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ABSTRACT Process planning and scheduling are two crucial components in a flexible manufacturing
system. Lots of novel meta-heuristics have been applied to the integrated process planning and scheduling
(IPPS) problem for an efficient utilization of manufacturing resources; nevertheless, the tricky part in real life
stems from the uncertainty in processing times. Existing publications regarding IPPS problems mainly focus
on cases with nominal or fixed processing times; nevertheless, processing time fluctuations will certainly
result in an intolerable deviation between the actual makespan and the nominal one. This research focuses
on the IPPS problem with uncertain processing times to hedge against the uncertainty in makespan. The
novel neutrosophic numbers are first introduced to model the uncertain processing times. A neutrosophic
number based mixed integer linear programming (MILP) model is established; due to the non-deterministic
polynomial (NP)-hardness and the complexity in solving the model, a variable neighborhood search (VNS)
incorporated memetic algorithm (MA) is then developed to facilitate more robust solutions. In the proposed
algorithm, the nominal makespan criterion and the deviation (robustness) criterion have been considered in a
weighted summanner. The well-known Kim’s benchmark is adopted to test the performance of the proposed
algorithm and different degrees of fluctuations are also defined in experiments. Computational results
reveal that the VNS based local search method is powerful in capturing promising solutions; competitive
solutions with superior nominal makespan and robustness have been obtained. This research presents a novel
perspective or methodology to seek more robust solutions for the uncertain IPPS problem.

INDEX TERMS Neutrosophic numbers, uncertain processing time, integrated process planning and schedul-
ing, robustness, mathematical model, memetic algorithm, variable neighborhood search (VNS), integrated
manufacturing systems.

I. INTRODUCTION
Process planning and scheduling are two important functions
in manufacturing systems [1]–[5]. Process planning bridges
the gap between designing and manufacturing; especially, it

The associate editor coordinating the review of this manuscript and
approving it for publication was Aniruddha Datta.

specifies the manufacturing sequences for all the operations
while scheduling determines the optimal starting and com-
pletion times for each operation on corresponding machines
such that the maximum completion time (makespan) can be
reduced or other criteria can be optimized [6], [7]. Tradition-
ally, the two components perform separately [8]–[10], and
due to ignoring the inherent relationship between the two
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functions, this paradigm results in many shortcomings that
have been well discussed [11], [12], such as low machine
utilizations and conflicts of resources [13]. Particularly, the
scheduling procedure will be performed after the process
planning procedure; therefore, the pregenerated process plans
may not be the suitable one in the scheduling module. In
order to take the advantage of the flexibilities in both process
planning and job shop scheduling, lots of investigations on the
IPPS problem have been performed [14]. Except the math-
ematical programming based approaches, the heuristic rule
based solution methods and agent based optimization meth-
ods, meta-heuristic algorithms have garnered wide research
attentions with relatively fruitful results observed. However,
whatever the solution methods adopted, the essence of the
optimization lies in how to handle three kinds of flexibilities:
operation flexibility (OF, also routing flexibility), sequencing
flexibility (SF) and processing flexibility (PF) [15]. Oper-
ation flexibility means that there may be more than one
available machines can be used in processing an operation.
Processing flexibility refers to the possibility in operation
selection because there may be more than one alternative
operation combinations to produce the same feature for a
part [8]. Sequencing flexibility relates to the diversity of
operation permutation since for a given set of operations, it
may have various permutations provided that the operations
satisfy the precedence constraints. The traditional sequential
paradigm in performing both the process planning procedure
and the scheduling procedure cannot take the advantage of
these flexibilities andworse still this paradigm rigidifies these
flexibilities.

It was observed that existing publications on the opti-
mization of the IPPS problem either put more emphasis on
the optimization method to shorten the makespan by using
novel algorithms or focus on multi-objective optimizations
by developing various NSGA-II based multi-objective algo-
rithms. Especially, most research papers strength the need
of optimizations of the IPPS problem with static processing
times, and researches on IPPS problem that consider real
world shop floor status have seldom been considered. Never-
theless, due to external or internal disturbances, such as time
fluctuations in workpiece loading, the shop floor status (e.g.
machining times of operations) changes dynamically [16] and
the manufacturing system often subject to many kinds of
uncertainties [17]; in such a case, deterministic IPPS problem
optimization methods suggested in existing publications can
no longer be applied to optimize such processing time varying
IPPS problems [18]; otherwise, there would be serious con-
sequences [19]. For instance, due to processing time fluctu-
ations caused by previous operations processing procedures,
the actual starting time of an operation on a certain machine
usually deviates from the the predefined value (the starting
time in the optimal schedule with respect to deterministic
models or algorithms, also the nominal starting time) and this
may further cause larger starting time deviations in process-
ing following operations because in such a case subsequent
operations will have to be put off. Consequently, the actual

scheduling scheme in the shop floormay totally different with
the predefined ‘‘optimal’’ deterministic scheduling scheme,
and the staff in shop floor will face the risk where the so-
called optimal schedule obtained using deterministic model
become totally useless [20].

In this research, we mainly focus on the IPPS problem
with uncertain processing times because the processing times
of operations in the real world usually fall within a certain
range instead of a deterministic value and more importantly
this processing time uncertainty is quite common during
manufacturing procedures compared with other unexpected
situations. Therefore, the IPPS problem with uncertain pro-
cessing times is urgent to be addressed to make the optimal
scheduling scheme becomemore practical. Nevertheless, few
researches regarding such problems have been conducted by
far due to the complexity of the problem itself as well as
the uncertain processing time modelling. To our knowledge,
similar to the off-line and the online paradigms, the solution
methods to tackle uncertain scheduling problems can be clas-
sified into two categories: the reactive scheduling method and
the proactive (or preventive) scheduling method [21]. For the
reactive scheduling method, it regenerates first an optimal
scheduling scheme for the jobs in the shop floor andwhenever
unexpected events occur, e.g. there is a large time deviation
between the actual completion time and the nominal value, a
new and updated scheduling scheme will be generated timely
for the remainder operations. Clearly, it works in an online
manner and the critical failing is that the global optimality is
not ensured because a part of operations have already been
processed. For the proactive scheduling method, it considers
processing time fluctuations in advance and the resultant
scheduling scheme has a certain immunity to processing time
fluctuations and therefore this off-line paradigm is capable to
hedge against time fluctuation of makespan.

