈ ℕ, while if 𝑥 ∉ {3,5,7} and 𝑥 ∈ ℕ, then 𝑥 ∗ 𝑦 ∈ {1, 𝑦} ⊆ ℕ, for 

all 𝑦 ∈ ℕ. 

(NBE1) 1 ∗ 1 = 1 ∈ ℕ and 3 ∗ 3 =
1

2
∉ ℕ, 

(BE2) holds always since 1 ∗ 𝑥 = 𝑥, for all 𝑥 ∈ ℕ. 

(NBE3) 5 ∗ 1 =
1

2
≠ 1 and if 𝑥 ∉ {3,5,7}, then 𝑥 ∗ 1 = 1, 

(NBE4) 5 ∗ (3 ∗ 4) = 5 ∗
1

2
=? (𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒) and 3 ∗ (5 ∗ 4) = 3 ∗

1

2
= ? (𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒)  

Also, 2 ∗ (3 ∗ 4) = 2 ∗
1

2
=  ? (𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒), but 3 ∗ (2 ∗ 4) = 3 ∗ 1 =

1

2
. 

Further, 4 ∗ (8 ∗ 2) = 4 ∗ 1 = 1 = 8 ∗ (4 ∗ 2). 

(ii) Let 𝑆 be a nonempty set and 𝒫(𝑆) be the power set of 𝑆. Then (𝒫(𝑆),∩, ∅) is a Neutro-𝐵𝐸-algebra. 

∩ is the binary set intersection operation, but 

(NBE1) is valid, since ∅ ∩ ∅ = ∅ and for all ∅ ≠ 𝐴 ∈ 𝒫(𝑆), 𝐴 ∩ 𝐴 = 𝐴 ≠ ∅. 

(NBE2) ∅ ∩ ∅ = ∅ and if ∅ ≠ 𝐴, then ∅ ∩ 𝐴 = ∅ ≠ 𝐴, 

(BE3) holds, since 𝐴 ∩ ∅ = ∅, 

(BE4) holds, since 𝐴 ∩ (𝐵 ∩ 𝐶) = 𝐵 ∩ (𝐴 ∩ 𝐶). 

(iii) Similarly, (𝒫(𝑆),∪, ∅), (𝒫(𝑆),∩, 𝑆), (𝒫(𝑆),∪, 𝑆), where ∪ is the binary set union operation, are Neutro-𝐵𝐸-
algebras. 

(iv) Let 𝑋 ∶=  {0, 𝑎, 𝑏, 𝑐, 𝑑} be a set with the following table. 

Table 1 

* 0 a b c d 

0 c a b c a 

a b 0 b c d 

b 0 a 0 c c 

c ? 0 b 0 b 

d 0 0 0 0 ? 

 

Then (𝑋,∗, 0) is a Neutro-𝐵𝐸-algebra. 

(NL) 𝑐 ∗ 0 =? (𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒), and 𝑑 ∗ 𝑑 = ? (𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒), and for all 𝑥, 𝑦 ∈ {0, 𝑎, 𝑏}, then 𝑥 ∗ 𝑦 ∈ 𝑋. 

(NBE1) 𝑎 ∗ 𝑎 = 0 and 0 ∗ 0 = 𝑐 ≠ 0 or 𝑑 ∗ 𝑑 =? (𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒). 
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(NBE2) holds since 0 ∗ 𝑏 = 𝑏, and 0 ∗ 𝑑 = 𝑎 ≠ 𝑑. 

(NBE3) 𝑐 ∗ 0 =? (𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒)  ≠ 0 and if 𝑥 ∈ {𝑏, 𝑑}, then 𝑥 ∗ 0 = 0, 

(NBE4) 𝑑 ∗ (𝑐 ∗ 𝑏) = 𝑑 ∗ 𝑏 = 0 ≠ 𝑐 ∗ (𝑑 ∗ 𝑏) = 𝑐 ∗ 0 =? (𝑖𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒) and 

𝑎 ∗ (𝑏 ∗ 𝑐) = 𝑎 ∗ 𝑐 = 𝑐 = 𝑏 ∗ (𝑎 ∗ 𝑐). 

