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A B S T R A C T

Intrusions constitute one of the main issues in computer network security. Through mali-

cious actions, hackers can have unauthorised access that compromises the integrity, the

confidentiality, and the availability of resources or services. Intrusion detection systems (IDSs)

have been developed to monitor and filter network activities by identifying attacks and alert-

ing network administrators. Different IDS approaches have emerged using data mining,

machine learning, statistical analysis, and artificial intelligence techniques such as genetic

algorithms, artificial neural networks, fuzzy logic, swarm intelligence, etc. Due to the high

dimensionality of the exchanged data, applying those techniques will be extremely time

consuming. Feature selection is needed to select the optimal subset of features that rep-

resents the entire dataset to increase the accuracy and the classification performance of

the IDS. In this work, we apply a wrapper approach based on a genetic algorithm as a search

strategy and logistic regression as a learning algorithm for network intrusion detection systems

to select the best subset of features. The experiment will be conducted on the KDD99 dataset

and the UNSW-NB15 dataset. Three different decision tree classifiers are used to measure

the performance of the selected subsets of features. The obtained results are compared with

other feature selection approaches to verify the efficiency of our proposed approach.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

A myriad of data have been created due to the widespread use
of computers worldwide and the massive exchange of data sup-
ported by communications tools such emails and social
networks. This has created a new paradigm named big data
(Zhang et al., 2015). As we know, compromising the security
of computerised system is becoming easier today due to the
abundance of free hacking tools widespread over the Inter-
net. Users do not need high skills to apply such malicious

actions (Louvieris et al., 2013). Ensuring the integrity and the
privacy of these data is becoming a real challenge. There are
many software tools such as firewalls, antivirus, encryption,
and authentication that provide the protection of data and net-
works from the incoming threats, yet they cannot be efficient
for all existing threats (Chung and Wahid, 2012). The intru-
sion to a private network can wreak havoc within the whole
system. Many enterprises lost their business and their cred-
ibility with their clients because of hacking actions such as
stealing clients account passwords or getting sensitive infor-
mation. To resolve this problem, many researches have been
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conducted in this field. Intrusion detection systems (IDSs) have
been developed to monitor and filter network activities by iden-
tifying attacks and alerting network administrators (Chung and
Wahid, 2012). There are two main approaches for IDS: misuse
and anomaly detection techniques. Neither is efficient for all
kinds of threats, yet each has strengthens and limitations (Lin
et al., 2015). The misuse detection approach is efficient for de-
tecting known attacks but not for the unseen ones (Zhang et al.,
2015). In contrast, the anomaly detection approach is effi-
cient for detecting new attacks, but they are flawed by a high
false positive rate (Kim et al., 2014). For that reason some IDSs
use a hybrid approach that integrates both misuse and anomaly
detection techniques (Depren et al., 2005).

In the literature, most of research in intrusion detection
focused on the anomaly detection technique because it seems
more promising (Gan et al., 2013; Karami and Guerrero-Zapata,
2015). Recently, many approaches emerged in the context of
anomaly detection including data mining, machine learning,
statistical analysis, and artificial intelligence techniques
(Rastegari et al., 2015). The use of machine learning tech-
niques in IDSs can be single, hybrid, or ensemble classifiers.
The used classifier can be categorised in three operating modes:
supervised, semi-supervised, and unsupervised. Generally, su-
pervised mode outperforms the remaining modes
(Garcia-Teodoro et al., 2009). In the anomaly detection, several
machine learning algorithms can be used such as Fuzzy Logic,
Nave Bayes, Artificial Neural Network, Support Vector Machine,
Decision Trees, k-means, k-Nearest Neighbour, Genetic Algo-
rithm, and Logistic Regression (Garcia-Teodoro et al., 2009;
Ghorbani et al., 2009; James et al., 2013; Tsai et al., 2009).

Due to the high dimensionality of the exchanged data, ap-
plying those techniques would be extremely time consuming
especially when we are looking for real time intrusion detec-
tion. For that reason feature selection, which is part of
dimensionality reduction, is needed to select the optimal subset
of feature that represents the entire dataset (Eesa et al., 2015).
Thus, the size of data is reduced and the classification per-
formance and accuracy is increased (Chandrashekar and Sahin,
2014).There are two main categories for feature selection: filters
and wrappers. Filters are applied through statistical methods,
information theory-based methods or searching techniques (De
la Hoz et al., 2014) such as Principal Components Analysis, In-
formation Gain, and Correlation-based Feature Selection
(Boln-Canedo et al., 2016). Wrappers use machine learning al-
gorithm to assess and classify features so as to identify the
subset that mostly represent the dataset. They are based on
two components: a feature search (such as branch and bound
(Chandrashekar and Sahin, 2014), sequential search, genetic
search (Guyon et al., 2008), etc.) and a learning algorithm which
can be any classifier. In general, the filter method is less com-
putational compared to the wrapper method, but the latter
produces best results (De la Hoz et al., 2015).

In this work, we propose a feature selection approach for
IDS to produce the optimal subset of features. The proposed
approach is based on the wrapper approach integrating Genetic
Algorithm (GA) as a feature search and Logistic Regression (LR)
as a learning algorithm. GA is a popular and powerful algo-
rithm inspired from the concept of natural selection to find
the fittest solution by applying genetic operators (Ghorbani et al.,
2009). It is widely used in different fields and can be used in

intrusion detection by selecting the appropriate network fea-
tures to improve the IDS accuracy (Garcia-Teodoro et al., 2009;
Modi et al., 2013). LR is a supervised learning algorithm widely
used in classification (James et al., 2013). The use of LR in in-
trusion detection is not frequent (Tsai et al., 2009) even if it
can give good results in other domains such as banking, mar-
keting, medicine, etc. This does not mean that LR cannot have
good results in intrusion detection.

Despite the fact that the KDD99 dataset and its derived ver-
sions have been widely used in the IDS performance evaluation
for many years (Kang and Kim, 2016), they are outdated and
did not contain the contemporary attacks (Haider et al., 2017).
The UNSW-NB15 is a recently created dataset by the cyber se-
curity research group at the Australian Centre for Cyber Security
(ACCS) (Moustafa and Slay, 2015). This latter is considered as
a new benchmark dataset that can be used for IDSs evalua-
tion by the NIDS research community (Moustafa and Slay, 2016).
Therefore, in this work we used the KDD99 and the UNSW-
NB15 datasets for the evaluation of our proposed approach.
Thus, we can compare the obtained results with the old and
the new benchmark datasets.

The main objective of the GA-LR wrapper approach is to find
the subset of features having the maximum accuracy of clas-
sification and containing the minimum number of features.
The classification stage is performed with a family of three de-
cision tree classifiers namely C4.5, Random Forest (RF), and
Naive Bayes Tree (NBTree) for measuring the performance of
the resulting subsets of features with the 10% KDD99 dataset
and the training UNSW-NB15 dataset. As we know, the major
drawback of the KDD99 dataset is the existence of a huge quan-
tity of repeated records that affects any machine learning by
biasing towards frequent records (Elhag et al., 2015; Sindhu et al.,
2012). Furthermore, the KDD99 and the UNSW-NB15 datasets
contain attribute values that cannot be handled with most of
learning algorithms. Thus, a preprocessing stage is needed for
removing all redundant records, resampling, and transform-
ing attributes (Kang and Kim, 2016).

This paper is organised as follows. Section 2 presents an
overview of the network intrusion detection problems such as
network attacks, security mechanisms, and the existing ap-
proaches for IDSs. Section 3 presents an overview of the existing
dimensionality reduction techniques and their application in
the context of IDSs. Section 4 illustrates related work rel-
evant to the context of feature selection in intrusion detection.
Section 5 presents the three stages for the proposed ap-
proach for IDS: the preprocessing stage that changes the
structure of the used datasets to be handled with the used clas-
sifiers, the feature selection stage based on the wrapper
approach including GA and LR to select the best subset of fea-
tures, and the classification stage performed using the three
decision trees with the proposed subsets of features. Section
6 describes the conducted experiments and summarises the
results of the proposed GA-LR wrapper and the used deci-
sion tree classifiers.

2. Network intrusion detection: an overview

Intrusions constitute one of the main issues in computer
network security (Costa et al., 2015).Through malicious actions,
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hackers can have unauthorised access that compromises the
integrity, the confidentiality, and the availability of a re-
source. Of course, stealing, changing, or destroying data will
automatically affect the reliability of the whole system
(Rastegari et al., 2015). Any type of networks starting from LANs
to cloud computing suffers from several types of attacks that
can exploit systems vulnerabilities to reach a specific purpose,
such as IP spoofing, Denial of Service (DoS), flooding, User to
Root (U2R), Remote to Local (R2L), port scanning, probes, etc.
(Ghorbani et al., 2009; Modi et al., 2013).

Network anomaly detection is a research field that started
almost 40 years ago (Dangelo et al., 2015). Its main purpose is
to create the perfect system that can detect and stop all in-
trusions and attacks to guarantee the reliability and the
efficiency of the system (Rastegari et al., 2015), but this seems
hard to reach with the continuous evolution of the hacking
tools. The existing tools such as firewalls, antiviruses, and en-
cryption are not efficient for all types of malwares and attacks.
DoS attacks are too complex for firewalls to distinguish from
normal traffic (Bulajoul et al., 2015). Intrusion detection systems
(IDSs) have been developed to scan and monitor network traffic
to find any malicious activities and then alert the network ad-
ministrators (Rastegari et al., 2015). On the other hand, intrusion
prevention system (IPS) has all the capabilities of an intru-
sion detection system and can block intrusions. Thus, an IPS
is considered an extension of an IDS. However nowadays there
is a fusion between those two systems and most IDSs include
detection and prevention to give what we call an intrusion de-
tection and prevention system (IDPS). To increase the security
of the network, combining a firewall with an IDPS will be ex-
tremely useful to strengthen the network (Bulajoul et al., 2015).

IDSs operate through two main approaches: misuse and
anomaly detection techniques. In the misuse detection ap-
proach (signature-based detection), the system compares every
received packets from data stream with known signatures that
have been already existing as patterns or rules. If there is a
mismatch, the system raises an alert.The misuse detection ap-
proach is efficient for detecting known attacks but not for the
unseen ones (Zhang et al., 2015). Furthermore, any mistake in
the definition of the signatures will decrease the detection rate
and inversely increase the false alarm rate. The anomaly de-
tection approach is based on the concept that attackers behave
differently from the normal user. For that the system creates
a profile for normal traffic. If the received packet characteris-
tic is too different from the normal traffic pattern, the system
raises an alert. The anomaly detection approach is efficient for
detecting new attacks, but they are flawed by a high false alarm
rate (Kim et al., 2014). In order to avoid the disadvantages of
these two approaches, some researchers proposed hybrid in-
trusion detection approach (Depren et al., 2005; Kim et al., 2014),
while the others focused on the anomaly detection approach
because it seems more promising than the misuse detection
approach (Gan et al., 2013; Karami and Guerrero-Zapata, 2015).