For convenience, many researchers deemed uncertain pro-
cessing times as variables that subject to a certain distribution,
e.g. Gaussian distribution; other researchers treat uncertain
processing times as fuzzy numbers that subject to certain
membership functions [17]. However, it is usually quite diffi-
culty to identify the probability distributions or the member-
ship functions that uncertain processing times follow. Even
though the probability distribution can be determined, it usu-
ally requires lots of prior knowledge and data. Meanwhile, in
most cases, the actual processing time of an operation falls
within a certain range, e.g. [a, b], and it is quite easy to
detect the upper and lower bounds a and b of the interval; this
brings convenience to the modelling the uncertain processing
times as well as the optimization procedure. In this study, the
neutrosophic numbers are introduced in solving this uncer-
tain IPPS problem for the first time. Realizing the difficulty
in conveying people’s thinking, Smarandache in 2008 first
proposed neutrosophic numbers [22], [23], which consists of
a determinate part and an indeterminate parts. the main idea
of neutrosophic numbers corresponds to real life situations:
usually, people can only tell a certain range which a value
will fall within instead of a determined value. Typically, a
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neutrosophic number can be expressed as N = d + uI , d,
u ∈ R, where d stands for the determinate part and I , uI mean
the indeterminacy and the indeterminate parts respectively.
Particularly, a neutrosophic number will degenerate to a real
number provided that u equals 0; in the worst case where
d = 0, however, a neutrosophic number N can be expressed
as uI . Clearly, neutrosophic numbers are very suitable in
indeterminate information expressing [24]; the background of
neutrosophic numbers tallies with the situations of uncertain
processing times in machining procedures: because one only
knows the low bounds, the upper bounds and the fluctuations
of processing times, the determinate part and the indetermi-
nate part exactly corresponds to the low bounds and the fluc-
tuations of processing times respectively. In fact, applications
of neutrosophic numbers have been attracting researchers’
attentions; by far, applications of neutrosophic numbers have
been seen in (group) decision supporting [24]–[28], truss
structure optimal designing with uncertain parameters [29],
steam turbine fault diagnosing [30]. For instance, Ye et al.
developed a neutrosophic number optimization model for
truss structure design problems and their research provides
a novel and effective way for truss structures designing under
indeterminate environments [29]. Chen and Ye [25] devel-
oped a neutrosophic number based decision making tool to
select clay bricks; the projection method of neutrosophic
numbers is adopted to obtain the projection measure between
two alternatives. In this paper, we try to take the advantage of
neutrosophic numbers in expressing indeterminate informa-
tion or ambiguity of people’s cognition; uncertain processing
times in this paper are modelled as neutrosophic numbers
and corresponding optimization method will be developed
to capture a more robust scheduling scheme. Since the plain
IPPS problem is a complex NP-hard problem, the uncertain
processing times make the problem become more compli-
cated; this research therefore adopts a variable neighborhood
search (VNS) based memetic hybrid algorithm to tackle the
problem.

In general, due to the swarm intelligence in genetic algo-
rithm (GA), it is very suitable to solve large scale and com-
plex (job shop) scheduling problems; for example Li et al.
adopted the GA in IPPS optimization [9]. Compared with
other meta-heuristic algorithms, GA has the ability to retain
the diversity of individuals to avoid being trapped into local
optima. Nevertheless, even though the GA has the ability
to explore new solutions by using its swarm intelligence,
sometimes many solutions (or individuals) can still go into
local optima because the fitness landscape or the solution
space is quite complicated. In such cases, the plain GA cannot
be applied directly to the problem. Based on our observa-
tions, the best way to deal with such a situation is employ-
ing problem specific heuristic methods to further improve
the solution quality. In relatively early researches, effec-
tive problem oriented heuristic search techniques have been
frequently investigated [31]–[34]; for instance, Zhang et al.
reported a successful application of neighborhood structure
based heuristic optimization technique for the flexible job

shop scheduling problem [35], [36]. It comes to our mind
that the optimization quality will be improved if both the
meta-heuristic algorithm and the problem-oriented heuristic
method are employed. In other words, the hybrid of both the
constructive heuristics as well as the improvement heuris-
tics should be included and hybridized [37], and thus, the
memetic algorithm (MA) [38] can be adopted in this research.
In this research, the N5 neighborhood structure [32] as well
as the neighborhood structure proposed by mastrolilli [33]
(abbreviated as neighborhood Nm in this paper) are applied
in the VNS local search method to intensify the search ability
of the MA. The N5 neighborhood structure has high-cost
performance because only swapping the first and the last two
critical operations are needed; the swapping process can be a
tiny perturbation on an individual butmay receive appreciable
improvements in solution quality. The neighborhood Nm is
developed based on the critical path, which determines the
makespan of a schedule scheme. It tries to remove the opera-
tions on the the critical path to another alternative machine
such that the original critical path will be broken and the
length of the new critical path may be shortened. Instead of
following a trajectory of the optimization of a single solution,
the VNS search technique can explore neighborhoods of
current incumbent solutions and perform systematic jumps
between neighborhoods to achieve more improvements [39].
Especially in scheduling problem optimizations, when a solu-
tion cannot be further optimized by a single local search
technique, the VNS local search method provides a new
perspective for further improvements since the solution may
be improved by other neighborhood jumps, and this is the
reason why the VNS local search method is applied in this
research. By far, the successful applications of the VNS local
search algorithm in solving complex problems have been
reported across many industrial sectors, such as flexible job
shop scheduling [40], bicycle sharing system balancing [41],
and the vehicle-routing problem with time windows [42], etc.

