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 In [1] we proved, using barycentric coordinates, the following theorem: 
 
 Theorem: (generalization of the C. Coşniţă theorem) 
 If P  is a point in the triangle’s ABC  plane, which is not on the circumscribed triangle, 

' ' 'A B C  is its pedal triangle and 1 1 1, ,A B C  three points such that  

   *
1 1 1' ' ' ,   PA PA PB PB PC PC k k R⋅ = ⋅ = ⋅ = ∈
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then the lines 1 1 1,  ,  AA BB CC  are concurrent. 
 Bellow, will prove, using this theorem, the following: 
  
 Theorem  
 If the triangles ABC  and 1 1 1A B C  are orthological and their orthological centers coincide, 
then the lines 1 1 1,  ,  AA BB CC  are concurrent (the triangles ABC  and 1 1 1A B C  are homological). 
 Proof: 
 Let O  be the unique orthological center of the triangles ABC  and 1 1 1A B C  and  
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We observe that 3 1 1OAY OC X=� �  (angles with perpendicular sides). 
Therefore: 
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then 
  1 3 1OX OA OY OC⋅ = ⋅         (1) 
 Also 
  1 2 3OC X OBY=� �  
 therefore 
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and consequently: 
  2 3 1OX OB OY OC⋅ = ⋅         (2) 
Following the same path: 
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from which 
  2 1 1OX OB OA OY⋅ = ⋅         (3) 
Finally  
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from which: 
  3 1 1OX OC OA OY⋅ = ⋅         (4) 
 The relations (1), (2), (3), (4) lead to 
  1 2 3OX OA OX OB OX OC⋅ = ⋅ = ⋅       (5) 
 From (5) using the Coşniţă’s generalized theorem, it results that 1 1 1,  ,  A A B B C C  are 
concurrent. 
 
 Observation: 
 If we denote P  the homology center of the triangles ABC  and 1 1 1A B C  and d  is the 
intersection of  their homology axes, them in conformity with the Sondat’s theorem, it results 
that OP d⊥ . 
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