The Characteristic Function of a Neutrosophic Set

A. A. Salama¹, Florentin Smarandache² and S. A. ALblowi³

¹ Department of Mathematics and Computer Science, Faculty of Sciences, Port Said University, 23 December Street, Port Said 42522, Egypt.
Email: drsalama44@gmail.com

² Department of Mathematics, University of New Mexico 705 Gurley Ave. Gallup, NM 87301, USA.
Email: smarand@unm.edu

³ Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
Email: salwaalblowi@hotmail.com

Abstract. The purpose of this paper is to introduce and study the characteristic function of a neutrosophic set. After given the fundamental definitions of neutrosophic set operations generated by the characteristic function of a neutrosophic set (Ng for short), we obtain several properties, and discussed the relationship between neutrosophic sets generated by Ng and others. Finally, we introduce the neutrosophic topological spaces generated by . Possible application to GIS topology rules are touched upon.

Keywords: Neutrosophic Set; Neutrosophic Topology; Characteristic Function.

1 Introduction

Neutrosophy has laid the foundation for a whole family of new mathematical theories generalizing both their classical and fuzzy counterparts, such as a neutrosophic set theory. After the introduction of the neutrosophic set concepts in [2-13]. In this paper we introduce definitions of neutrosophic sets by characteristic function. After given the fundamental definitions of neutrosophic set operations by , we obtain several properties, and discussed the relationship between neutrosophic sets and others. Added to, we introduce the neutrosophic topological spaces generated by Ng.

2 Terminologies

We recollect some relevant basic preliminaries, and in particular, the work of Smarandache in [7- 9], Hanafy, Salama et al. [2- 13] and Demirci in [1].

3 Neutrosophic Sets generated by Ng

We shall now consider some possible definitions for basic concepts of the neutrosophic sets generated by Ng and its operations.

3.1 Definition

Let X is a non-empty fixed set. A neutrosophic set (NS for short) A is an object having the form

\[A = \{ x, \mu_A(x), \sigma_A(x), \nu_A(x) \} \]

where \(\mu_A(x) \) and \(\gamma_A(x) \) represent the degree of membership function (namely \(\mu_A(x) \)), the degree of indeterminacy (namely \(\sigma_A(x) \)), and the degree of non-membership (namely \(\gamma_A(x) \)) respectively of each element \(x \in X \) to the set A

and let \(g_A : X \times [0,1] \rightarrow [0,1] \) be reality function, then \(N_{g_A}(\lambda) = N_{g_A}(\{ x, \lambda_1, \lambda_2, \lambda_3 \}) \) is said to be the characteristic function of a neutrosophic set on X if

\[N_{g_A}(\lambda) = \begin{cases} 1 & \text{if } \mu_A(x) = \lambda_1, \sigma_A(x) = \lambda_2, \nu_A(x) = \lambda_3 \\ 0 & \text{otherwise} \end{cases} \]

where \(\lambda = (x, \lambda_1, \lambda_2, \lambda_3) \). Then the object

\[G(A) = \{ x, \mu(A)(x), \sigma(A)(x), \nu(A)(x) \} \]

is a neutrosophic set generated by where

\[\mu_{G(A)} = \sup \lambda_1 \{ N_{g_A}(\lambda \land \lambda) \} \]

\[\sigma_{G(A)} = \sup \lambda_2 \{ N_{g_A}(\lambda \land \lambda) \} \]

\[\nu_{G(A)} = \sup \lambda_3 \{ N_{g_A}(\lambda \land \lambda) \} \]

3.1 Proposition

1) \(A \subseteq N_{g_A} B \Leftrightarrow G(A) \subseteq G(B) \).
2) \(A = \neg G \) \(B \Rightarrow G(A) = G(B) \)

3.2 Definition

Let \(A \) be neutrosophic set of \(X \). Then the neutrosophic complement of \(A \) generated by \(\neg G(\{A\}) \) may be defined as the following:

\[
\begin{align*}
(\neg G)^1 &= \{ x, \mu_x^c, \nu_x^c \} \\
(\neg G)^2 &= \{ x, \nu_x, \sigma_x \} \\
(\neg G)^3 &= \{ x, \sigma_x, \mu_x \}
\end{align*}
\]

3.1 Example. Let \(X = \{ x \} \), \(A = \{ (0.5, 0.2, 0.06) \} \), \(\neg G_A = 1 \), \(\neg G_A = 0 \). Then \(G(A) = \{ (0.5, 0.2, 0.06) \} \)
Since our main purpose is to construct the tools for developing neutrosophic set and neutrosophic topology, we must introduce the \(G(\{A\}) \) and \(G(\{A\}) \) as follows \(G(\{N\}) \) may be defined as:

- i) \(G(\{N\}) = \{ (0.0, 0.1) \} \)
- ii) \(G(\{N\}) = \{ (0.0, 0.1) \} \)
- iii) \(G(\{N\}) = \{ (0.0, 0.0) \} \)

\(G(\{N\}) \) may be defined as:

- \(G(\{N\}) = \{ (1, 0.0) \} \)
- \(G(\{N\}) = \{ (1, 0.0) \} \)
- \(G(\{N\}) = \{ (1, 1.0) \} \)
- \(G(\{N\}) = \{ (1, 1.0) \} \)

We will define the following operations intersection and union for neutrosophic sets generated by \(\neg G \) by \(\cap \neg G \) and \(\cup \neg G \) respectively.