This research tries to develop an effective optimization
approach to capture more promising and robust scheduling
schemes for the IPPS instances. In this research, neutrosophic
numbers enable the modeling of the uncertain processing
times and further the neutrosophic number based optimiza-
tionmethod is developed. One of themerit of this research lies
in that it provides a novel perspective or a general optimiza-
tion framework for the the IPPS problem which is inevitably
contaminated with uncertain parameters (processing times).
The novelty of this research can be concluded as follows:

• This research presents a novel perspective to facilitate
robustness improvement as well as makespan reduc-
tion in uncertain IPPS problem optimization. Espe-
cially, neutrosophic numbers are first introduced in
meta-heuristic algorithms to model uncertain processing
times. Such optimization method has not been investi-
gated in existing research publications.

• Due to the complexity in solving theMILPmodel as well
as the problem itself, we develop an effective memetic
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algorithmwhere the problem specific N5 and Nm neigh-
borhood structures in VNS local search method are
considered to obtain more promising results. Both the
robustness criterion and the makespan criterion have
been optimized in a weighted sum manner because in
most cases the deterioration of the makespan criterion
will occur if only the robustness is considered in the
algorithm.

• A novel neutrosophic number based MILP model is
proposed to accommodate processing time fluctuations.

The remainder of the paper is organized as follows. We
briefly review some relative articles concerning the uncer-
tain IPPS problem or uncertain scheduling problems in next
section. After this, some basic concepts and arithmetic oper-
ations related to neutrosophic numbers together with the
neutrosophic number based MILP model will be proposed.
Section IV demonstrates the details as well as the work flow
of the proposed memetic algorithm. Section V performs the
experimental study, where the well-known Kim’s benchmark
[13] is adopted to test the proposed algorithm, and moreover,
we compare the resultant solutions and analyze the results.
The conclusion as well as some future research directions will
be presented in the last section to finalize this paper.

II. RELATED LITERATURE
The IPPS problem has been investigated extensively several
years before [5], [13], [43]–[47]. Traditional research on this
problemmainly considers themakespan reduction with deter-
ministic processing times using novel algorithms or keeps
an eye on multi-objective optimization methods [48]; espe-
cially, the variants of non-dominated sorting techniques. For
example, Petrovic et al. proposed a chaotic PSO algorithm
to address the deterministic IPPS problem; the machine uti-
lization criterion and the mean flow time criterion have also
been considered [49]. In recent years, the research attention
of the IPPS problem has been extended and more practical or
real life situation oriented factors have been included in opti-
mization of the IPPS problem [50]. For instance, Seker et al.
developed a hybrid heuristic model which combines both a
clustered chromosome structure based GA and fuzzy neural
network (FNN) for the IPPS problem to accommodate the
changing conditions including order cancelations, uncertain
due date, machine breakdowns, etc., [51]. In our opinion,
hedge against the processing time uncertainty and keep the
robustness of a schedule scheme is of top priority since the
fluctuations of starting times and ending times of opera-
tions will disturb the predefined optimal schedule scheme
and subsequent manufacturing procedures will also be put
off. In such a case, the staff in the shop floor are exposed
to the risk that the so-called ‘‘optimal’’ schedule obtained
by a deterministic approach performs poorly in real world
manufacturing processes [20]. Although periodic and event-
driven rescheduling of unprocessed operations can to a cer-
tain extent improve the worsening production situations, this
rescheduling for partial operations cannot ensure the global

optimality [14], and usually, the makespan after rescheduling
is longer than that of the optimal scheduling scheme. In the
following, we mainly discuss the literature that deal with
uncertain parameters in scheduling.

The first kind of methods to deal with uncertain processing
time in scheduling is the chance constrained programming
(CCP) approaches; this approach has first been considered
in solving scheduling problems with uncertain parameters
according to existing research publications [52]–[55]. By this
method, a MILP model that relates to the indeterministic
parameters can be easily converted into a deterministic model
and hence it can be solved using commercial solvers. Elyasi
and Salmasi give an example on the application of such
method [55]; the singlemachine scheduling and the flow shop
scheduling problems are studied and the processing times
are assumed to be random variables. Recently, Liu et al.
performed a study on the stochastic flow shop scheduling
problem and a new distributionally robust chance constrained
model is proposed [56]. Other than scheduling problems,
chance constrained programming based approaches have also
been applied in other problems, such as fast-charging sta-
tion planning [57], water resources planning and pollution
controlling [58], disassembly sequence planning [59], etc.
However, for medium or large sized job shop scheduling
problems the computing time in solving resultant determin-
istic mathematical models generated by the CCP method is
quite long and this is due to the nature of NP-hardness.