In recent years, different approaches of IDSs based on
anomaly detection have emerged using data mining, machine
learning, statistical analysis, and artificial intelligence tech-
niques such as genetic algorithms, artificial neural networks,
fuzzy logic, swarm intelligence, etc. (Rastegari et al., 2015). The
anomaly detection techniques can be classified in three op-
erating modes: supervised, semi-supervised, and unsupervised.

Supervised methods need a labelled training set to construct
the model. In contrast, unsupervised methods do not require
either a labelled training data or a prior knowledge of in-
stances.They classify instances according to statistical models.
The semi-supervised method is between supervised and un-
supervised methods. It uses both unlabelled data and small
labelled data which reduces the labelling cost while keeping
the high performance of supervised methods. Basically, su-
pervised methods outperform the remaining methods, but it
is not the case all the time (Ghorbani et al., 2009).

As the number of attacks is increasing and the complex-
ity is growing, manually building a model for intrusion detection
is costly and time consuming. In supervised learning, the
anomaly detection is performed through two stages: training
stage and detection stage. In the training stage the normal
behaviour of the system is determined and a model is estab-
lished. Machine learning techniques have the ability to construct
and maintain these models automatically with less human in-
tervention by using a training dataset. A training dataset is
composed of a collection of data instances. Each instance con-
tains a set of features and associated labels often done
manually. On the other hand, the detection stage consists of
comparing the testing dataset with the available model. If there
is a deviation that exceeds a fixed threshold, an alarm is raised
(Garcia-Teodoro et al., 2009).

According to Tsai et al. (2009), machine learning tech-
niques can be classified as follows: single classifier, hybrid
classifier, and ensemble classifier. In the following, we present
the major machine learning techniques and approaches that
can be used in intrusion detection.

2.1. Single classifier

In the literature, the intrusion detection problems have been
solved by applying a single machine learning technique such
as Fussy Logic (FL), Nave Bayse (NB) networks, K-Nearest Neigh-
bor (KNN), Artificial Neural Network (ANN), Support Vector
Machine (SVM), Logistic Regression (LR), etc. (Ahmed et al., 2016;
Garcia-Teodoro et al., 2009; Ghorbani et al., 2009; Modi et al.,
2013; Tsai et al., 2009). For example, FL techniques can be used
because the features to be considered can be seen as fuzzy vari-
ables. An activity is considered normal if it lies within a given
spread. FL is effective against port scan attacks and probe
attacks, but it presents some drawbacks. The main one is the
high resource consumption (Garcia-Teodoro et al., 2009). NB
is a classifier based on Bayes’ theorem (Ghorbani et al., 2009)
that can be used in intrusion detection. Although the effec-
tiveness of NB is proved in certain situation, its results are
equivalent to those given by threshold-based systems without
having higher computational effort (Garcia-Teodoro et al., 2009).

There are different types of ANNs, depending on the number
of hidden layers and their network architecture (Feedforward
networks or Recurrent networks) that can be used in the field
of intrusion detection such as Multilayer perceptron (MLP) and
Self-Organising Map (SOM) (Ghorbani et al., 2009). To amelio-
rate the computational ability of ANNs and increase the
intrusion detection accuracy, the number of hidden layers and
neurons per layers should be increased (Modi et al., 2013). De-
cision Trees (DTs) have been used in intrusion detection by
applying different algorithms. The best known algorithms for
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implementing DTs are Iterative Dichotomiser 3 (ID3), C4.5 (suc-
cessor of ID3 and a benchmark for supervised learning
algorithm), and Classification and Regression Trees (CART). ID3,
C4.5, and CART adopt a greedy and top-down approach to con-
struct the tree (Han et al., 2011).

Logistic Regression (LR) is a supervised learning algorithm
widely used in classification. In contrast to linear regression,
LR deals with nominal attributes which is the case in intru-
sion detection. We have to predict the TCP/IP connection
whether normal or attack. LR estimates the coefficients of the
independent variables to make a linear model that generates
a probability that the dependent variable belongs to a particu-
lar class (James et al., 2013). To estimate these coefficients, we
used an iterative process using the Maximum Likelihood esti-
mation and the Newton–Raphson method. The use of LR in
intrusion detection is not frequent (Tsai et al., 2009) even it
can give good results in other domains. But this does not mean
that LR gives good results in intrusion detection.

2.2. Hybrid classifier

A hybrid classifier consists of the combination of more than
one machine learning (either supervised or unsupervised) to
improve the accuracy and avoid the disadvantages of single
classifier. In fact, hybrid classifiers can include cascading clas-
sifiers where the output of one classifier is used as the input
for another. A hybrid classifier can use a classifier for prepro-
cessing or optimising the learning performance then the results
are used by another classifier for the training stage or for pre-
diction. Recently, the use of IDSs based on hybrid classifier is
promising and the performance can be significantly im-
proved (Tsai et al., 2009).

2.3. Ensemble classifier

An ensemble classifier consists of the combination of mul-
tiple weak machine learning algorithms (known as weak
learners) to improve the classification performance. The com-
bination of weak learners can be based on different strategies
such as majority vote, boosting, or bagging. In intrusion detec-
tion, the use of ensemble classifiers is promising and some
combination performs efficiently (Tsai et al., 2009).

3. Feature selection in network intrusion
detection

In recent years, the rapid spread of the Internet, the number
of devices, and the communication tools have created large
amounts of data that have been stored without any clear po-
tential use (Boln-Canedo et al., 2016). Nowadays, to process and
extract knowledge from this big data, machine learning tech-
niques and data mining tools are used. Nevertheless, applying
those tools on a large volume of data with high dimension-
ality is time consuming and affects the accuracy of the extracted
knowledge (Eesa et al., 2015). In fact, redundant and irrel-
evant features engender unsupportable memory requirements
(Boln-Canedo et al., 2016) which reduce the algorithm and the
predictor performance (Chandrashekar and Sahin, 2014). To

overcome the curse of dimensionality and improve the pre-
dictor performance, a preprocessing phase is needed not only
to remove noisy data but also to select, extract, or construct
features (Boln-Canedo et al., 2016).

In intrusion detection, the datasets used are characterised
by their large amounts and their high dimensionality. Thus,
it is necessary to proceed with a dimensionality reduction step
to improve the classification accuracy and reduce the compu-
tational time (Chandrashekar and Sahin, 2014). There are two
main approaches to reducing dimensionality: feature trans-
formation and feature selection. Feature transformation reduces
the dimensionality of data by creating new features from the
original features such as feature extraction and feature con-
struction. In contrast, feature selection aims to select only
relevant and informative features and remove irrelevant and
redundant ones (Liu and Motoda, 2007). The interest in feature
selection is increasing day by day due to the growing number
of high dimensional datasets especially in machine learning
fields such as classification, clustering, and regression
(Boln-Canedo et al., 2016).There are three approaches for feature
selection: filter, wrapper, and embedded. Each one of these ap-
proaches present strengthen and weaknesses (Liu and Motoda,
2007).

3.1. Foundations of feature selection

Feature selection is a process that widely uses machine learn-
ing and data mining applications. It aims to reduce the effect
of the curse of dimensionality by removing redundant and ir-
relevant features to improve the predictor performance
(Boln-Canedo et al., 2016). The prediction accuracy depends on
the selection of the subset of features which efficiently rep-
resents the data. Therefore, there is a need to eliminate
irrelevant and redundant features which contain lower dis-
crimination information about the classes (Chandrashekar and
Sahin, 2014). A feature is considered relevant if it integrates
some information about the target or the class. Features can
be classified into three categories: irrelevant, weakly rel-
evant, and strongly relevant. Feature redundancy is usually
determined by the correlation between features. Two fea-
tures are redundant if they are totally correlated. If a feature
is correlated with a set of features it will be difficult to judge
on their redundancy (Boln-Canedo et al., 2016). Feature selec-
tion algorithms have two main components: feature search and
feature evaluation.

3.1.1. Feature search
Feature search is a strategy that determines the optimal subset
of features. The optimal solution can be found through an ex-
haustive search. However, the number of combinations to test
is very high. If we have n features, then a search on 2n − 1 pos-
sible feature subsets it becomes a NP-hard1 problem as the
number of features grow (Chandrashekar and Sahin, 2014).Thus,
it is time consuming and impractical. There are other search
strategies that seem more feasible such as the branch and

1 Non-deterministic polynomial-time hard.
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bound algorithm,2 sequential search methods3 (e.g. sequen-
tial forward selection, sequential backward elimination, and
bidirectional selection), and random search methods (e.g. genetic
algorithms and random mutation hill climbing). If the dimen-
sionality is very high, an individual search will be the affordable
solution. In individual search methods, each feature is as-
sessed based on some criteria. Features that satisfy a condition
or that are top ranked will be selected (Liu and Motoda, 2007).

3.1.2. Feature evaluation
Through feature evaluation, it is possible to assess the rel-
evance and redundance of the feature. It is necessary to fix the
evaluation criteria to be applied on each feature or subset of
features because different criteria lead to different feature se-
lection. In classification, features relevant to the labelled classes
will be kept. In contrast, the evaluation criteria in clustering
to applying a feature selection seem difficult due to the un-
availability of the class labels (Liu and Motoda, 2007).

3.2. Feature selection methods

Feature selection methods can be classified into two ap-
proaches: individual evaluation and subset evaluation (Yu and
Liu, 2004). Individual feature evaluation assesses each feature
individually according to its relevance which leads at the end
to a feature ranking. The drawback of individual evaluation is
that it is incapable of eliminating redundant features because
they have the same rank. Differently, subset feature evalua-
tion can overcome the inconvenience of individual evaluation,
it uses certain search strategies to select and evaluate a subset
of features according to certain evaluation measures and then
compares it with the previous best one (Boln-Canedo et al.,
2016). From this classification, three main approaches can be
identified based on the relationship among the inductive learn-
ing method and the feature selection algorithm: filters, wrappers,
and embedded methods (Guyon et al., 2008). Each one of these
approaches contains several algorithms which create a large
panoply of feature selection methods. Nevertheless, the best
method does not exist yet. Different methods have been de-
veloped to perform feature selection with the constraints of
minimising running time, memory allocation, and maintain-
ing accuracy (Boln-Canedo et al., 2016).

3.2.1. Filter methods
Filter methods, which are more common in statistics, are feature
selection algorithms totally independent from any predictors
(Guyon et al., 2008). Applied directly on the training data, the
filter approach is based on feature ranking techniques that use
an evaluation criterion and a threshold to determine the feature
relevance and decide whether to keep it or discard it.The feature
relevance is determined by its capability to provide useful in-
formation about the different classes (Chandrashekar and Sahin,
2014). Filter algorithms are usually computationally less ex-
pensive than the other methods (Boln-Canedo et al., 2016). A

common drawback for filter methods is that they are ad-
equate only for independent features; otherwise, features will
be redundant (Guyon et al., 2008).