3.3 Definition. Let two neutrosophic sets \(A = \{ (x, \mu_A(x), \sigma_A(x), \nu_A(x) \} \) and \(B = \{ (x, \mu_B(x), \sigma_B(x), \nu_B(x) \} \) on \(X \), and

\[G(A) = \{ x, \mu_G(A)(x), \sigma_G(A)(x), \nu_G(A)(x) \} \],
\[G(B) = \{ x, \mu_G(B)(x), \sigma_G(B)(x), \nu_G(B)(x) \} \]. Then \(A \cap \neg G B \) may be defined as three types:

- Type I:

\[\mu_G(A)(x) \vee \mu_G(B)(x) \wedge \sigma_G(A)(x) \wedge \sigma_G(B)(x) \wedge \nu_G(A)(x) \wedge \nu_G(B)(x) \]

- Type II:

\[\mu_G(A)(x) \vee \mu_G(B)(x) \wedge \sigma_G(A)(x) \wedge \sigma_G(B)(x) \wedge \nu_G(A)(x) \wedge \nu_G(B)(x) \]

- Type III:

\[\mu_G(A)(x) \vee \mu_G(B)(x) \wedge \sigma_G(A)(x) \wedge \sigma_G(B)(x) \wedge \nu_G(A)(x) \wedge \nu_G(B)(x) \]

We can easily generalize the operations of intersection and union in definition 3.2 to arbitrary family of neutrosophic subsets generated by \(\neg G \) as follows:

3.3 Proposition.
Let \(\{ A_j : j \in J \} \) be arbitrary family of neutrosophic subsets in \(X \) generated by \(\neg G \), then the following are true

- 1) \((A \cap B)^\neg G = A^\neg G \cup B^\neg G \).
- 2) \((A \cup B)^\neg G = A^\neg G \cap B^\neg G \).

\[G(A \cap B) = \{ \mu_G(A)(x) \wedge \mu_G(B)(x), \sigma_G(A)(x) \wedge \sigma_G(B)(x), \nu_G(A)(x) \wedge \nu_G(B)(x) \} \]

\[G(A \cup B) = \{ \mu_G(A)(x) \vee \mu_G(B)(x), \sigma_G(A)(x) \vee \sigma_G(B)(x), \nu_G(A)(x) \vee \nu_G(B)(x) \} \]

\[G(A \cap B) = \{ \mu_G(A)(x) \wedge \mu_G(B)(x), \sigma_G(A)(x) \wedge \sigma_G(B)(x), \nu_G(A)(x) \wedge \nu_G(B)(x) \} \]

\[G(A \cup B) = \{ \mu_G(A)(x) \vee \mu_G(B)(x), \sigma_G(A)(x) \vee \sigma_G(B)(x), \nu_G(A)(x) \vee \nu_G(B)(x) \} \]

a) \(\cap \neg G A \) may be defined as:

- Type I:

\[G(A \cap B) = \{ \mu_G(A)(x) \wedge \mu_G(B)(x), \sigma_G(A)(x) \wedge \sigma_G(B)(x), \nu_G(A)(x) \wedge \nu_G(B)(x) \} \]

- Type II:

\[G(A \cap B) = \{ \mu_G(A)(x) \wedge \mu_G(B)(x), \sigma_G(A)(x) \wedge \sigma_G(B)(x), \nu_G(A)(x) \wedge \nu_G(B)(x) \} \]

- Type III:

\[G(A \cap B) = \{ \mu_G(A)(x) \wedge \mu_G(B)(x), \sigma_G(A)(x) \wedge \sigma_G(B)(x), \nu_G(A)(x) \wedge \nu_G(B)(x) \} \]

b) \(\cup \neg G A \) may be defined as:

- Type I:

\[G(A \cup B) = \{ \mu_G(A)(x) \wedge \mu_G(B)(x), \sigma_G(A)(x) \wedge \sigma_G(B)(x), \nu_G(A)(x) \wedge \nu_G(B)(x) \} \]

- Type II:

\[G(A \cup B) = \{ \mu_G(A)(x) \wedge \mu_G(B)(x), \sigma_G(A)(x) \wedge \sigma_G(B)(x), \nu_G(A)(x) \wedge \nu_G(B)(x) \} \]

- Type III:

\[G(A \cup B) = \{ \mu_G(A)(x) \wedge \mu_G(B)(x), \sigma_G(A)(x) \wedge \sigma_G(B)(x), \nu_G(A)(x) \wedge \nu_G(B)(x) \} \]
2) \[G(\cup A_j) = \left\{ \bigvee \mu_{G(A_j)}(x), \bigvee \sigma_{G(A_j)}(x), \bigvee V_{G(A_j)}(x) \right\}. \]

3.4 Definition

Let \(f : X \rightarrow Y \) be a mapping.