The fuzzy number based methods, belonging to the other
type of approaches in addressing indeterministic scheduling
problems, have also been considered by researchers. Due to
the nature of fuzzy numbers, scheduling problems with fuzzy
processing times can also be solved by meta-heuristics and
this brings convenience to the optimization of such uncertain
NP-hard problems; by far, meta-heuristics are deemed as
one of the most effective and efficient approaches in dealing
NP-hard problems. Wang et al. presented a hybrid artificial
bee colony (HABC) algorithm for the fuzzy flexible job
shop scheduling problem [60]; the indeterministic processing
times are modeled with triangular fuzzy numbers and corre-
sponding encoding and decoding techniques were also devel-
oped. Lei developed an efficient decomposition-integration
genetic algorithm (DIGA) to minimize the maximum fuzzy
completion time [61]; the uncertain processing times are also
mapped into triangular fuzzy numbers. They further proposed
a newmax operation of two fuzzy numbers by approximation
to replace the Sakawa criterion. In fact, Sakawa and Mori are
the pioneers who first modelling uncertain processing time
with fuzzy numbers [62]: when they first applied triangular
fuzzy numbers in solving the job shop scheduling prob-
lem with uncertain processing times and duedates the max
operator of fuzzy numbers was approximated by a certain
formula because the result after the max operator may not
become a triangular fuzzy number, and this is the flaw of the
fuzzy number based solution approach in solving uncertain
scheduling problems. Later, Wang et al. performed a sim-
ilar research for the flexible job shop scheduling problem
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with fuzzy processing time by using an effective estimation
of distribution algorithm (EDA) [63]; again, the uncertain
processing times were modeled with triangular fuzzy num-
bers. In recent years, Gao et al. considered triangular fuzzy
processing times and new job arrivals simultaneously in a
flexible job shop and a two-stage artificial bee colony (TABC)
algorithm with several improvements is adopted to minimize
the fuzzy makespan [64]. Jamrus et al. presented a hybrid
particle swarm optimization algorithm where genetic oper-
ators are applied for flexible job shop scheduling problem in
semiconductor industry [65]; the uncertain processing times
are also expressed using triangular fuzzy numbers. Other than
triangular fuzzy numbers, other fuzzy numbers, such as trape-
zoidal fuzzy numbers, are seldom used to represent uncertain
processing times. However, in some cases, one don’t know
actual processing times follow which probability distribution
and only the rough low bounds and the upper bounds of
processing times are available in most cases; therefore, actual
processing time in this case cannot be presented as triangu-
lar fuzzy numbers unless the membership function obtained
from historical data is available. This is the other flaw of
applying fuzzy numbers for uncertain scheduling problems.
Different with traditional fuzzy numbers, only the upper and
the low bounds are required in neutrosophic numbers; this
brings convenience in problem optimization.

Except the two approaches mentioned above, other meth-
ods have also been reported. Haddadzade et al. considered
the stochastic process time IPPS problem, and a two stage
method is proposed: the CAPP system first generates all the
process plans and four near-optimal process plans are selected
later to build a robust scheduling scheme [6]; however, their
method splits the process planningmodule and the scheduling
module and the selected four process plans may not the best
one in the scheduling module. Horng et al. suggested a meta-
heuristic algorithm called evolutionary strategy in ordinal
optimization (ESOO) for the stochastic job shop schedul-
ing problem to minimize the sum of storage expenses and
tardiness penalties [66]; the whole algorithm was divided
into two stages: the rough stage and the softening proce-
dure. Wang et al. developed a novel decomposition-based
holonic approach (DBHA) to minimize the makespan for
the flexible flow shop scheduling problem with stochastic
processing times [67]. The Petri net based method is also
covered. Liu et al. presented a Petri net based model for an
emergency response process constrained by resources and
uncertain durations [68]. In this research, we adopt neutro-
sophic numbers to present uncertain processing times and
a novel MILP model with VNS based solution approach is
proposed to hedge against the uncertainty and improve the
robustness of the resultant scheduling scheme.

III. MATHEMATICAL MODELLING
A. PROBLEM DESCRIPTION
The IPPS problem can be defined as [69]: Given a set of n
parts (jobs) to be processed on m machines with operations

FIGURE 1. A network graph.

including alternative manufacturing resources, select the suit-
able manufacturing resources and sequence the operations
so as to determine a schedule in which the precedence con-
straints among operations can be satisfied and the corre-
sponding objectives, e.g. the robustness and the makespan
criteria, can be optimized. In this research, the actual process-
ing time of each operation on each available machine will fall
within a certain range and can be presented as a neutrosophic
number.

Usually, jobs to be processed in the IPPS problem are rep-
resented by network graphs shown in Figure 1. The starting
node and the ending node are dummy nodes respectively;
they mean the start and the completion in processing a job.
Other nodes in figure 1 are operation nodes and OR nodes
(marked with ‘‘OR’’(s)). In each operation node, Operation
6 in Figure 1 for example, the operation ID and the available
machines which are eligible to process this operation with
corresponding nominal processing times are provided. There-
fore, Operation 6 in the figure can be provided by Machines
1 and 5 with corresponding nominal processing times 42 and
38 respectively. If an arrow comes from node A to node B, it
implies that operationA should be processed before operation
B directly or indirectly. An operation path that begins at an
OR node and ends as it merges with other paths is called an
OR link path [15], and only the operation nodes in exactly
one of the two operation paths will be visited. In the case of
Figure 1, the two operation paths are Operations 9, 10, 11 and
Operations 12, 13. It should be noted that some bifurcations
are not caused by ‘‘OR’’ nodes, and all the operations in link
paths are needed to be visited; for example, Operations 2,
3 and Operations 4, 5 should all be visited. A job in IPPS
problem may have a large number of feasible process plans
depending on different operation permutations because any
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operation permutations are feasible as long as the operations
satisfy the precedence relationships expressed by the one-way
arrows in the network graph. In many cases, the precedence
relationships of some operations are not fixed (e.g. operations
5 and 9 in Figure 1) because there are no arrows that link
these operations. Thus, OperationOi may not appear between
OperationsOi−1 andOi+1, and this is quite different from the
case in (flexible) job shop scheduling problems. Two possible
process plans in Figure 1 can be (7→ 1→ 4→ 8→ 12→
13 → 2 → 5 → 3 → 6 → 14) and (1 → 7 → 2 → 8 →
4→ 9→ 5→ 10→ 3→ 11→ 14→ 6).
The network graph reflects the three kinds of flexibilities

as mentioned in Section I. Operation flexibility relates to the
case where most operations in the network graph have more
than one available machines. Sequencing flexibilities means
one job can have many alternative operation permutations
(process plans) depending on the precedence relationships
expressed by the arrows between operations in a network
graph. The processing flexibility can also be expressed by
the network graph: only the operations belonging to one of
the OR link paths will be selected. Therefore, the essence
of the IPPS optimization is to make a full use of the three
flexibilities to make a smaller makespan value and obtain a
more robust scheduling scheme.