3.2.2. Wrapper methods
Distinct from the filter methods, wrapper methods are feature
selection based on three components: a search strategy, a pre-
dictor, and an evaluation function (Liu and Motoda, 2007). The
search strategy determines the subset of features to be evalu-
ated. The predictor (considered as a black box) can be any
classification method and its performance is used as the ob-
jective function to evaluate the subset of features defined by
the search strategy so as to find the optimum subset that gives
the best accuracy of it (Guyon et al., 2008). The wrapper ap-
proach outperforms the filter approach but it is more time
consuming and requires more computational resources
(Boln-Canedo et al., 2016). As the evaluation of 2n − 1 subsets
becomes a NP-hard problem, different search algorithms have
been used to find the subset of features that maximises the
accuracy of the predictor (Chandrashekar and Sahin, 2014) such
as exhaustive search, sequential search, genetic search, etc.
(Guyon et al., 2008).

3.2.3. Embedded methods
In contrast to wrapper methods, embedded methods incor-
porate an interaction between feature selection and learning
process. Therefore, the solution is reached faster than wrap-
pers because they make better use of the available data and
avoid retraining the predictor for every selected feature subset
(Guyon and Elisseeff, 2003). Embedded methods integrate a regu-
larised risk function that is optimised taking into account the
features designating parameters and the predictor param-
eters (Boln-Canedo et al., 2016).

4. Related work

Much related works in the literature focus on different detec-
tion approaches. Nevertheless, the most used approach is still
the anomaly detection (Gan et al., 2013; Karami and
Guerrero-Zapata, 2015). Of course, it is quite reasonable to focus
on anomaly detection due to its efficiency in detecting new
attacks. In the last recent years, the hybrid detection ap-
proach gain few steps (Depren et al., 2005; Kim et al., 2014) but
it is still far from the anomaly approach and the misuse ap-
proach. Moreover, different approaches of IDSs based on
anomaly detection have emerged (Rastegari et al., 2015) using
numerous approaches and classifiers. Even so the use of hybrid
classifiers and ensemble classifiers has increased (Tsai et al.,
2009), single classifiers still exist and can output good results.

In the literature, different datasets are used to perform the
IDS performance evaluation, but the one widely used is still
the KDD99 dataset (Kang and Kim, 2016). The evaluation cri-
teria adopted by most of papers to assess the performance of
their approaches are accuracy, detection rate (DR), and false
positive rate (FPR) (Lin et al., 2015; Wu and Banzhaf, 2010). Many
related works to the intrusion detection applied a feature se-
lection process to select the optimal subset of feature that
represents the entire dataset instead of using the full feature

2 For feature selection problems including more than 30 fea-
tures, the branch and bound algorithm becomes impractical.

3 Applying greedy techniques and the global optimality is not
assured.
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space (Eesa et al., 2015). Reducing the feature space can affect
the size of the used dataset, the computational time, and the
classification performance of several algorithms (Chandrashekar
and Sahin, 2014). This can be done through different ap-
proaches. The wrapper approach for feature selection
outperforms the other approaches even if it is more time con-
suming and requires more computational resources
(Boln-Canedo et al., 2016). Interestingly, in the last years natural
inspired approaches have been widely used in network intru-
sion detection.

Chung and Wahid (2012) proposed a new hybrid intrusion
detection system using Intelligent Dynamic Swarm based Rough
Set (IDS-RS) and Simplified Swarm Optimisation (SSO) which
is a new version of Particle Swarm Optimisation (PSO) that in-
corporates a new Weighted Local Search (WLS) strategy. IDS-
RS is performed to select the most relevant features to reduce
the dimension of the dataset with a weighted sum fitness func-
tion. They obtained only six features from the 41 features
containing in the KDD99 dataset. Finally, SSO classifier is used
with the reduced dataset to classify the instances and achieve
a classification accuracy with 93.3%.

De la Hoz et al. (2014) applied a multi-objective approach
for feature selection based on the NSGA-II4 as a feature search
strategy and the Growing Hierarchical Self-Organising Maps
(GHSOM) as a classifier. They used a fitness function based on
the Jaccards coefficient which is a similarity measurement
between datasets.The experiments are performed over the NSL-
KDD datasets. They obtained 25 relevant features achieving
99.12% of classification accuracy.

Eesa et al. (2015) introduced a new feature selection ap-
proach based on the cuttlefish optimisation algorithm and the
decision tree for IDSs to remove irrelevant features and keep
only features that represent the whole dataset. They used a
wrapper approach having the Cuttlefish Algorithm (CFA) as a
search strategy and the ID3 algorithm as a classifier to asses
the features generated by the CFA. The CFA algorithm imi-
tates the mechanism of a cuttlefish that allows it to change
its color which is based on two main processes: reflection and
visibility. These two processes represent the performed feature
search strategy to reach the global optimal solution.The adopted
fitness function is a weighted sum formula based on the DR
and FPR.The experimental result was conducted on the KDD99
dataset. They found that the accuracy of classification and DR
are increased when the number of features is equal to or less
than 20 features. Furthermore they found that using only five
features gives better results compared with the full dimen-
sion of the dataset.

Kang and Kim (2016) presented a wrapper approach for
feature selection based on a Local Search Algorithm (LSA) and
the k-means clustering algorithm. They used the accuracy of
clustering resulted by the k-means algorithm as a cost func-
tion to measure the goodness of the feature subset generated
by LSA. The paper focused on the detection of DoS attacks and
the response time. For that reason, the k-means algorithm was
performed in order to split the training dataset into two clus-
ters. In order to avoid overfitting, Kang and Kim used MLP to
evaluate the performance of the selected subset of features.

The experiment was conducted over the NSL-KDD and the
results proved that a feature subset composed of 25 features
gives higher accuracy and DR than all 41 features, while having
a lower FAR.

Kavitha et al. (2012) proposed an Emerging Neutrosophic
Logic Classifier Rule based Intrusion Detection (ENLCRID) to
overcome the problem of uncertainty.The main purpose of this
approach is to classify instances into three categories: normal,
abnormal, and indeterministic.The Neutrosophic Logic (NL) clas-
sifier is a combination of the fuzzy logic, intuitionistic logic,
paraconsistent logic, and the three-valued logics that gener-
ates rules used to classify instances. The problem is that not
all of these rules are efficient. For that reason, Kavitha et al.
used an Improvised Genetic Algorithm (IGA) to evaluate the
prediction power of the generated rules and keep only best rules
for accurate classification. The fitness function used in IGA is
based on the sensitivity, the specificity, and the rule length.The
experiment was conducted over the KDD99 dataset after re-
ducing its dimension to only seven features by using the Best
First Search (BFS) algorithm. The results are promising with DR
of 99.02% and FAR of 3.19%.

Lin et al. (2012) proposed an intelligent algorithm with
feature selection and decision rules applied to anomaly in-
trusion detection. The proposed approach is based on three
components: support vector machine, decision tree, and Simu-
lated Annealing (SA). SA has been widely used in the context
of optimisation problems because of its ability to converge to
the optimal solution. Therefore, SA is used in this approach
to adjust the parameter settings in SVM and DT to get the best
values. In the proposed algorithm, feature selection process
which is based on SVM and SA selected only relevant fea-
tures and remove irrelevant ones to increase the search speed
and the accuracy of classification. Next DT and SA are per-
formed to generate the decision rules for the selected features.
These two steps are repeated to reach the best testing accu-
racy for the selected features. The obtained results proved that
the obtained rules can detect efficiently new attacks by using
23 features of the 41 features of the KDD99 dataset.

Louvieris et al. (2013) introduced a novel effects-based feature
identification approach for network intrusion detection. The
proposed approach involves three stages based on k-means
clustering, NB, KruskalWallis (KW) statistical test and C4.5 de-
cision tree classification. The first stage consists of using
k-means to cluster the dataset instances into normal and ab-
normal in order identify clustered features relevant to a
particular attack.The second stage consists of applying a feature
selection process based on a wrapper based NB ranking and
KW statistical test. The NB classifier was applied for ranking
relevant features for each attack whereas the KW was applied
for ranking significant features. The third stage consists of ap-
plying the C4.5 for the evaluation of the already selected
significant features to illustrate their accuracy for intrusion de-
tection. For the experiment, Louvieris et al. created four
simulated attack datasets from a small office environment con-
taining 20 features that represent the main part of the TCP/IP
header. They obtained promising results with only 13 rel-
evant features.

Sindhu et al. (2012) presented a decision tree based light
weight intrusion detection using a wrapper approach. The pro-
posed work integrates different techniques such as neural4 Non-dominated Sorting Genetic Algorithm-II.
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network (NN), genetic algorithm, and decision tree. They used
a wrapper approach for feature selection based on GA and
Neurotree to identify the optimal subset of features. The used
fitness function in GA is based on the sensitivity, specificity
and the number of features. A Neurotree is in fact a combi-
nation of NN and DT used for classification. Several decision
trees are obtained after n iteration of GA-Neurotree wrapper.
Therefore, the best decision tree obtained is used to generate
rules and also the best subset of features. They obtained a
subset composed of 16 features. In the experiment, Sindhu et al.
compared their proposed approach with various feature se-
lection approach and various decision tree classifiers. They
obtained promising results with a DR of 98.38%.

Mok et al. (2010) proposed a Random Effects Logistic Re-
gression (RELR) model to predict anomaly detection. They used
a random effects model in order to contain the network en-
vironment characteristics and the uncertainty not explained
by them. Furthermore, they applied a wrapper feature selec-
tion step based on a Stepwise Feature Selection (SFS) and a Fixed
Effects Logistic Regression (FELR). They obtained a subset com-
posed of five relevant features. The experimental results
illustrated 98.74% accuracy of classification. Table 1 summarises
the previously mentioned works relevant to the context of
feature selection applied in intrusion detection. More pre-
cisely, we compare the used feature selection components,
number of features selected, the classifier, the used dataset for
the experiment, and the used metrics for evaluating the IDS
approach.

5. The proposed feature selection approach
for network intrusion detection

The existing approaches have presented good performance in
resolving the intrusion detection problem. Nevertheless, the
perfect system that provides the total security by detecting all
attacks with no false alarm has not been created yet. Research-
ers are facing several constraints such as the continuous
evolution of hacking tools, the large number of existing and
emerging techniques and methods in data mining and machine
learning, the high dimensionality of datasets, and so on. Several
existing IDSs are based on combining multiple techniques to
improve the system performance (Aburomman and Reaz, 2016;
Kavitha et al., 2012), whereas others are based on new tech-
niques (Zhang et al., 2015), techniques inspired from existing
ones (Lin et al., 2015), or inspired from nature (Powers and He,

2008). Furthermore, several IDSs integrate a dimensionality re-
duction phase to increase the prediction accuracy and to reduce
the computational time and save resources (Bahl and Sharma,
2016; Kang and Kim, 2016).

