Mixt-Linear Circles Adjointly Ex-Inscribed Associated to a Triangle

Ion Pătraşcu, Professor, The Frații Buzeşti College, Craiova, Romania Florentin Smarandache, Professor, The University of New Mexico, U.S.A.

Abstract
In [1] we introduced the mixt-linear circles adjointly inscribed associated to a triangle, with emphasizes on some of their properties. Also, we've mentioned about mixt-linear circles adjointly ex-inscribed associated to a triangle.

In this article we'll show several basic properties of the mixt-linear circles adjointly exinscribed associate to a triangle.

Definition 1

We define a mixt-linear circle adjointly ex-inscribed associated to a triangle, the circle tangent exterior to the circle circumscribed to a triangle in one of the vertexes of the triangle, and tangent to the opposite side of the vertex of that triangle.

Fig. 1

Observation

In Fig. 1 we constructed the mixt-linear circle adjointly ex-inscribed to triangle $A B C$, which is tangent in A to the circumscribed circle of triangle $A B C$, and tangent to the side $B C$. Will call this the A-mixt-linear circle adjointly ex-inscribed to triangle $A B C$. We note L_{A} the center of this circle.

Remark

In general, for a triangle exists three mixt-linear circles adjointly ex-inscribed. If the triangle $A B C$ is isosceles with the base $B C$, then we cannot talk about mixt-linear circles adjointly ex-inscribed associated to the isosceles triangle.

Proposition 1

The tangency point with the side $B C$ of the A-mixt-linear circle adjointly ex-inscribed associated to the triangle is the leg of the of the external bisectrix of the angle $B A C$

Proof

Let D^{\prime} the contact point with the side $B C$ of the A-mixt-linear circle adjointly exinscribed and let A^{\prime} the intersection of the tangent in the point A to the circumscribed circle to the triangle $A B C$ with $B C$ (see Fig. 1)

We have

$$
m\left(\Varangle A A^{\prime} B\right)=\frac{1}{2}[m(\widehat{B})-m(\widehat{C})],
$$

(we supposed that $m(\widehat{B})>m(\widehat{C})$). The tangents $A A^{\prime}, A^{\prime} D^{\prime}$ to the A-mixt-linear circle adjointly ex-inscribed are equal, therefore

$$
m\left(\Varangle D^{\prime} A A^{\prime}\right)=\frac{1}{4} m(\hat{B}-\hat{C}) .
$$

Because

$$
m\left(\Varangle A^{\prime} A B\right)=\frac{1}{2} m(\widehat{C})
$$

we obtain that

$$
m\left(\Varangle D^{\prime} A B\right)=\frac{1}{2}[m(\hat{B})+m(\hat{C})]
$$

This relation shows that D^{\prime} is the leg of the external bisectrix of the angle $B A C$.

Proposition 2

The A-mixt-linear circle adjointly ex-inscribed to triangle $A B C$ intersects the sides $A B, A C$, respectively, in two points of a cord which is parallel to $B C$.

Proof

We'll note with M, N the intersection points with $A B$ respectively $A C$ of the A-mixtlinear circle adjointly ex-inscribed. We have $\Varangle B C A \equiv \Varangle B A A^{\prime}$ and $\Varangle A^{\prime} A B \equiv \Varangle A^{\prime \prime} A M$ (see Fig.1).

Because $\Varangle A^{\prime \prime} A M=\Varangle A N M$, we obtain $\Varangle A N M \equiv \Varangle A C B$ which implies that $M N$ is parallel to $B C$.

Proposition 3

The radius R_{A} of the A-mixt-linear circle adjointly ex-inscribed to triangle $A B C$ is given by the following formula

$$
R_{A}=\frac{4(p-b)(p-c) R}{(b-c)^{2}}
$$

Proof

The sinus theorem in the triangle $A M N$ implies

$$
R_{A}=\frac{M N}{2 \sin A}
$$

We observe that the triangles $A M N$ and $A B C$ are similar; it results that

$$
\frac{M N}{a}=\frac{A M}{c} .
$$

Considering the power of the point B in rapport to the A-mixt-linear circle adjointly exinscribed of triangle $A B C$, we obtain

$$
B A \cdot B M=B D^{\prime 2} .
$$

From the theorem of the external bisectrix we have $\frac{D^{\prime} B}{D^{\prime} C}=\frac{c}{b}$ from which we retain $D^{\prime} B=\frac{a c}{b-c}$. We obtain then $B M=\frac{a^{2} c}{(b-c)^{2}}$, therefore

$$
A M=\frac{c(a-b+c)(a+b-c)}{(b-c)^{2}}=\frac{4 c(p-b)(p-c)}{(b-c)^{2}}
$$

and

$$
M N=\frac{4 a(p-b)(p-c)}{(b-c)^{2}}
$$

From the sinus theorem applied in the triangle $A B C$ results that $\frac{a}{2 \sin A}=R$ and we obtain that

$$
R_{A}=\frac{4(p-b)(p-c) R}{(b-c)^{2}} .
$$

Remark

If we note $P \in L_{A} A^{\prime} \cap A D^{\prime}$ and $A D^{\prime}=l_{a}{ }^{\prime}$ (the length of the exterior bisectrix constructed from A) in triangle $L_{A} P A^{\prime}$, we find

$$
R_{A}=\frac{l_{a}{ }^{\prime}}{2 \sin \frac{B-C}{2}} .
$$

We'll remind here several results needed for the remaining of this presentation.

Definition 2

We define an adjointly circle of triangle $A B C$ a circle which contains two vertexes of the triangle and in one of these vertexes is tangent to the respective side.