B. PRELIMINARIES
Neutrosophic number operators are required to be defined.
Three neutrosophic number operators, e.g. the addition oper-
ator, the maximization operator and the ranking operator, are
included in this research. The addition operator is used to
determine the completion time of an operation; themaximiza-
tion operator is adopted to calculate the starting time of an
operation, and the the ranking operator is included to compare
two neutrosophic numbers so as to determine the maximum
complection time (makespan).

Smarandache first proposed the concept of a neutrosophic
number [22], [23]: N = a + bI , where a and b are two
real numbers while I is the indeterminacy which satisfies
I2 = I and 0 · I = 0. Thus, a neutrosophic number N =
2.4 + 0.4I , I ∈ [0, 0.5] means that the determinacy is 2.4
and the indeterminacy can vary in the interval [0, 0.2]; it is
equivalent toN ∈ [2.4, 2.6]. Further, it can also be expressed
as N = 2.4 + 0.2I , I ∈ [0, 1]. Let N1 = a1 + b1I and
N2 = a2 + b2I be two neutrosophic numbers, Smarandache
gives the following operators [22], [23]:

1.N1 + N2 = a1 + a2 + (b1 + b2)I ;

2.N1 − N2 = a1 − a2 + (b1 − b2)I ;

3.N1 × N2 = a1a2 + (a1b2 + b1a2 + b1b2)I ;

4.
N1

N2
=
a1
a2
+
a2b1 − a1b2
a2(a2 + b2)

I , a2 6= 0, a2 + b2 6= 0. (1)

Therefore, by the addition operator, the sum of two neutro-
sophic numbers, N1 = 2.4+ 0.2I and N2 = 0.8+ 0.4I , I ∈
[0, 1], is 3.2+ 0.6I .
The ranking method is used to compare two neutrosophic

numbers; based on the related investigation [70], Ye in 2016
proposed the neutrosophic number oriented ranking method
[26]: let Ni = ai+biI , I ∈

[
β−, β+

]
, i = 1, 2, 3, · · · , n be

an any neutrosophic number with ai, bi, β−, β+ ∈ R. The
possibility degree can be defined as follows to compare two
neutrosophic numbers Ni = ai+biI and Nj = aj+bjI as (2),
shown at the bottom of this page.

To compare n neutrosophic numbers Ni = ai + biI , i =
1, 2, 3, · · · n, one should perform pairwise comparisons
between any two neutrosophic numbers using Eq.2: Pij =
P(Ni ≥ Nj); the matrix of possibility degrees, P = (Pij)n×n,
can then be constructed [26], and clearly, the elements of the
matrix follow that Pij ≥ 0, Pij + Pji = 1, and Pii = 0.5.
The ranking order of the i−th neutrosophic number can be
calculated with Eq.3 [26].

ri =

(∑n
j=1 Pij +

n
2 − 1

)
n (n− 1)

(3)

The maximization operator used in this research is quite
easy. An operation can be started to process only when
its job predecessor (JP) and the machine predecessor (MP)
are completed, whose completion times are also neutro-
sophic numbers. Suppose there are two neutrosophic num-
bers representing the completion times of JP and MP, e.g.
N1 = a1 + b1I , N2 = a2 + b2I , I ∈

[
β−, β+

]
; the

starting time of the current operation can be defined as[
max{a1 + b1β−,a2+ b2β−},max{a1 + b1β+, a2+ b2β+}

]
,

and it is also a neutrosophic number after further
transformations.

C. MODEL BUILDING
Based on our observation, neutrosophic number based math-
ematical models have not been considered. In this section, we
try to establish a neutrosophic number based MILP model to
reduce the total completion time, which is also a nutrosophic
number. According to our previous research, TheMILPmod-
els of the IPPS problem can be divided into two categories:
Type-1 models [71] and Type-2 models [15]. The essential
difference of the two kinds of models is that all the possible
process plans should be generated when Type-1 models are
applied. In general, MILPmodels of scheduling problems can
be expressed as:

min /max
x,y

cT x

s.t. Ax+ By ≤ p

Ex+ Fy = e

Pij = P(Ni ≥ Nj) = max
{
1−max

(
(aj + bjβ+)− (ai + biβ−)

(ai + biβ+)− (ai + biβ−)+ (aj + bjβ+)− (aj + bjβ−)
, 0
)
, 0
}

(2)
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xmin ≤ x ≤ xmax

y = 0, 1 (4)

Further, as the case of a complex that can be divided into
real and imaginary parts, a neutrosophic number also consists
of two parts: the determinacy and the indeterminacy: z =
z+ z̃I . By applying the multiplication rule in Formula 1 and
regarding a real number a as a special neutrosophic number
z = a+ 0I , the model in Formula 4 can be reformed by two
submodels:

min /max
x̄,y

c̄T x̄

s.t. Āx̄+ B̄y ≤ p̄

Ē x̄+ F̄y = ē

x̄min ≤ x̄ ≤ x̄max

y = 0, 1 (5)

min /max
x̃,y

(
c̄T x̃+ c̃T x̄+ c̃T x̃

)
I

s.t. Ā̃xI + Ãx̄I + Ã̃xI + B̃yI ≤ p̃I

Ē̃xI + Ẽx̄I + Ẽ̃xI + F̃yI=̃eI

x̃minI ≤ x̃I ≤ x̃maxI

y = 0, 1 (6)

Formula 5 is totally equivalent to the plain MILP models
such as the one in Formula 4; nevertheless, since variables x̄
and y both appear in the two submodels, they should be opti-
mized simultaneously. After eliminating the indeterminacy I
in the second submodel, both of the models can be combined
as shown in Formula 7.