In this section, a feature selection approach in the context
of intrusion detection is proposed. Although wrappers need
more computational resources, they outperform filters and give
better results (Alba et al., 2007; Boln-Canedo et al., 2016). For
that reason, we have adopted the wrapper approach to perform
the feature selection. As the number of features is important
only heuristics can deal with this problem (Kang and Kim, 2016).
We have decided to use the Genetic Algorithm (GA) as a feature
search strategy with Logistic Regression (LR) as a classifier to
evaluate the selected feature subsets. The anomaly detection
approach is adopted in this proposal due to its efficiency in
detecting unknown attacks (Kim et al., 2014). A family of three
decision tree classifiers are performed in order to measure the
performance of the selected subsets of features. The used DTs
in the final classification are C4.5, RF, and NBTree. The evalu-
ation criteria used to assess the prediction capability of our
approach are the detection rate, the false positive rate, and the
accuracy.

5.1. The proposed IDS framework

In this section, an overview of the different components of the
proposed IDS with feature selection is presented. The imple-
mentation of the proposed IDS solution integrates three stages:
preprocessing stage, feature selection stage, and the classifi-
cation stage.The system architecture of the proposed approach
is illustrated in Fig. 1.

5.1.1. The preprocessing stage
The dataset used in the context of intrusion detection con-
tains different forms of features such as continuous, discrete,
and symbolic with varying resolution and ranges (Aburomman
and Reaz, 2016; Moustafa and Slay, 2015). Most of the exist-
ing classification algorithms are incompatible with such a
structure. Therefore, it is necessary to proceed with a prepro-
cessing stage to transform those featu–re formats in a way to
be handled with the classification algorithms.

Preprocessing consists of two main steps. First, all nominal
features are mapped to integer values ranging from 0 to S − 1
where S is the number of symbols. Boolean features do not need
any modification. Only the class label is mapped in a differ-
ent way to be handled with LR in feature selection stage, 0 for

Table 1 – Comparisons of related work.

Work FS components No. Classifier Dataset Evaluation

Chung and Wahid (2012) IDS-RS 6 SSO KDD99 Accuracy
De la Hoz et al. (2014) NSGA2, GHSOM 25 GHSOM NSL-KDD DR, FPR
Eesa et al. (2015) CFA, DT 5 None KDD99 Accuracy, DR, FPR
Kang and Kim (2016) LSA, K-means 25 MLP NSL-KDD Accuracy, DR, FPR
Kavitha et al. (2012) BFS 7 NL KDD99 DR, FPR
Lin et al. (2012) SVM, SA 23 DT, SA KDD99 Accuracy
Louvieris et al. (2013) K-means, NB, KW 13 DT simulated Accuracy
Sindhu et al. (2012) GA, Neurotree 16 Neurotree KDD99 DR, FPR
Mok et al. (2010) SFS, FELR 5 RELR KDD99 Accuracy
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Normal class and 1 for the others. Second, numerical features
having a large integer value ranges are scaled by applying a
logarithmic scaling with base 10 to reduce their value ranges.
Then all values of the used n features, except the Boolean fea-
tures, are linearly scaled into the range of [0, 1]. Linear scaling
is a min–max normalisation that consists of finding the
minimum and maximum value of ith feature and then trans-
form each feature value v is linearly scaled to v′ in the range
[0, 1] by applying the following formula (Kang and Kim, 2016):

′ = −
−

≤ ≤v
v min

max min
i ni

i i

, 1 (1)

Applying preprocessing on the whole dataset is time con-
suming due to its large size. Therefore, it is recommended to
apply sampling before the preprocessing step. The resulted
dataset is divided into different datasets to be used in the
feature selection stage for training and testing to select the
optimal subset of features. In classification stage, we used a
dataset applying a redundancy removal step to have only unique
instances. The resulted dataset is then reduced using the
optimal subset of features given by the feature selection stage
to measure the performance of the proposed approach for IDS
(Kang and Kim, 2016).

5.1.2. The feature selection stage
The feature selection stage consists of applying a wrapper ap-
proach to select the most relevant subset of features with the
minimum size. As previously mentioned, the wrapper ap-

proach is based on three components: a search strategy, a
predictor, and an evaluation function (Liu and Motoda, 2007).
In this proposal, we use the GA as a search strategy and the
LR as a classifier. The evaluation of the feature subsets is a
fitness function based on the accuracy of the LR and the number
of features in the subset.

Fig. 1 illustrates the different steps in the proposed GA-LR
wrapper approach. Starting from a random initial population
with each individual representing a possible feature subset,
each feature subset is proceeded with the LR classifier to
generate a model. The resulted models corresponding to the
subsets of features are evaluated to compute their chance to
be selected for reproduction. The subsets are then proceeded
with the GA to generate the new population of subsets apply-
ing GA operations. This process is repeated until a given
number of generations is attained or all subsets of features
become identical. In the next section, a detailed description
of the different components of the GA-LR wrapper approach
is presented.

5.1.3. The classification stage
The classification stage consists of using three different de-
cision tree classifiers namely C4.5, RF, and NBTree to evaluate
the performance of the selected subsets of features given by
the feature selection stage. In supervised learning, the classi-
fication stage is divided into two phases: a training phase and
a testing phase (Depren et al., 2005). During the training phase
the classifier is trained using the training dataset with the se-
lected features. The resulting model constructed during the

Fig. 1 – System architecture for the proposed IDS.
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training phase is used later in the testing phase to evaluate
the classification performance (Eesa et al., 2015).

The C4.5 classifier was one of the 10 algorithms identified
by the IEEE International Conference on Data Mining in De-
cember 2006. It was considered as one of the most influential
data mining algorithms in the research community (Wu et al.,
2008). It builds decision trees from training datasets based on
the maximisation of the information gain (difference in entropy)
at each attribute split. During the testing phase, the decision
tree resulting from training the C4.5 is used to classify testing
dataset instances. Starting from the root node of the deci-
sion tree, a test is applied on the same attribute of the testing
dataset represented in the node.The branch is taken if the con-
dition is satisfied to lead to the root node child. This process
is repeated until a leaf node is reached which represents the
class of the tested instance (Buczak and Guven, 2016). The RF
classifier is one of the most powerful data mining techniques
composed of a collection of tree structured classifiers. It has
been used to prediction and probability estimation. It has the
capability to deal efficiently with large datasets having many
features (Zhang et al., 2008). The NBTree classifier is in fact a
combination between DT and NB classifiers (Liang and Yan,
2006). DT is used as a general structure for the data segmen-
tation whereas NB is used at leaves instead of splitting the
attributes. NBTree is appropriate in machine learning particu-
larly when having many relevant features. It produces smaller
number of nodes than the C4.5 (Kohavi, 1996).

5.2. The GA-LR wrapper approach for solving feature
selection

The problem of feature selection can be resolved with differ-
ent methods as mentioned in Section 3. In this work, a wrapper
approach is adopted due to its superiority compared to other
approaches (Alba et al., 2007; Boln-Canedo et al., 2016). The
wrapper approach includes a research strategy and a predic-
tor. The predictor performance is used to evaluate the selected
subsets. As previously mentioned, in this proposal the GA is
used as a research strategy and the LR as a predictor. The
general framework of the proposed GA-LR wrapper approach
is summarised in Fig. 1. Below, we present the GA and the LR
used in the proposed approach for feature selection.

5.2.1. Genetic algorithm as search strategy
The GA is a global metaheuristic search strategy based on a
direct analogy to Darwinian natural selection and genetics in
biological systems (Huang and Wang, 2006). GA is an evolu-
tionary algorithm composed of four components: a population
of individuals (or chromosomes) with each one representing
a possible solution, a fitness function used to evaluate the
fitness of an individual, a selection function which selects the
fittest individuals to produce the next generation, and a genetic
operator such as crossover and mutation to explore new search
spaces. In the following, we describe the GA components used
in the proposed wrapper approach.

5.3. Data encoding

In the GA, each chromosome presents a possible solution. The
nature of the problem determines the chromosome coding (Fessi

et al., 2014). In the context of feature selection, an X binary
vector is used to codify the n features existing in the dataset.
Therefore, we have X x x xn= ( )1 2, , ,… where xi ∈ {0, 1} and
1 ≤ i ≤ n. If the ith feature is used in the current subset then xi = 1,
otherwise xi = 0.

5.4. Initial population

An initial population with N chromosomes is generated ran-
domly regardless of any constraints. A large population provides
more genetic diversity but it is weakened by slower conver-
gence. In contrast, a small population converges rapidly but
explores only a reduced part of the search space and may con-
verge to a local extreme. Thus the choice of population size
may affect the GA performance.

5.5. Fitness function

The fitness function of a given chromosome determines its
chance of being chosen to create the next generation (Huang
and Wang, 2006). In this work, the fitness function is based on
two criteria: the classification accuracy of LR and the number
of selected features. Therefore, the chromosome having the
highest accuracy, and the smallest number of features pro-
duces the a highest fitness value. A combination of the two
objectives is presented in the following formula:

fitness X Accuracy X xi
i

n

( ) = × ( ) + −( ) × ⎛
⎝⎜

⎞
⎠⎟=

−

∑α α1
1

1

(2)

where X is the binary vector representing the current fea-
tures subset, α ∈ [0, 1] is a predefined weight adjusted according
to user’s requirements to indicate the importance of LR ac-
curacy with respect to the subset length. Accuracy(X) is the
accuracy of LR based on the subset of features X for comput-
ing accuracy of a classifier, and xi is a bit indicating whether
the ith feature is used or not. Thus the ∑ =i

n
ix1 gives the number

of features within a given subset.

5.6. Selection function

After generating the new population of chromosomes by ap-
plying genetic operators, the fitness of each chromosome is
computed. The fitter chromosomes have more chance for re-
production.The selection can be performed by using the roulette
wheel, the tournament selection methods (Huang and Wang,
2006), or rank selection (Fessi et al., 2014). In this work, the rou-
lette wheel is applied as a selection function.

5.7. Crossover operator

A crossover is performed among two randomly selected chro-
mosomes with a probability pc in [0.5, 0.9]. In this work, a
random selection between a single point and two point cross-
overs determine the parts to be swapped between the two
parent chromosomes to give the offspring. This operation is
repeated N/2 times to create the new generation of chromo-
somes. Fig. 2 illustrates the genetic operators of a crossover.
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5.8. Mutation operator

Mutation serves to alter the value of one or more bits in the
chromosome with a probability pm in [0.01, 0.03]. It aims to
improve the fitness value of chromosomes by introducing new
heterogeneity in the population (Fessi et al., 2014). In this work,

mutation consists of selecting randomly q bits of a chromo-
some (q ≤ 10% of chromosome size) to be inverted from 1 to 0
or vice versa. Fig. 3 illustrates the genetic operators of mutation.

5.9. Termination rules

The algorithm is performed until one of the two conditions is
satisfied. First condition is when G fixed number of genera-
tions is attained. Second condition is when all chromosomes
are identical. Thus, the fittest chromosome within all genera-
tions is considered as the best subset of features.

5.9.1. The proposed algorithm
The proposed algorithm for feature selection is illustrated below.
It consists of selecting the best subset of features that mostly
represent the data by using the training and the testing datasets.