(i) The image of a neutrosophic set \(A \) generated by \(\mathcal{G}_A \) on \(X \) under \(f \) is a neutrosophic set \(B \) on \(Y \) generated by \(\mathcal{G}_B \), denoted by \(f(A) \), whose reality function \(\lambda_1 \left\{ \mathcal{N}_{\mathcal{G}_A}(\lambda) \land \lambda \right\} \)

\[\mu_{G(B)} = \sup \lambda_1 \left\{ \mathcal{N}_{\mathcal{G}_A}(\lambda) \land \lambda \right\} \]

\[\sigma_{G(B)} = \sup \lambda_2 \left\{ \mathcal{N}_{\mathcal{G}_A}(\lambda) \land \lambda \right\} \]

\[V_{G(B)} = \sup \lambda_3 \left\{ \mathcal{N}_{\mathcal{G}_A}(\lambda) \land \lambda \right\} \]

(ii) The preimage of a neutrosophic set \(B \) on \(Y \) generated by \(\mathcal{G}_B \) under \(f \) is a neutrosophic set \(A \) on \(X \) generated by \(\mathcal{G}_A \), denoted by \(f^{-1}(B) \), whose reality function \(\mu_{f^{-1}(B)}(x) \), whose reality function \(\mathcal{G}_A(x) \), satisfies the property \(G(A) = G(B) \circ f \).

3.5 Proposition

Let \(A \) and \(B \) be neutrosophic sets on \(X \) and \(Y \) generated by \(\mathcal{G}_A \) and \(\mathcal{G}_B \), respectively. Then, for a mapping \(f : X \rightarrow Y \), the following properties hold:

(i) If \(A_j \subseteq_{\mathcal{N}_G} A_k \), then \(f(A_j) \subseteq_{\mathcal{N}_G} f(A_k) \).

(ii) If \(B_j \subseteq_{\mathcal{N}_G} B_k \), then \(f^{-1}(B_j) \subseteq_{\mathcal{N}_G} f^{-1}(B_k) \).

(iii) \(f^{-1} \left(\bigcup_{j \in J} B_j \right) = \bigcap_{j \in J} f^{-1}(B_j) \).

3.6 Definition

Let \(X = \{ x \in \Omega \} \) be a nonempty set, \(\mathcal{G} \) a family of neutrosophic sets generated by \(\mathcal{G}_A \) and \(\mathcal{G}_B \), respectively. Then for a mapping \(f : X \rightarrow Y \), we have:

(i) \(f \) is injective if and only if \(f^{-1}(A) = \{ x \in X : f(x) \in A \} \).

(ii) \(f \) is surjective if and only if \(\bigcup_{A \in \mathcal{G}} f^{-1}(A) = X \).

3.7 Definition

Let \(X = \{ x \in \Omega \} \) be a nonempty set, \(\mathcal{G} \) a family of neutrosophic sets generated by \(\mathcal{G}_A \) and \(\mathcal{G}_B \), respectively. Then for a mapping \(f : X \rightarrow Y \), we have:

(i) \(\mathcal{G}_A \) is the interior of \(\mathcal{G}_B \) if \(f^{-1}(\mathcal{G}_A) \subseteq \mathcal{G}_B \).

(ii) \(\mathcal{G}_B \) is the closure of \(\mathcal{G}_A \) if \(f^{-1}(\mathcal{G}_B) \subseteq \mathcal{G}_A \).

3.8 Definition

Let \(X = \{ x \in \Omega \} \) be a nonempty set, \(\mathcal{G} \) a family of neutrosophic sets generated by \(\mathcal{G}_A \) and \(\mathcal{G}_B \), respectively. Then for a mapping \(f : X \rightarrow Y \), we have:

(i) \(\mathcal{G}_A \) is the interior of \(\mathcal{G}_B \) if \(f^{-1}(\mathcal{G}_A) \subseteq \mathcal{G}_B \).

(ii) \(\mathcal{G}_B \) is the closure of \(\mathcal{G}_A \) if \(f^{-1}(\mathcal{G}_B) \subseteq \mathcal{G}_A \).
3.6 **Proposition**. For any neutrosophic set A generated by a NTS (X, Ψ), we have

(i) $\text{cl}_{N^c} A = \text{Ng}_{(\text{int} A)}^{N^c}$

(ii) $\text{Int}_{N^c} A = \text{Ng}_{(\text{cl} A)}^{N^c}$

References

Received: April 23rd, 2014. Accepted: May 4th, 2014.