min /max
x̃,x̄,y

(
c̄T x̃+ c̃T x̄+ c̃T x̃

)
+ c̄T x̄

s.t. Āx̄+ B̄y ≤ p̄

Ē x̄+ F̄y = ē

Ā̃x+ Ãx̄+ Ã̃x+ B̃y ≤ p̃

Ē̃x+ Ẽx̄+ Ẽ̃x+ F̃y=̃e

x̄min ≤ x̄ ≤ x̄max

x̃min ≤ x̃ ≤ x̃max

y = 0, 1 (7)

After solved by corresponding solvers, the optimal solu-
tion c̄T x̄ +

(
c̄T x̃+ c̃T x̄+ c̃T x̃

)
I is obtained. Based on

our prevoiusly proposed Type-2 MILP model [15], the
neutrosophic number based MILP model for the uncer-
tain IPPS problem can thus be established. Some assump-
tions are made: 1)Job preemptions are not allowed; each
machine can process one job at a time and each job can
only be processed by one machine at any time. 2)Jobs
are released at time zero. 3)The set up times as well as
transmission times are merged into processing times. 4)a
job will be immediately transferred to the next machine
once it is finished on current machine. Corresponding
sets, subscriptions, parameters, etc. are first introduced as
follows.

Subscripts & Notations
i, i′ jobs, 1 ≤ i, i′ ≤ |n|,
j, j′ operations, 1 ≤ j, j′ ≤ |ni|,
k, k ′ machines,
h combinations,
Oij the j-th operation of job i,
Oihj the j-th operation of job i using the h-th

process plan combination of that job.
Sets & Parameters
A a very large positive integer,
p̄ijk + p̃ijk I the neutrosohic processing time of Oij on

machine k; p̄ijk and p̃ijk are the determinacy
and the indeterminacy parts of a neutro-
sophic number respectively,

Rih the set that contains the operations belong-
ing to the h-th combination of job i,

Vijj′ 1, if Oij is to be processed before Oij′ repre-
sented directly by the network graph (if there
is an arrow coming from node j to node j′

in the network graph of job i, then Vijj′ =
1); 0, otherwise; This parameter can only
express precedence relationships for partial
operations.

Ki the set of combinations of job i,
n the set of all the jobs,
ni the set of all the operations in a network

graph of job i,
Mij the set of available machines for Oij,
POSij the pre-ordered set of Oij; it contains all the

operations that should appear before Oij,
BOSij the back-ordered set ofOij; it contains all the

operations that should appear after Oij,
Qijj′ 1, Oij should be processed directly or indi-

rectly before Oij′ ; 0, otherwise.
Because there exist operations with no precedence rela-
tionships, the parameter Vijj′ is not enough to distinguish
and filtrate the operations that have no precedence rela-
tionships. The pre-ordered set (POS) and the back-ordered
set (BOS) as well as parameters Qijj′ are constructed
based on the parameters Vijj′ using the algorithm given in
Algorithm 1 [15].
Variables

C̄max + C̃maxI makespan; C̄max and C̃max are the deter-
minacy and the indeterminacy parts,

Yih 1, if the h-th combination of job i is
selected; 0, otherwise,

Zijj′ 1, if operation Oij is processed directly
or indirectly before Oij′ ; 0, otherwise,

Xihjk 1, if operation Oihj is processed on
machine k; 0, otherwise,

C̄ihj + C̃ihjI the complection time of Oihj; C̄ihj and
C̃ihj are the determinacy and the inde-
terminacy parts.

Objective(s)
The objective is to minimize the maximum neutrosophic

completion time; from Formula 7, the objective contains two
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Algorithm 1 Determine Parameters Qij,j′

for j := 1 to |ni| do

for j′ := 1 to |ni| do

if (j 6= j′)and(Vij,j′ = 1) then
Qij,j′ := 1

end if
end for

end for
for j := 1 to |ni| do

for j′ := 1 to |ni| do

for j′′ := 1 to |ni| do

if (j 6= j′)and(j′ 6= j′′)and(j 6= j′′)and(Qij,j′ =
1)and(Qij′,j′′ = 1) then
Qij,j′′ := 1

end if
end for

end for
end for

parts (c̄T x̄ and
(
c̄T x̃+ c̃T x̄+ c̃T x̃

)
), and therefore, both the

nominal makespan value as well as the fluctuation of the
makespan will be minimized.

min C̄max + C̃max (8)

Constraints
Constraint set 9 means that exactly one operation com-

bination should be selected for each job. The ‘‘operation
combination’’ contains the operation nodes performingwhich
a part (job) can be complete and precedence relationships
between operations are not considered in the combination; it
can be generated by judging the OR link paths in a network
graph and picking several operations in a network graph. For
instance, there are two operation combinations (operations
1-11,14) and (operations 1-8,12-14) in the network graph in
Figure 1. ∑

h∈Ki

Yih = 1, ∀i ∈ n (9)

Each operation in the selected operation combination will be
allocated to one of its alternative machines, and unselected
operations should be eliminated. Constraint set 10 undertakes
this task; if a combination is not selected, the variable Yih is
set to 0 and hence operations in this combination will not be
assigned to any machines.∑

k∈Mij

Xihjk = Yih, ∀i, h ∈ Ki, j ∈ Rih (10)

For the unselected operations that belong to the h-th com-
bination, corresponding completion times are set to zero;

otherwise, completion times of the selected operations are
determined by other constraints.

A · Yih ≥ C̄ihj, ∀i, h ∈ Ki, j ∈ Rih (11)

A · Yih ≥ C̃ihj, ∀i, h ∈ Ki, j ∈ Rih (12)

For two operations that belong to the same jobs and have
a direct precedence relationship (Vijj′ = 1 or Vij′j = 1), the
completion times of the two operations can be determined by
the constraints as follows.