The first step is to randomly generate an initial popula-
tion with N chromosomes, denoted by P. To make a new
population Pnew, based on the previous population P, genetic
operators are applied. First, two chromosomes are randomly
selected, denoted by Xp1 and Xp2 , from P using the roulette
wheel method to perform crossover. Second, the resulting off-
spring, denote by XO1 and XO2 , are then mutated before adding
them to the new population Pnew. Third, the fitness of all chro-
mosomes of Pnew is computed and the fittest chromosome
overall generations is stored in memory. These operations are
repeated until all chromosomes within P are similar or the
number of generations G is attained. As mentioned above, the
fitness is based on LR accuracy and the number of features.
In the next subsection, LR is presented with more details.

5.10. Logistic regression for classification

LR is considered as one of the widely used classifiers such as
linear discriminant analysis and k-nearest neighbour (James
et al., 2013). LR is used to describe the relationship between a
dependant variable and one or more explanatory variables. In
contrast with Linear Regression, LR can deal with categorical
dependent variables (Czepiel, 2002). The used dataset in the
context of intrusion detection contains a categorical class label
which indicates whether the connection is normal or an attack
(Aburomman and Reaz, 2016). In this case, we have a binary
dependent variable that can be represented by 0 for Normal class
and 1 for the attack classes which can be handled with bino-
mial LR (Ghosh and Mitra, 2015).

Fig. 2 – The genetic operators of a crossover.

Fig. 3 – The genetic operators of mutation.
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The purpose in LR (or Logit analysis) is to predict the prob-
ability p that the dependent variable is taking the value of 1
rather than 0, based on a set of independent variables (con-
tinuous or categorical variables) (Katos, 2007). As LR can be seen
as a special case of generalised linear models, the linear com-
ponent is assimilated to some function of the probability of a
given result of the dependant variable.This function is the logit
transform. To estimate the LR parameters, the method of least
squares used in linear regression is not capable of giving
minimum variance unbiased estimators for parameters.There-
fore, maximum likelihood estimation is used for estimating the
LR parameters with the Newton–Raphson method (Czepiel,
2002). Next, a presentation of the different components of LR
is provided, more precisely we present the logit model and the
parameters estimation method.

5.10.1. Logit model
Consider a population (Y, X) such that Y ∈ {0, 1} a categorical
dependent variable and X X Xk= ( )1, ,… is a vector of k inde-
pendent variables.The purpose is to build a model that predicts
the probability that Y is taking a response y for any given value
of X. This probability p X Y y X( ) = =( )Pr must range between
0 and 1 for all values of X. In LR, the logistic function (see Fig. 4)
is used to model this probability as presented in Eq. (3) (James
et al., 2013). Suppose we have C X X Xk k( ) = + × + + ×β β β0 1 1 … ,
then we have

p X
e

e

e

C X

C X

C X

( ) =
+

=
+

( )

( )

− ( )

1
1

1

(3)

After a bit manipulation of Eq. (3), we have

p X
p X

eC X( )
− ( )

= ( )

1
(4)

where the quantity p X
p X
( )

− ( )1
is named the odds and range

between 0 and ∞. By applying the logarithm to Eq. (4), we have
the logit transform which is named log-odds or logit that is linear
in X (Czepiel, 2002),

log
p X

p X
X Xk k

( )
− ( )

⎛
⎝⎜

⎞
⎠⎟

= + × + + ×
1

0 1 1β β β… (5)

The affectation rule can be in different ways (Czepiel, 2002):
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5.10.2. Maximum likelihood estimation
The parameters β β β β= ( )0 1, , ,… k are unknown and must be es-
timated using the training data. The maximum likelihood
method is used to estimate the coefficients of the logistic re-
gression (James et al., 2013).The likelihood function of a sample
Ω is presented by the following equation:

L y y= −( ) −( )∏π π
ω

1 1
(6)

where ω is an individual in Ω, π is the probability
P Y Xω ω( ) = ( )( )1 if y = 1, and (1 − π) is the probability
P Y Xω ω( ) = ( )( )0 if y = 0. In fact, the likelihood corresponds
to the probability of having the sample Ω from a given popu-
lation.The maximum likelihood method consists of estimating
the parameters ˆ ˆ , ˆ , , ˆβ β β β= ( )0 1 … k that maximise this likeli-
hood function which is the probability of having the sample
Ω. To facilitate handling, it is often preferred to work on the
log-likelihood which range between −∞ and 0 (Czepiel,
2002),

LL y y= × ( ) + −( ) × −( )∑
ω

π πlog log1 1 (7)

Often, the following quantity named deviance is used,

D LL= − ×2 (8)

In contrast to log-likelihood, deviance is positive.The purpose
here is to minimise this quantity.The log-likelihood is a convex
function; there is therefore a single solution. Nevertheless, there
is no analytical solution; thus it is necessary to use heuris-
tics. Different optimisation methods are used in this context,
the mostly used is the Newton–Raphson method (Czepiel, 2002).

5.10.3. The Newton–Raphson method
Maximum likelihood method is used to estimate the param-
eters of the LR. It uses the training data in a way to produce a
distribution that gives the greatest probability of the ob-
served data. However, solving a system of non-linear equations
is not easy. Therefore, it is necessary to use an iterative process
to numerically estimate the parameters of LR. The most widely
used method for solving systems of non-linear equations is
the Newton–Raphson method (Czepiel, 2002).

The Newton–Raphson method started with a random value
for vector β then the algorithm applies an iterative process to
approximate the final solution β̂ . To go from step (i) to step
(i + 1), the algorithm uses the following formula (Czepiel,
2002):

β β
β β β

i i LL LL+
−

= − ∂
∂ ∂ ′

⎛
⎝⎜

⎞
⎠⎟

× ∂
∂

1
1

.
(9)

Fig. 4 – The logistic function.
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where βi is the current vector of parameters, βi+1 is the re-

sulted vector,
∂

∂ ∂ ′
⎛
⎝⎜

⎞
⎠⎟

−
LL

β β.

1

is the matrix of second partial

derivatives, and
∂
∂
LL
β

is the first partial derivatives of the log-

likelihood. By using matrix notation, Eq. (9) becomes as follows:

β β πi i T TX WX X y+ −= + [ ] × −( )1 1 (10)

where X is the design matrix of independent variables, it con-
tains K + 1 columns where K is the number of independent
variables in the dataset and the first element of each row Xi0 = 1
which represent the intercept. XT is the matrix transpose of
X. W is a square matrix of order equal to the dataset size, with
elements π(1 − π) on the diagonal and zeros everywhere
else.

The iterative process based on Eq. (10) is repeated until there
is no improvement in β. At that point, the algorithm has con-

verged and the quantity [XTWX]−1 contains the variance–
covariance matrix of the estimated coefficients.

5.10.4. The proposed algorithm
The following algorithm is used to compute the accuracy of
LR by using the proposed subset of features.The algorithm uses
the training dataset to estimate the model then evaluate it using
the testing dataset.The accuracy of LR is used later to compute
the fitness function of the current subset in GA.

The first step is to initiate the β vector of parameters for
the proposed X subset of features. The log-likelihood is com-
puted based on the proposed training dataset and then the new
parameters are estimated using the Newton–Raphson method.
The process is repeated until the improvement of the esti-
mated parameters is less or equal to a given threshold σ or a
given number of iteration M is attained. The final step is to
evaluate the resulted model using the proposed testing dataset
by computing its accuracy.

6. Experimental results

The proposed approach for IDS integrates three main stages
as mentioned in Section 4 which are preprocessing, feature se-
lection, and classification stages. The preprocessing stage
consists of resampling and transforming the dataset to be
handled with the classifiers used in feature selection and final
classification stages.The feature selection stage, which is based
on a wrapper approach combing GA as search strategy and LR
as a classifier, selects the best subset that mostly represents
the data with the minimum number of features.The final stage
consists of evaluating the performance of the optimal subsets
of features given by the GA-LR wrapper approach by using three
different decision tree classifiers.

6.1. Datasets description

Since many years, the evaluation of the performance of any
proposed IDS approach is a real challenge. It is practically
impossible to use a real-word network infrastructure to perform
the IDS evaluation. This is quite reasonable because most
companies never accept that their business will be disrupted
or their data being destroyed or even stolen. Therefore, re-
searchers used simulated datasets including normal and attack
traffic to perform IDS evaluation. The problem is that these

datasets are stored in limited lapse of time and generated
through a limited network infrastructure which raises the
problem of their concordance with reality. Moreover, measur-
ing the degree of realism of the generated IDS datasets is
also a challenge (Haider et al., 2017). Different publicly avail-
able datasets have been generated in this context (such as
KDD99, NSL-KDD, Kyoto, ADFA-LD, etc.), but all of them are
suffering in different ways from concordance to the real-
word network traffic. In order to resolve this problem,
researchers are trying to find metrics that quantify the quality
of realism to generate more realistic IDS datasets that include
dynamic scalable normal and attack behaviours (Haider et al.,
2017; Shiravi et al., 2012). This is extremely important for the
credibility and reliability of any IDS solution. Creating IDS
datasets that do not take consideration of the evolution of
the applications, Internet activities and the widespread of
attack tools lead to an incorrect IDS evaluation which is
unacceptable and extremely costly.

In the context of this research, we have decided to use an
old benchmark which is the knowledge discovery and data
mining 1999 (KDD99) dataset and a new benchmark which is
the UNSW-NB15 dataset. Thus, we can compare the obtained
results with the old and the new benchmark datasets in terms
of accuracy and complexity which can reflect there degree of
realism. The KDD99 dataset and its derived version have been
widely used in the IDS performance evaluation (Kang and Kim,
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2016). The problem is that this dataset is outdated and does
not contain any contemporary normal and attack behaviours
which bias any IDS evaluation (Haider et al., 2015). This may
explain the high accuracy rate achieved by many works which
is meaningless and no longer accepted in the IDS commu-
nity. Moreover, this dataset contains a huge quantity of repeated
records (Sindhu et al., 2012) and shows an unbalanced distri-
bution between the different classes (Elhag et al., 2015). These
facts proved the existence of issues related to the design and
methodologies adopted for the dataset creation and valida-
tion (McHugh, 2000). Therefore, we used it in this context to
prove these facts. The dataset was generated by Lincoln Labs
based on a simulation of a typical U.S. Air Force LAN. It con-
tains contained approximately 5M instances of raw tcpdump
data containing normal and abnormal activities generated
during several weeks (Elhag et al., 2015). Each instance is rep-
resented by 41 nominal and continuous features and a class
label that indicates whether the connection is normal or an
attack (Aburomman and Reaz, 2016).There are 22 different types
of attacks that fall into one of the four categories: DoS, probe,
U2R, and R2L.The 41 features can be classified into three groups:
basic features, content features, and traffic features. Basic fea-
tures (such as duration, protocol_type, service, etc.) are attributes
that can be extracted from a TCP/IP connection. Content fea-
tures (Num_failed_logins, logged_in, num_compromised, etc.) allow
to detect suspicious behaviour. Traffic features, which are
divided into the same host features (such as serror_rate,
rerror_rate, etc.) and the same service features (such as
srv_serror_rate, srv_rerror_rate, etc.), are computed on the basis
of the examination of the established connections in the past
two seconds (Kang and Kim, 2016).