(v) Let 𝑆 be a nonempty set and 𝒫(𝑆) be the power set of 𝑆. Then (𝒫(𝑆), −, ∅) is an Anti-𝐵𝐸-algebra, where − 
is the binary operation of set subtraction, because: 

(BE1) is valid, since 𝐴 − 𝐴 = ∅, 

(NBE2) holds, since ∅ − 𝐴 = ∅ ≠ 𝐴 and ∅ − ∅ = ∅, 

(NBE3) holds, since 𝐴 − ∅ = 𝐴 ≠ ∅ and ∅ − ∅ = ∅  

(ABE4) is valid, since for A ≠ B, one has 𝐴 − (𝐵 − 𝐶) ≠ 𝐵 − (𝐴 − 𝐶), because: 

x ∊ 𝐴 − (𝐵 − 𝐶) means (x ∊ A and x ∉ B-C), or {x ∊ A and (x ∉ B or x ∊ C) }, or {(x ∊ A and x ∉ B) or (x ∊ A and x 
∊ C)}; while x ∊ 𝐵 − (𝐴 − 𝐶) means {(x ∊ B and x ∉ A) or (x ∊ B and x ∊ C)}. 

(vi) Let ℝ be the set of all real numbers and ∗ be a binary operation on ℝ defined by 𝑥 ∗ 𝑦 = |𝑥 − 𝑦|. Then (ℝ,∗
,0) is a Neutro-𝐵𝐸-algebra. 

(BE1) holds, since 𝑥 ∗ 𝑥 = |𝑥 − 𝑥| = 0, for all 𝑥 ∈ ℝ. 

(NBE2) is valid, since if 𝑥 ≥ 0, then 𝑥 ∗ 0 = |𝑥 − 0| = |𝑥| = 𝑥, and if 𝑥 < 0, then 𝑥 ∗ 0 = |𝑥 − 0| = |𝑥| = −𝑥 ≠
𝑥. 

(NBE3) is valid, since if 𝑥 ≠ 0, then 0 ∗ 𝑥 = |0 − 𝑥| = |−𝑥| ≠ 0, and if 𝑥 = 0, then 0 ∗ 0 = 0. 

(NBE4) holds, if x = 2, y = 3, z = 4 we get |2-|3-4|| = |2 – 1| = 1 and |3-|2-4|| = |3-2| = 1;  

while for x = 4, y =8, z =3 we get |4 -|8-3|| = |4-5| = 1 and |8-|4-3|| = |8-1| = 7 ≠ 1. 

Theorem 3.7. 

The total number of Neutro-𝐵𝐸-algebras is 31. 

Proof. 

The classical BE-algebra has: 1 classical Law and 4 classical Axioms: 

1 + 4 = 5 classical mathematical propositions. 

Let 𝐶𝑛
𝑚 mean combinations of n elements taken by m, where n, m are positive integers, n ≥ m ≥ 0. 

We transform (neutro-sophicate) the classical 𝐵𝐸-algebra, by neutro-sophicating some of the 5 classical 
mathematical propositions, while the others remain classical (unchanged) mathematical propositions: 

either only 1 of the 5 classical mathematical propositions (hence we have 𝐶5
1 = 5 possibilities) – so 4 classical 

mathematical propositions remain unchanged, 

or only 2 of the 5 classical mathematical propositions (hence we have 𝐶5
2 = 10 possibilities) – so 3 classical 

mathematical propositions remain unchanged, 
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or only 3 of the 5 classical mathematical propositions (hence we have 𝐶5
3 = 10 possibilities) – so 2 classical 

mathematical propositions remain unchanged, 

or only 4 of the 5 classical mathematical propositions (hence we have 𝐶5
4 = 5 possibilities) – so 1 classical 

mathematical proposition remainsnchanged, 

or all 5 of the 5 classical mathematical propositions (hence we have 𝐶5
1 = 1 possibilities). 