C̄ihj′ ≥ C̄ihj +
∑
k ′∈Mij′

Xihj′k ′ p̄ij′k ′ ,

∀i, h ∈ Ki, j, j′ ∈ Rih, j 6= j′, Vijj′ = 1 (13)

C̃ihj′ ≥ C̃ihj +
∑
k ′∈Mij′

Xihj′k ′ p̃ij′k ′ ,

∀i, h ∈ Ki, j, j′ ∈ Rih, j 6= j′, Vijj′ = 1 (14)

As mentioned above, some operations in an operation com-
bination have no precedence relationships; and the set POSij,
BOSij as well as parameters Qijj′ are constructed to eliminate
the operations that have precedence relationships. Suppose
there are two operations Oij and Oij′ ; if Oij′ appears in the
set POSij or BOSij, then it means that the two operation have
a precedence relationship; otherwise, constraints should be
introduced to ensure there is exactly one precedence relation-
ship between two operations that initially have no precedence
relationship. For example, operations 1 and 4 in Figure 1 will
certainly appear in POS of operation 5, and operation 6 will
appear in BOS of operation 5; we have Qi1,5 = 1, Qi4,5 =
1, Qi5,6 = 1. However, operation 9 has no precedence
relationships with operation 5, and it will never appear inPOS
or BOS of operation 5; both Qi9,5 and Qi5,9 equal zero. For
such operations, the following constraint set is introduced.

Zijj′ + Zij′j = 1, ∀i, j, j′ ∈ ni , j 6= j′

Qijj′ + Qij′j = 0 ,
(
orj, j′ /∈ POSij, j, j′ /∈ BOSij

)
(15)

Following this, the completion times of such operations
should be determined; constraint sets 16 and 17 schedule the
operations that have no precedence relationship.

C̄ihj′ ≥ C̄ihj +
∑
k ′∈Mij′

Xihj′k ′ p̄ij′k ′ − A
(
1− Zijj′

)
,

∀i, h ∈ Ki, j, j′ ∈ Rih, j 6= j′ (16)

C̃ihj′ ≥ C̃ihj +
∑
k ′∈Mij′

Xihj′k ′ p̃ij′k ′ − A
(
1− Zijj′

)
,

∀i, h ∈ Ki, j, j′ ∈ Rih, j 6= j′ (17)

For two operations that will be processed by the same
machine, the sequence is required to be determined. The basic
idea is that if the precedence relationship of any two oper-
ations to be processed by the same machine is determined,
then all the operations on the samemachine will be sequenced
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properly without any contradictions. Thus, constraints 18-21
are developed.

C̄i′h′j′ ≥ C̄ihj + Xi′h′j′k ′ p̄i′j′k ′

−A
(
3−Wiji′j′ − Xihjk − Xi′h′j′k ′

)
∀i, i′, i 6= i′, h ∈ Ki, h′ ∈ Ki′ , j ∈ Rih,

j′ ∈ Ri′h′ , k, k
′
∈ Mij ∩Mi′j′ , k = k ′ (18)

C̃i′h′j′ ≥ C̃ihj + Xi′h′j′k ′ p̃i′j′k ′

−A
(
3−Wiji′j′ − Xihjk − Xi′h′j′k ′

)
∀i, i′, i 6= i′, h ∈ Ki, h′ ∈ Ki′ , j ∈ Rih,

j′ ∈ Ri′h′ , k, k
′
∈ Mij ∩Mi′j′ , k = k ′ (19)

C̄ihj ≥ C̄i′h′j′ + Xihjk p̄ijk − A ·Wiji′j′

−A
(
2− Xihjk − Xi′h′j′k ′

)
∀i, i′, i 6= i′, h ∈ Ki, h′ ∈ Ki′ , j ∈ Rih,

j′ ∈ Ri′h′ , k, k
′
∈ Mij ∩Mi′j′ , k = k ′ (20)

C̃ihj ≥ C̃i′h′j′ + Xihjk p̃ijk − A ·Wiji′j′

−A
(
2− Xihjk − Xi′h′j′k ′

)
∀i, i′, i 6= i′, h ∈ Ki, h′ ∈ Ki′ , j ∈ Rih,

j′ ∈ Ri′h′ , k, k
′
∈ Mij ∩Mi′j′ , k = k ′ (21)

Finally, constraint sets 22-23 determine the makespan.

C̄max ≥ C̄ihj, ∀i, h ∈ Ki, j ∈ Rih (22)

C̃max ≥ C̃ihj, ∀i, h ∈ Ki, j ∈ Rih (23)

Since the same indeterminacy I is adopted in the model-
ing process, initial test results indicate that the MILP based
method is useless due to the NP-hardness of the problem;
one cannot obtain even a feasible solution in a reasonable
period of time. Especially, compared withMILPmodel of the
deterministic IPPS problem, more variables and constraints
are added in the proposed model; this increases the com-
plexity in solving the problem and massive binary variables
with complex constraints hinder the application of MILP
based method. Therefore, we turn to meta-heuristic algo-
rithms which can capture optimal or near optimal solutions
in reasonable time.

IV. VNS BASED MEMETIC ALGORITHM
Moscato proposed the memetic algorithm [72]; it applies
local heuristic search method in genetic algorithm to simulate
the cultural evolution process. The N5 and Nm neighborhood
structures together with VNS local search method are applied
in this paper to intensify the search ability. Many successful
applications of MA in complex discrete problems optimiza-
tion have been reported and it is the reason we adopt this
swarm intelligence based soft computing technique to address
the uncertain IPPS problem. Due to the problem oriented
local search method, the proposed MA can achieve more
promising scheduling schemes than GA or other evolutionary
algorithms.

FIGURE 2. Individual and crossover operator.

A. GENETIC OPERATORS
In the proposed MA, each chromosome represents an indi-
vidual, and it is mapped into a feasible solution through
decoding the individual. The coding scheme adopted in this
research is a combination of operation combination selection,
machine selection, and operation permutation; as depicted in
Figure 2a) an individual consists of three parts: the schedul-
ing string, the process plan string, and the operation string.