The UNSW-NB15 is a recently created dataset by the cyber
security research group at the Australian Centre for Cyber Se-
curity (ACCS) (Moustafa and Slay, 2015). The IXIA Perfect Storm
tool and a tcpdump tool were used to capture 100 GB of raw
data representing simulated network traffic including modern
normal and contemporary attack behaviours.The raw data were
captured during two simulation periods of 16 hours and 15
hours.The total size of the dataset is about 2.5M records. Argus,
Bro-IDS tools, and a 12 developed algorithms were performed
to create the total number of 49 features. These features are
grouped into five categories: flow features, basic features,
content features, time features, and additional generated fea-
tures.Two features are used as a label: attack_cat which indicates
the category of the attack and the normal state, and label which
takes 0 for normal and 1 for attack. There are nine attack cat-
egories included in the dataset: Fuzzers, Analysis, Backdoor,
DoS, Exploits, Generic, Reconnaissance, Shellcode, Worms
(Moustafa and Slay, 2016).

To evaluate the performance of the IDSs in supervised
learning, it is necessary to have two distinct datasets: a
training dataset and a testing dataset (Aburomman and
Reaz, 2016). The original size of the KDD99 and the UNSW-
NB15 datasets were too large (Kang and Kim, 2016; Moustafa
and Slay, 2016). Therefore, for not affecting the time in the
training stage, usually a 10% of the training dataset is used
(Elhag et al., 2015). Table 2 illustrates the different categories
and classes of the training 10% KDD99 and Table 3 illustrates
the different categories of the training set extracted from the
UNSW-NB15.

6.2. Experimental settings

In this section we present the experimental tools used to imple-
ment the proposed approach, the sample used to perform the
experiment, and the evaluation method adopted to measure
the performance of the proposed approach.

6.2.1. Experimental tools
In the literature, different tools are used to implement and
evaluate the proposed IDS. Matlab (Aburomman and Reaz, 2016;
Fessi et al., 2014; Huang and Wang, 2006; Kavitha et al., 2012),
C++ (Gan et al., 2013),Visual C++ (Lin et al., 2008), C# (Eesa et al.,
2015), Java (Sindhu et al., 2012), Weka (Chung and Wahid, 2012;
Kim et al., 2014; Kou et al., 2009; Rastegari et al., 2015; Singh
et al., 2015) are the most used tools in this context. In this pro-
posal, Weka5 data Mining and machine learning software
(version 3.6.13) is used to perform the classification stage with
C4.5 (implemented in Weka under the name of J48 (Rastegari
et al., 2015), RF, and NBTree. Weka is a free software written
in Java and developed at the University of Waikato, New
Zealand. It integrates most of the machine learning and data
mining techniques used for knowledge discovery.

Despite its ability to perform wrapper approaches for feature
selection, Weka presents a weakness which is the process time.
We tested a GA-LR wrapper over Weka with a sample of 494
instances and with a population composed of 6 chromo-
somes. To generate only the initial population and the first
generation, the process takes almost more than one hour. For
that reason, we selected the C++ programming language to
implement the GA-LR wrapper for feature selection. We

5 The Waikato Environment for Knowledge Analysis.

Table 2 – Distribution of records in the training 10%
KDD99.

Category Size Distribution (%)

Normal 97,278 19.69
DoS 391,458 79.24
Probe 4,107 0.83
R2L 1,126 0.23
U2R 52 0.01
Total 494,021 100

Table 3 – Distribution of records in the training UNSW-
NB15 datasets.

Category Size Distribution (%)

Normal 56,000 31.94
Backdoor 1,746 1
Analysis 2,000 1.14
Fuzzers 18,184 10.37
Shellcode 1,133 0.65
Reconnaissance 10,491 5.98
Exploits 33,393 19.04
DoS 12,264 6.99
Worms 130 0.07
Generic 40,000 22.81
Total 175,341 100
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selected this programming language to reduce the computa-
tional time of the GA-LR wrapper algorithm that integrates
heavy computational work. We used also R software which is
a free software environment for statistical computing and
graphics to verify the results given by the implemented LR
module.

The preprocessing stage modules such as sampling, nominal
to numeric, logarithmic scaling, and normalisation are also
implemented with C++ language. The platform adopted to
develop and test the proposed approach is a PC with the fol-
lowing features: Intel Core Duo 2.16 GHz CPU, 1 GB RAM, and
a Windows XP operating system.

6.2.2. IDS evaluation method
There are different metrics used to evaluate the performance
of an IDS. In the literature, most of research works in the field
of intrusion detection focused on the accuracy, the detection
rate (DR), and false alarm rate (FAR) (Lin et al., 2015). In this
work, we have adopted the same metrics to evaluate the per-
formance of our proposed approach. As aforementioned, the
fitness function that evaluates each selected subset of fea-
tures in the feature selection stage is based on the accuracy
of LR classifier and the number of selected features. Further-
more, in the classification stage the performance of the three
decision tree classifiers with the selected subsets of features
is measured with the three metrics mentioned above and then
compared with other work results.

6.3. Preprocessing of the KDD99 and the UNSW-NB15
datasets

As aforementioned, the KDD99 and the UNSW-NB15 datasets
are used in this proposal. Due to the huge size of the original
datasets (about 5M records for KDD99 and 2.5M for
UNSW-NB15), we used 10% of the KDD99 dataset
(kddcup.data_10_percent.gz) (KDD Cup, 1999) and the train-
ing dataset of the UNSW-NB15 (UNSW_NB15_training-set.csv)
(UNSW-NB15 dataset, 2015). Some research works (Chung and
Wahid, 2012; Dangelo et al., 2015; Eesa et al., 2015; Gan et al.,
2013; Karami and Guerrero-Zapata, 2015) use different dataset
sizes randomly selected from the training dataset. We ran-
domly selected 10,000, 15,000, and 20,000 unique instances from
the 10% KDD99 dataset and from UNSW-NB15 training dataset.
All extracted datasets are preprocessed and then splitted into
10 folds. We selected from each group two datasets present-
ing the best accuracy of classification with LR, one used for the
training and the other for the testing.Thus, we have six datasets
extracted from the KDD99 and six datasets extracted from the
UNSW-NB15 with different size: two datasets with 1000 records,
two datasets with 1500 records, and two datasets with 2000

records. These datasets are used to perform the feature selec-
tion stage.

Table 4 illustrates the distribution of records between normal
and attack in training and testing datasets. Tables 5 and 6
present some descriptive statistics of the 42 features for train-
ing and testing datasets extracted from the KDD99 dataset (see
Figs. 5 and 6). Features having zero variability (standard de-
viation) are not used in the analysis and must be removed
before the feature selection stage. As shown in Tables 5 and
6, we decided to remove 8 irrelevant features which are 7, 9,
11, 14, 15, 18, 20, and 21. Differently, there is no zero variabil-
ity in the features of the training and testing datasets extracted
from UNSW-NB15 dataset. Furthermore, there are only 44 fea-
tures in the available training UNSW-NB15 dataset
(UNSW_NB15_training-set.csv) (UNSW-NB15 dataset, 2015),
which means 42 attributes and 2 class labels.Thus, we removed
the attribute attack_cat that indicates the category of the attack
and the normal state, and keep label and the 42 other attributes.

For the classification stage, we decided to use the 10% of
KDD99 dataset and the UNSW-NB15 training dataset. The
problem is that the KDD99 dataset contains a huge quantity
of repeated records (Elhag et al., 2015; Sindhu et al., 2012) which
is not the case with the UNSW-NB15 dataset (Moustafa and
Slay, 2016). Redundant records affect any machine learning by
biasing towards frequent records (Elhag et al., 2015; Sindhu et al.,
2012). Therefore, we proceeded to the elimination of all re-
dundant records, obtaining a total number of 145,586 instances
(see Table 7). Finally, we extracted 50,000 unique records from
each dataset with keeping the same distribution of records
between categories to perform the classification stage with the
three DTs. In contrast to the feature selection stage, we removed
from the extracted UNSW-NB15 dataset the attribute label and
keep the attack_cat attribute. Table 8 illustrates the distribu-
tion records between categories for the two datasets extracted
from the KDD99 and UNSW-NB15.

6.4. Implementation of GA-LR wrapper approach

Four major packages including different modules are created
using C++: a file management package including modules such
as loading, saving, etc., a matrix management package includ-
ing several modules (such as matrix multiplication, transpose,
inverse, etc.) that are used in the remaining packages, an LR
package including modules such as computing the likeli-
hood, the Newton–Raphson method, the LR accuracy, etc. The
LR program needs a training dataset, the selected features rep-
resented by a binary string, and a testing dataset to generate
the model and measure its performance. The model is illus-
trated by the coefficient estimated by LR. The performance is
measured by all metrics extracted from the confusion matrix.

Table 4 – Distribution of records in training and testing datasets used in the feature selection stage after preprocessing.

Dataset Label Training set Testing set

1000 1500 2000 1000 1500 2000

KDD99 Normal (0) 508 (50.80%) 719 (47.93%) 985 (49.25%) 495 (49.50%) 746 (49.73%) 934 (46.70%)
Attack (1) 492 (49.20%) 781 (52.07%) 1015 (50.75%) 505 (50.50%) 754 (50.27%) 1066 (53.30%)

UNSW-NB15 Normal (0) 330 (33%) 552 (63.20%) 661 (33.50%) 402 (40.20%) 574 (38.3%) 838 (41.90%)
Attack (1) 670 (67%) 948 (36.80%) 1339 (66.95%) 598 (59.80%) 926 (61.70%) 1162 (58.10%)
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Other statistical information is provided such as Wald test, χ2

test, AIC,6 BIC,7 and pseudo R2 (James et al., 2013).
A GA package that performs the GA operations such as gen-

erating populations, selection, crossover, mutation, etc. All these
packages are integrated into a main program called GA-LR-
Wrapper.The inputs of the main program are: a training dataset,
a testing dataset, population size, crossover rate, mutation rate,
maximum generation, and the coefficient α used in the fitness
function. To reduce the program execution time, all evalu-
ated chromosomes and their fitnesses are stored in memory
whether they are generated again. If all chromosomes are the
same or the number of generation is attained the program is

terminated and a log file is generated. The log file contains all
input parameters, all generations and their mean fitnesses, the
started and the terminated time, and the best subset of
features.

6.5. Classification stage using Weka

The classification stage is performed using Weka software with
the new dataset obtained after the redundancy removal from
10% KDD99 and UNSW-NB15 training datasets. We converted
the two datasets into ARFF file format to be handled with Weka.
The conversion consists of adding header information includ-
ing attribute names, types, possible values (for nominal
attributes), and separating data fields with commas (Garner,
1995). Before starting classification, we proceeded with a

6 Akaike information criterion.
7 Bayesian information criterion.

Table 5 – Descriptive statistics of the different sample KDD99 training datasets after the preprocessing stage.