Theorem 1

The adjointly circles $A \bar{B}, B \bar{C}, C \bar{A}$ have a common point Ω; similarly, the circles $B \bar{A}, C \bar{B}, A \bar{C}$ have a common point Ω^{\prime}.

The points Ω and Ω^{\prime} are called the points of Brocard: Ω is the direct point of Brocard and Ω^{\prime} is called the retrograde point.

The points Ω and Ω^{\prime} are conjugate isogonal

$$
\begin{gathered}
\Varangle \Omega A B=\Varangle \Omega B C=\Varangle \Omega C A=\omega \\
\Varangle \Omega^{\prime} A C=\Varangle \Omega^{\prime} C B=\Varangle \Omega^{\prime} B A=\omega
\end{gathered}
$$

(see Fig. 2).
The angle ω is called the Brocard angle. More information can be found in [3].

Proposition 4

In triangle $A B C$ in which D^{\prime} is the leg of the external bisectrix of the angle $B A C$, the A-mixt-linear circle adjointly ex-inscribed to triangle $A B C$ is an adjointly circle of triangles $A D^{\prime} B, A D^{\prime} C$.

Proposition 5

In a triangle $A B C$ in which D^{\prime} is the leg of the external bisectrix of the angle $B A C$, the direct points of Brocard corresponding to triangles $A D^{\prime} B, A D^{\prime} C, \mathrm{~A}, \mathrm{D}$, are concyclic.

The following theorems show remarkable properties of the mixt-linear circles adjointly ex-inscribed associated to a triangle $A B C$.

Theorem 2

The triangle $L_{A} L_{B} L_{C}$ determined by the centers of the mixt-linear circles adjointly exinscribed to triangle $A B C$ and the tangential triangle $T_{a} T_{b} T_{c}$ corresponding to $A B C$ are orthological. Their orthological centers are O the center of the circumscribed circle to triangle $A B C$ and the radical center of the mixt-linear circles adjointly ex-inscribed associated to triangle $A B C$.

Proof

The perpendiculars constructed from L_{A}, L_{B}, L_{C} on the corresponding sides of the tangential triangle contain the radiuses $O A, O B, O C$ respectively of the circumscribed circle.

Consequently, O is the orthological center of triangles $L_{A} L_{B} L_{C}$ and $T_{a} T_{b} T_{c}$.
In accordance to the theorem of orthological triangles and the perpendiculars constructed from T_{a}, T_{b}, T_{c} respectively on the sides of the triangle $L_{A} L_{B} L_{C}$ are concurrent.

The point T_{a} belongs to the radical axis of the circumscribed circles to triangle $A B C$ and the C-mixt-linear circle adjointly ex-inscribed to triangle $A B C$ (belongs to the common tangent constructed in C to these circles).

On the other side T_{a} belongs to the radical axis of the B and C-mixt-linear circle adjointly ex-inscribed, which means that the perpendicular constructed from T_{a} on the $L_{B} L_{C}$ centers line passes through the radical center of the mixt-linear circle adjointly ex-inscribed associated to the triangle; which is the second orthological center of the considered triangles.

Proposition 6

The triangle $L_{a} L_{b} L_{c}$ (determined by the centers of the mixt-linear circles adjointly inscribed associated to the triangle $A B C$) and the triangle $L_{A} L_{B} L_{C}$ (determined by the centers of the mixt-linear circles adjointly ex-inscribed associated to the triangle $A B C$) are homological. The homological center is the point O, which is the center of the circumscribed circle of triangle $A B C$.

The proof results from the fact that the points L_{A}, A, L_{a}, O are collinear. Also, L_{B}, B, L_{b}, O and L_{C}, C, L_{c}, O are collinear.

Definition 3

Given three circles of different centers, we define their Apollonius circle as each of the circles simultaneous tangent to three given circles.

Observation

The circumscribed circle to the triangle $A B C$ is the Apollonius circle for the mixt-linear circles adjointly ex-inscribed associated to $A B C$.

Theorem 3

The Apollonius circle which has in its interior the mixt-linear circles adjointly exinscribed to triangle $A B C$ is tangent with them in the points T_{1}, T_{2}, T_{3} respectively. The lines $A T_{1}, B T_{2}, C T_{3}$ are concurrent.

Proof

We'll use the D'Alembert theorem: Three circles non-congruent whose centers are not collinear have their six homothetic centers placed on four lines, three on each line.

The vertex A is the homothety inverse center of the circumscribed circle (O) and of the A-mixt-linear circle adjointly ex-inscribed $\left(L_{A}\right) ; T_{1}$ is the direct homothety center of the Apollonius circle which is tangent to the mixt-linear circles adjointly ex-inscribed and of circle $\left(L_{A}\right)$, and J is the center of the direct homothety of the Apollonius circle and of the circumscribed circle (O).

According to D'Alembert theorem, it results that the points A, J, T_{1} are collinear. Similarly is shown that the points B, J, T_{2} and C, J, T_{3} are collinear.

Consequently, J is the concurrency point of the lines $A T_{1}, B T_{2}, C T_{3}$.
[1] I. Pătraşcu, Cercuri mixtliniare adjunct inscrise associate unui triunghi, Revista Recreatii Matematice, No. 2/2013.
[2] R. A. Johnson, Advanced Euclidean Geometry, Dover Publications Inc., New York, 2007.
[3] F. Smarandache, I. Pătraşcu, The Geometry of Homological Triangles, The Education Publisher Inc., Columbus, Ohio, U.S.A., 2012.