Whence the total number of possibilities will be: 

𝐶5
1 + 𝐶5

2 + 𝐶5
3 + 𝐶5

4 + 𝐶5
5 = (1 + 1)5 − 𝐶5

0 = 25 − 1 = 31. 

Definition 3.8. (Anti-𝑩𝑬-algebras) 

An Anti-𝐵𝐸-algebra is an alternative of 𝐵𝐸-algebra that has at least an (𝐴𝐿) or at least one (𝐴𝐵𝐸𝑖), 𝑖 ∈
{1, 2, 3, 4}. 

Example 3.9. 

(i) Let ℕ be the natural number set and 𝑋: = ℕ ∪ {0}. Define a binary operation ∗ on 𝑋 by 𝑥 ∗𝐴 𝑦 = 𝑥2 + 𝑦2 + 1. 
Then (𝑋,∗, 0) is not a 𝐵𝐸-algebra, nor a Neutro-𝐵𝐸-algebra, but an Anti-𝐵𝐸-algebra.   

Since 𝑥 ∗𝐴 𝑥 = 𝑥2 + 𝑥2 + 1 ≠ 0, for all 𝑥 ∈ 𝑋, and so (𝐴𝐵𝐸1) holds.  

For all 𝑥 ∈ ℕ, we have 𝑥 ∗ 0 = 𝑥2 + 1 ≠ 0, so (𝐴𝐵𝐸2) is valid. By a similar argument (𝐴𝐵𝐸3) is valid.  

Since for 𝑥 ≠ 𝑦, one has 𝑥 ∗𝐴 (𝑦 ∗𝐴 𝑧) = 𝑥2 + (𝑦2 + 𝑧2 + 1)2 + 1 ≠ 𝑦 ∗𝐴 (𝑥 ∗𝐴 𝑧) = 𝑦2 + (𝑥2 + 𝑧2 + 1)2 + 1, 

thus (𝐴𝐵𝐸4) is valid. 

(ii) Let 𝑆 be a nonempty set and 𝒫(𝑆) be the power set of 𝑆. Define the binary operation ∆ (i.e. symmetric 
difference) by 𝐴∆𝐵 = (𝐴⋃𝐵) − (𝐴 ∩ 𝐵) for every 𝐴, 𝐵 ∈ 𝒫(𝑆). Then (𝒫(𝑆), ∆, 𝑆) is not a 𝐵𝐸-algebra, nor 
Neutro-𝐵𝐸-algebra, but it is an Anti-𝐵𝐸-algebra.  

Since 𝐴∆𝐴 = ∅ ≠ 𝑆 for every 𝐴 ∈ 𝒫(𝑆) we get (𝐴𝐵𝐸1) holds, and so (𝐵𝐸1) and (𝑁𝐵𝐸1) are not valid.  

Also, for all 𝐴, 𝐵, 𝐶 ∈ 𝒫(𝑆) one has 𝐴∆(𝐵∆𝐶) = 𝐵∆(𝐴∆𝐶). Thus, (𝐵𝐸4) is valid. 

Since there is at least one anti-axiom (ABE1), then (𝒫(𝑆), ∆, 𝑆) is an Anti-𝐵𝐸-algebra. 

(iii) Let 𝒰 = {0, 𝑎, 𝑏, 𝑐, 𝑑} be a universe of discourse, and a subset 𝑆 = {0, 𝑐}, and the below binary well-defined 
Law * with the following Cayley table. 

Table 2 

* 0 c 
0 c 0 
c c c 

 

Then (𝑆,∗ ,0) is an Anti-𝐵𝐸-algebra, since (ABE1) is valid, because: 0*0 = c ≠ 0 and c*c = c ≠ 0, and it is sufficient 
to have a single anti-axiom.   

Theorem 3.10. 