Feature Training set

1000 1500 2000

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 0.003886 0.007562 0.001564 0.003059 0.003436 0.006670
2 0.532500 0.079475 0.529333 0.074052 0.537250 0.083758
3 0.543667 0.196413 0.544076 0.192277 0.552468 0.188307
4 0.633000 0.259472 0.605083 0.256794 0.601389 0.279561
5 0.182444 0.180119 0.171666 0.181026 0.175004 0.181395
6 0.197765 0.218757 0.181779 0.214257 0.188973 0.217319
7 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
8 0.007000 0.013902 0.004667 0.009277 0.005500 0.010928
9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
10 0.004000 0.007904 0.004422 0.008715 0.002217 0.004387
11 0.000000 0.000000 0.000133 0.000266 0.000000 0.000000
12 0.393000 0.477102 0.365333 0.463730 0.371500 0.466975
13 0.000021 0.000042 0.000317 0.000631 0.000357 0.000710
14 0.000000 0.000000 0.000667 0.001332 0.000000 0.000000
15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
16 0.000041 0.000082 0.000611 0.001220 0.000708 0.001412
17 0.000500 0.000998 0.000667 0.001332 0.000571 0.001139
18 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
19 0.000500 0.000999 0.000667 0.001332 0.001500 0.002991
20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
21 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
22 0.007000 0.013902 0.005333 0.010610 0.003000 0.005982
23 0.187075 0.185328 0.193971 0.186441 0.186101 0.182150
24 0.026853 0.025495 0.024856 0.020450 0.025997 0.021578
25 0.383010 0.470694 0.375853 0.466985 0.380715 0.470216
26 0.380510 0.470572 0.375013 0.467157 0.380265 0.470128
27 0.112200 0.199023 0.149973 0.254315 0.134905 0.232641
28 0.113630 0.200658 0.150713 0.255129 0.135180 0.232640
29 0.563290 0.460333 0.538053 0.460653 0.552710 0.460061
30 0.041580 0.043584 0.047367 0.047186 0.043245 0.044289
31 0.071160 0.117893 0.072040 0.120823 0.074505 0.123653
32 0.785315 0.303950 0.778275 0.307043 0.770968 0.317973
33 0.434976 0.429742 0.408345 0.420463 0.422819 0.426789
34 0.469760 0.446281 0.442580 0.440781 0.460315 0.447528
35 0.065970 0.062407 0.066340 0.058491 0.067535 0.062366
36 0.072140 0.114469 0.080380 0.128497 0.086340 0.137558
37 0.013310 0.020130 0.017693 0.026668 0.016495 0.024494
38 0.378850 0.468287 0.374760 0.466840 0.381250 0.468660
39 0.378080 0.469672 0.374327 0.467337 0.379895 0.470120
40 0.117320 0.203950 0.153313 0.255962 0.134075 0.229049
41 0.113610 0.200090 0.152967 0.256808 0.132285 0.227288
42 0.508000 0.499872 0.479333 0.499146 0.492500 0.499887
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dimensionality reduction to the two datasets using Weka to
keep only the features given by the feature selection stage.

The cross-validation technique (Dangelo et al., 2015; Depren
et al., 2005; Huang and Wang, 2006; Lin et al., 2015; Sindhu et al.,
2012; Singh et al., 2015) is used for performance evaluation to
guarantee the reliability of the results. It consists of ran-
domly dividing the dataset into k disjoint parts. One part is used
for validating the model and the remaining others are used
for training the classifier (Dangelo et al., 2015). This process
is repeated k times with different choices of the validation
subset (Lin et al., 2015). In the experiment, 10-fold cross vali-
dation (Huang and Wang, 2006; Lin et al., 2015; Sindhu et al.,
2012) has been performed because of low bias and good error
estimate (Singh et al., 2015).

6.6. Results and comparison

We executed the GA-LR wrapper program 200 times with dif-
ferent parameter settings. We used the extracted datasets from
the KDD99 and the UNSW-NB15 datasets to perform the feature
selection stage with different values of population size p = {10,
20, 30}, different values of crossover probability pc = {0.6, 0.75,
0.9}, and different values of mutation probability pm = {0.01, 0.02,
0.03}. We set the maximum generation equal to 1000 for GA.
Generally, for the predefined weight α used in the fitness func-
tion referring to the importance of the accuracy with respect
to the number of features can be set from 0.7 to 1 (Chung and
Wahid, 2012; Eesa et al., 2015; Huang and Wang, 2006). We
defined α = 0.8 for all experiments.

Table 6 – Descriptive statistics of the different sample KDD99 testing datasets after the preprocessing stage.

Feature Testing set

1000 1500 2000

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 0.004797 0.009315 0.002474 0.004816 0.002371 0.004627
2 0.533500 0.083970 0.530667 0.075719 0.533750 0.082992
3 0.548267 0.193636 0.535781 0.194063 0.557758 0.187614
4 0.629333 0.262670 0.626250 0.251403 0.595833 0.278989
5 0.183420 0.183196 0.185231 0.184793 0.171454 0.180453
6 0.196478 0.219876 0.194289 0.220194 0.183472 0.214764
7 0.000000 0.000000 0.000000 0.000000 0.000500 0.000999
8 0.004000 0.007968 0.007333 0.014540 0.004833 0.009613
9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
10 0.001600 0.003165 0.005089 0.010001 0.002617 0.005168
11 0.000000 0.000000 0.000667 0.001332 0.000250 0.000500
12 0.382000 0.472152 0.392667 0.476959 0.357000 0.459102
13 0.000038 0.000075 0.000540 0.001069 0.000405 0.000803
14 0.000000 0.000000 0.000667 0.001332 0.000500 0.000999
15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
16 0.000037 0.000074 0.000944 0.001884 0.000292 0.000583
17 0.001000 0.001994 0.001667 0.003324 0.000036 0.000071
18 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
19 0.000500 0.000999 0.002667 0.005308 0.002000 0.003984
20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
21 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
22 0.001000 0.001998 0.006667 0.013244 0.002500 0.004987
23 0.190378 0.189929 0.189108 0.186419 0.204335 0.192871
24 0.028388 0.027229 0.026115 0.021985 0.029382 0.026234
25 0.373220 0.466458 0.365427 0.461462 0.387910 0.473228
26 0.373200 0.467593 0.366880 0.463444 0.387895 0.473811
27 0.123280 0.215380 0.129473 0.224580 0.137270 0.236212
28 0.123290 0.215337 0.128673 0.223099 0.138020 0.236564
29 0.561890 0.459752 0.560007 0.461033 0.534135 0.463373
30 0.042310 0.044359 0.045580 0.047510 0.046225 0.045865
31 0.072850 0.118471 0.083833 0.136430 0.059195 0.099745
32 0.790512 0.297557 0.767511 0.318477 0.789181 0.298373
33 0.440280 0.440056 0.431325 0.425064 0.410585 0.423884
34 0.468580 0.450595 0.466207 0.444736 0.448100 0.444616
35 0.071860 0.070538 0.066747 0.061925 0.067320 0.059903
36 0.090240 0.144834 0.084973 0.134461 0.085345 0.138163
37 0.015440 0.023228 0.017753 0.026378 0.016990 0.025952
38 0.374060 0.465751 0.366613 0.462008 0.387750 0.472819
39 0.373180 0.467368 0.366513 0.463712 0.387390 0.474160
40 0.125070 0.214791 0.130207 0.222810 0.139040 0.235154
41 0.124130 0.214963 0.127520 0.220201 0.139490 0.237537
42 0.495000 0.499950 0.497333 0.499986 0.467000 0.497822

270 c om pu t e r s & s e cu r i t y 7 0 ( 2 0 1 7 ) 2 5 5 – 2 7 7



We compare the subset of features, the number of fea-
tures, the accuracy of the subset, the fitness value, and CPU
time. According to the obtained results, we deduced that the
population size p, crossover probability pc, mutation probabil-

ity pm affect the execution time but not the quality of the
resulted subset.

We selected from the obtained results the subsets of fea-
tures having the best classification accuracy. The selected

Fig. 5 – Standard deviations of the 42 features in KDD99 training datasets.

Fig. 6 – Standard deviations of the 42 features in KDD99 testing datasets.
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subsets are compared according to AIC and McFadden R2. Gen-
erally, the subset that has the lowest AIC value and the highest
R2 is the best (James et al., 2013).Table 9 illustrates the best
subsets obtained after the feature selection stage on the KDD99
datasets. Table 10 illustrates the best subsets obtained after
the feature selection stage on the UNSW-NB15 datasets. The
subsets presenting the best significant model are used to
perform the classification stage with the C4.5, RF, and NBTree
classifiers to select the one that provides the best classifica-
tion accuracy.

The classification stage is performed using Weka.The dataset
(extracted from KDD99 or from UNSW-NB15) is loaded and then
reduced using the selected subsets before starting classifica-
tion. Table 11 illustrates the best subsets and their accuracy
for the three DTs. We can deduce from these results that the
best subset that mostly represent the data is X1 for the KDD99.
X1 subset gives the best accuracy of classification with 99.90%
by using RF classifier. The X1 accuracy is almost the same as
the full features space but with only 18 features.

For the UNSW-NB15, Z7 subset provides the best accuracy
of classification which is about 81.42% by using C4.5 classi-
fier. Also, Z7 accuracy is almost the same as the full features
space but with only 20 features. Table 12 presents a descrip-
tion of the features of the two final selected subsets. The
confusion matrix of all KDD99 categories with the subset X1

by using RF classifier is illustrated in Table 13. The best DR is
obtained for DoS category with 99.98% while the worst DR is
obtained for U2R with 52.17%. This can be explained by the
limited number of instances in the training dataset for this cat-
egory of attack. But it looks promising compared to the obtained

Table 7 – Distribution of records between categories in
the KDD99 dataset after redundancy removal.

Categories Original
size

New
dataset

New
distribution

(%)

Reduction
(%)

Normal 97,278 87,832 60.33 9.71
DoS 391,458 54,572 37.48 86.06
Probe 4,107 2,131 1.46 48.11
R2L 1,126 999 0.69 11.28
U2R 52 52 0.04 0.00
Total 494,021 145,586 100 70.53

Table 8 – Distribution of records between categories in
datasets used in the classification stage.

Dataset Category Size Distribution (%)

KDD99 Normal 30,235 60.47
DoS 18,620 37.24
Probe 768 1.54
R2L 354 0.71
U2R 23 0.05
Total 50,000 100

UNSW-NB15 Normal 15,959 31.92
Backdoor 491 0.98
Analysis 564 1.13
Fuzzers 5,180 10.36
Shellcode 316 0.63
Reconnaissance 3,065 6.13
Exploits 9,541 19.08
DoS 3,501 7.00
Worms 39 0.08
Generic 11,344 22.69
Total 50,000 100

Table 9 – The best subsets of features for KDD99 datasets given by the GA-LR wrapper.

Xi Subset No. Accuracy AIC McFadden R2

Datasets size = 1000
X1 1, 2, 4, 5, 6, 8, 10, 12, 13, 23, 27, 29, 34, 35, 37, 39, 40, 41 18 0.995 52.5921 0.9894
X2 2, 4, 5, 6, 10, 13, 16, 17, 19, 23, 25, 29, 30, 36, 39 15 0.995 67.9851 0.9740
X3 4, 6, 8, 13, 16, 17, 19, 22, 23, 24, 25, 27, 28, 29, 31, 32, 37, 38, 39, 41 20 0.995 72.3113 0.9781
Datasets size = 1500
X4 5, 6, 8, 10, 12, 13, 17, 19, 23, 26, 27, 28, 30, 34, 35, 39, 40 17 0.992 133.5 0.9530
X5 1, 2, 4, 5, 8, 10, 13, 17, 19, 24, 26, 28, 29, 30, 33, 37 16 0.9933 82.3545 0.9767
Datasets size = 2000
X6 1, 4, 6, 8, 10, 12, 16, 19, 22, 23, 25, 26, 27, 29, 31, 35, 37, 40 18 0.9915 179.924 0.9488
X7 1, 2, 4, 5, 8, 10, 13, 16, 17, 22, 23, 24, 26, 28, 29, 30, 34, 35, 37, 38, 39, 41 22 0.9915 266.735 0.9203
X8 2, 3, 4, 6, 8, 10, 12, 17, 22, 23, 24, 26, 27, 33, 35, 37, 38, 39 18 0.994 179.073 0.9491

Table 10 – The best subsets of features for UNSW-NB15 datasets given by the GA-LR wrapper.

Zi Subset No. Accuracy AIC McFadden R2

Datasets size = 1000
Z1 1, 3, 4, 5, 6, 9, 11, 12, 13, 16, 20, 21, 25, 30, 33, 38, 39, 41 18 0.925 433.894 0.6878
Z2 1, 4, 9, 11, 14, 16, 18, 20, 22, 26, 27, 29, 30, 33, 37, 38, 39 17 0.924 513.049 0.6238
Z3 3, 4, 5, 11, 12, 13, 20, 22, 25, 32, 33, 34, 36, 38, 39 15 0.924 472.603 0.6526
Datasets size = 1500
Z4 2, 4, 8, 10, 11, 12, 16, 17, 18, 19, 20, 21, 23, 24, 25, 29, 31, 33, 35 19 0.928 562.641 0.7351
Z5 1, 4, 6, 7, 8, 10, 11, 13, 16, 17, 19, 20, 23, 24, 25, 26, 29, 31, 32, 33, 34, 35, 37, 42 24 0.928 550.972 0.7461
Z6 4, 8, 10, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 25, 27, 28, 31, 32, 33, 34, 35, 38, 39, 40, 42 25 0.9273 571.633 0.7367
Datasets size = 2000
Z7 2, 3, 4, 5, 6, 7, 8, 11, 15, 16, 19, 20, 24, 27, 28, 29, 30, 31, 35, 42 20 0.9235 783.107 0.7080
Z8 1, 2, 3, 4, 6, 10, 11, 14, 16, 17, 19, 23, 24, 27, 31, 32, 35, 37, 40, 41, 42 21 0.922 805.066 0.7001
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results by Lin et al. (2015), Powers and He (2008) and Sindhu
et al. (2012).

Table 14 illustrates the confusion matrix of C4.5 for all
categories over the UNSW-NB15 dataset with the subset Z7.
The best DR is obtained for Generic with 97.94% whereas the
worst is obtained for DoS with 4.11%. The reason is that
the majority of DoS instances are predicted as Exploits

which represent a new challenge to defeat in a future
work.

Now, if we consider only the normal and attack classes, the
problem of misclassification between attack categories will dis-
appear and the classification accuracy is increased. Thus, we
deduce that our proposed method gives promising results with
an accuracy of classification of about 99.91% with X1 subset for
KDD99 dataset and an accuracy of 94.65% with Z7 for UNSW-
NB15 dataset.

Tables 15 and 16 illustrate the performance of our GALR-
DT method compared to other methods using feature selection
respectively with X1 subset on KDD99 and Z7 subset on UNSW-
NB15 datasets. More precisely, we compare the feature selection
method, the number of selected features, the classifier, accu-
racy, DR, and FAR with the used classifier. X1 subset illustrates
the highest DR with 99.81% and gives a lower FAR with 0.105%.
Z7 subset provides the lowest FAR with 6.39% and a good clas-
sification accuracy compared to the other mentioned
approaches. Figs. 7 and 8 illustrate a comparison between our
proposed GALR-DT method and other IDS approaches respec-
tively on the KDD99 and the UNSW-NB15 datasets.

Table 11 – Accuracy of the three DTs with the selected
subsets.

Dataset Subset C4.5 RF NBTree

KDD99 X1 0.99804 0.99902 0.99854
X5 0.99756 0.99856 0.99788
X8 0.99752 0.99818 0.99720

All 41 0.99806 0.99914 0.99844
UNSW-NB15 Z1 0.79572 0.80092 0.79086

Z5 0.80984 0.80724 0.80730
Z7 0.81418 0.81286 0.81090

All 42 0.81490 0.81408 0.81252

The values in boldface represent the best accuracy of classifica-
tion obtained with our proposed approach for each dataset.

Table 12 – Feature description of X1 and Z7 subsets.

Subset No. Features

X1 18 duration, protocol_type, flag, src_bytes, dst_bytes, wrong_fragment, hot, logged_in, lnum_compromised, count, rerror_rate,
same_srv_rate, dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_srv_diff_host_rate, dst_host_srv_serror_rate,
dst_host_rerror_rate, dst_host_srv_rerror_rate

Z7 20 proto, service, state, spkts, dpkts, sbytes, dbytes, dttl, dloss, sinpkt, djit, swin, tcprtt, smean, dmean, trans_depth,
response_body_len, ct_srv_src, ct_dst_sport_ltm, is_sm_ips_ports

Table 13 – Confusion matrix of all categories over the KDD99 dataset with the subset X1 using RF classifier.

Actual Predicted Recall (%)

Normal DoS Probe R2L U2R

Normal 30228 1 1 3 2 99.977
DoS 3 18617 0 0 0 99.984
Probe 10 2 756 0 0 98.438
R2L 13 1 0 338 2 95.480
U2R 11 0 0 0 12 52.174
Precision (%) 99.878 99.979 99.868 99.120 75

Table 14 – Confusion matrix of all categories over the UNSW-NB15 dataset with the subset Z7 using C4.5 classifier.

Actual Predicted Recall
(%)

Normal Backdoor Analysis Fuzzers Shellcode Reconnaissance Exploits DoS Worms Generic

Normal 14478 3 48 1197 16 18 174 23 0 2 90.720
Backdoor 6 34 0 6 3 3 430 8 1 0 6.925
Analysis 57 0 56 4 0 0 439 7 0 1 9.929
Fuzzers 918 8 4 3580 56 4 587 19 1 3 69.112
Shellcode 32 2 0 69 150 7 45 10 0 1 47.468
Reconnaissance 5 2 0 3 3 2334 704 12 2 0 76.150
Exploits 143 10 14 155 35 185 8808 164 11 16 92.317
DoS 28 6 4 50 17 16 3227 144 2 7 4.113
Worms 0 0 0 2 0 1 18 3 15 0 38.462
Generic 5 1 0 22 0 0 197 9 0 11110 97.937
Precision (%) 92.381 51.515 44.444 70.362 53.571 90.888 60.209 36.090 46.875 99.731
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7. Conclusion

In this paper, we have proposed a feature selection approach
for IDS to produce the optimal subset of features that can be
used to classify the instances of KDD99 and UNSW-NB15

datasets. The proposed approach is based on three stages: a
preprocessing stage, a feature selection stage, and a classifi-
cation stage. The preprocessing stage consists of reducing the
size of the datasets through resampling, changing the attri-
bute values in a way to be handled with LR classifier, and
removing redundant records if they exist. The feature selec-
tion stage is based on GA-LR wrapper that is consists of an
interaction between a feature search which is GA and a learn-
ing algorithm which is LR. The selection of the best subset is
based on maximising the accuracy of classification and
minimising the number of features. The best resulted subsets
of features from the GA-LR wrapper are used to perform the
classification stage. The classification stage is performed by
using three decision tree classifiers namely C4.5, RF and NBTree
to evaluate the generated subsets of features and compare them
with other existing approaches.

The experimental results are promising with an accuracy
of classification equal to 99.90%, 99.81% DR and 0.105% FAR with
a subset of only 18 features for the KDD99 dataset. Further-
more, the selected subset provides a good DR for DoS category
with 99.98%. The obtained results for the UNSW-NB15 provide

Table 15 – Performance of our proposed method compared to other methods using feature selection for KDD99 dataset.

Work FS components No. Classifier Accuracy (%) DR (%) FAR (%)

Chung and Wahid (2012) IDS-RS 6 SSO 93.3 – –
Eesa et al. (2015) CFA, DT 5 None 91.99 91 3.917
Kavitha et al. (2012) BFS 7 NL – 99.02 3.19
Lin et al. (2012) SVM, SA 23 DT, SA 99.96 99.95 0.021
Sindhu et al. (2012) GA, Neurotree 16 Neurotree – 98.38 1.62
Mok et al. (2010) SFS, FELR 5 RELR 98.74 99.39 1.42
GALR-DT GA-LR 18 DT 99.90 99.81 0.105

The values in boldface represent the results obtained by our proposed approach for the KDD99 dataset.

Table 16 – Performance of our proposed method
compared to other methods using feature selection for
UNSW-NB15 dataset.

Work FS
components

No. Classifier Accuracy
(%)

FAR
(%)

Moustafa and
Slay (2016)

None 42 DT 85.56 15.78
LR 83.15 18.48
NB 82.07 18.56

ANN 81.34 21.13
EM 78.47 23.79

GALR-DT GA-LR 20 DT 81.42 6.39

The values in boldface represent the results obtained by our pro-
posed approach for the UNSW-NB15 dataset.

Fig. 7 – DR and FAR of our proposed method compared to other IDSs KDD99 dataset.
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the lowest FAR with 6.39% and a good classification accuracy
compared to the other mentioned approaches with a subset
composed of 20 features. These findings led to the fact that
the UNSW-NB15 dataset is more complex than the KDD99
dataset. Thus, we must try other approaches to improve the
accuracy of classification for the new IDS benchmark.

As a future work, it is interesting to apply the GA-LR wrapper
approach to extract the optimal subset of features for each class
with a multi-objective approach which increase the accuracy
of classification and decrease the misclassified instances. Fur-
thermore, it seems promising to use multinomial LR (Czepiel,
2002) instead of binomial LR to predict all classes and not only
for normal and attack classes.
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