The total number of Anti-𝐵𝐸-algebras is 211. 
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Proof. 

The classical 𝐵𝐸-algebra has: 1 classical Law and 4 classical Axioms: 

1 + 4 = 5 classical mathematical propositions. 

Let 𝐶𝑛
𝑚 mean combinations of n elements taken by m, where n, m are positive integers, n ≥ m ≥ 0. 

We transform (anti-sophicate) the classical 𝐵𝐸-algebra, by anti-sophicating some of the 5 classical 
mathematical propositions, while the others remain classical (unchanged) or neutro-mathematical 
propositions: 

either only 1 of the 5 classical mathematical propositions (hence we have 𝐶5
1 = 5 subpossibilities) – so 4 

classical mathematical propositions remain some unchanged others neutro-sophicated or 24 = 16 
subpossibilities; hence total number of possibilities in this case is: 5∙16 = 80; 

or 2 of the 5 classical mathematical propositions (hence we have 𝐶5
2 = 10 subpossibilities) – so 3 classical 

mathematical propositions remain some unchanged other neutro-sophicated or 23 = 8 subpossibilities; hence 
total number of possibilities in this case is: 10∙8 = 80; 

or 3 of the 5 classical mathematical propositions (hence we have 𝐶5
3 = 10 subpossibilities) – so 2 classical 

mathematical propositions remain some unchanged other neutro-sophicated or 22 = 4 subpossibilities; hence 
total number of possibilities in this case is: 10∙4 = 40; 

or 4 of the 5 classical mathematical propositions (hence we have 𝐶5
4 = 5 subpossibilities) – so 1 classical 

mathematical propositions remain either unchanged other neutro-sophicated or 21 = 2 subpossibilities; hence 
total number of possibilities in this case is: 5∙2 = 10; 

or all 5 of the 5 classical mathematical propositions (hence we have 𝐶5
5 = 1 subpossibility) – so no classical 

mathematical propositions remain. 

Hence, the total number of Anti-𝐵𝐸-algebras is: 

𝐶5
1. 25−1 + 𝐶5

2. 25−2 + 𝐶5
3. 25−3 + 𝐶5

4. 25−4 + 𝐶5
5. 25−5 = 5 ∙ 16 + 10 ∙ 8 + 10 ∙ 4 + 5 ∙ 2 + 1 ∙ 1 = 211. 

Theorem 3.11. 

As a particular case, for 𝐵𝐸-algebras, we have:  

1 (classical) 𝐵𝐸-algebra + 31 Neutro-𝐵𝐸-algebras + 211 Anti-𝐵𝐸-algebras =  243 =  
53 algebras. 

Where, 31 = 25 – 1, and 211 = 35 - 25. 

Proof. 

It results from the previous Theorem 3.10 and 3.11. 

Theorem 3.12. 

Let 𝑈 be a nonempty finite or infinite universe of discourse, and 𝑆 a nonempty finite or infinite subset of 𝑈. A 
classical Algebra is defined on 𝑆. 

In general, for a given classical Algebra, having 𝑛 operations (laws) and axioms altogether, for integer 𝑛 ≥  1, 

there are 3
n

total number of Algebra / NeutroAlgebras / AntiAlgebras as below: 

1 (classical) Algebra,  ( 2 1n  ) Neutro-Algebras, and ( 3 2n n ) Anti-Algebras. 
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The finite or infinite cardinal of set the classical algebra is defined upon, does not influence the numbers of 
Neutro-𝐵𝐸-algebras and Anti-𝐵𝐸-algebras. 

Proof. 

It is similar to Theorem 3.11, and based on Theorems 3.10 and 3.11. 

Where 5 (total number of classical laws and axioms altogether) is extended/replaced by 𝑛. 

5. Conclusion. 

We have studied and presented the neutrosophic triplet (𝐵𝐸-algebra, Neutro-𝐵𝐸-algebra, Anti-𝐵𝐸-algebra) 

together with many examples, several properties and four theorems. 
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