According to the modelling strategy in Sec. III, there are
at least one operation combination, where all the necessary
operations to complete a job are available; the only number
in the process plan string represents the selected operation
combination ID of a job. Each job has an operation string
as well as a process plan string; the process plan string is
placed at the bottom of each operation string. Operations
in a selected operation combination of a job are sequenced
properly to follow the precedence requirements indicated in
the corresponding network graph by using the binary tree
method [73], and the operation ID with the corresponding
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machine of an operation are placed in a pair of parentheses in
each position in the operation string of that job. The amount
of positions in an operation string (the length of an operation
string) depends on which operation combination a job will
choose and therefore it is equal to |Rih|. The number of
process plan strings as well as that of operation strings is
exactly the amount of jobs to be scheduled in an instance, e.g.
|n|. The scheduling string in an individual is a permutation
of operations IDs; the amount of positions in the scheduling
string is

∑
i
|Rih|max. For the case when the amount of oper-

ations in the selected combination of a job is less than its
maximum one, e.g. |Rih| < |Rih|max, corresponding empty
positions will be filled with a total of

∑
i
(|Rih|max − |Rih|) 0s.

The proposed coding scheme adopts the operation based
paradigm: if number j in scheduling string appears exactly
k times, it is the operation that appears in the k−th position
in the operation string of job j. The advantage of this coding
scheme is that it avoids any possible infeasibility during the
decoding process. According to the case in Figure 2a), there
are three jobs in the instance, and they have 3, 2, and 4 opera-
tions respectively with selected operation combination IDs 3,
1, and 2. The number in the third position of the scheduling
string is 3; since the number appears for the second time, this
means that the operation currently scheduled is in the second
position in the operation string of job 3; it is operation 2 of
job 3 and it will be processed by machine 2 according to
Figure 2a).
The crossover operator includes two parts: the crossover

between jobs and the one between process plans of the same
job. For two selected parents individuals, randomly select
some jobs and exchange the operation strings as well as the
process plan strings of the selected jobs; keep other operation
strings and process plan strings unchanged. For example,
jobs 2 and 3 are selected in Figure 2b) and the operation
strings with process plan strings are exchanged. Since differ-
ent operation combinations of the same job may have distinct
numbers of operations, this will affect the scheduling string,
and the crossover process (or the patch procedure) on the
scheduling string is performed. As illustrated in Figure 2b),
the job IDs of the unselected jobs are kept in the same
positions; the empty positions of one of the offsprings, e.g.
O1 in the figure, are filled with job IDs of the selected jobs in
the other parent individual, e.g. P2, as the same sequence in
P2; finally, the empty positions are filled with 0s: because job
3 in parent 1 before crossover has three operations, therefore
job 3 in offspring O2 also has three operations and a 0 will
be filled in the empty position in scheduling string of O2. By
this method, two offsprings can be generated. This is the first
level crossover operator. The second crossover procedure is
performed between two operation stings of the same job with
the same combination ID in process plan string; the single
point crossover [74], as shown in Figure 2c), is adopted to
keep the feasibility of an individual. The operations before
the crossover point in both the two strings are kept as they are
and the positions after the crossover point are filled with the

rest operations that have never appeared before the crossover
point in the other string with the corresponding sequence.
Such crossover procedure can take the advantage of sequence
flexibility, since it allows a set of operations can have various
feasible permutations.

In neutrosophic environment, the resultant makespan
is also a neutrosophic number; corresponding scheduling
method will also be considered. Unfortunately, existing
decoding methods are mainly developed for scheduling prob-
lems with deterministic processing times. The decoding pro-
cedures used in this research are described as follows.

1. Determine the proper processing route of operations
according to the scheduling string and the operation
string in an individual. The operations will thus be pro-
cessed one by one.

2. Determine the corresponding machine, e.g. machine k ,
and neutrosophic processing time, e.g. p̄ijk + p̃ijk I , for
each operation in the processing route.

3. Check every idle time slot on the targeted machine.
Suppose the finishing times of the MP of Oi′j′ and
the JP of Oij′′ are N1 = MT k + M̃T k I1, and N2 =

JT ij′k ′+ J̃T ij′k ′ I2, respectively; the current operation can
be inserted in this time slot only if max{N1, N2}+ p̄ijk+
p̃ijk I ≤ N3, where N3 is the starting time of the current
operation. In particular, if the current operation has no JP
orMP, set the starting time of the current operation as 0+
0I and the finishing time of the operation is p̄ijk + p̃ijk I .

4. Check if the current operation is the first operation on the
corresponding machine; if so, set the starting time of the
operation as 0+0I and the finishing time of the operation
is p̄ijk + p̃ijk I ; otherwise, the starting time can be deter-
mined using the maximization operator between the
machine available time MT k + M̃T k I1, I1 =

[
β−1 , β

+

1

]
and the job available time JT ij′k ′ + J̃T ij′k ′ I2, I2 =[
β−2 , β

+

2

]
(operation Oij′ is processed before Oij and

machine k ′ is usually not exactly the machine k): the
starting time of the operation Oij is ST ijk + S̃T ijk I =
[max{MT k+M̃T kβ

−

1 , JT ij′k ′+ J̃T ij′k ′β
−

2 },max{MT k+
M̃T kβ

+

1 , JT ij′k ′ + J̃T ij′k ′β
+

2 }]; based on the starting
time, the completion time of the operation Oij can be
calculated by using the addition operator of neutrosophic
numbers.

5. Return to Step 2. and schedule operations one by one till
all the operations are assigned to machines properly.

An illustrative example is given here for a better under-
standing of the active scheduling based decoding procedure.
There are three machines and three jobs in Figure 3. The
starting time of the first operation on each machine is 0+ 0I ,
and therefore operations J1.1, J2.1, J3.1 can be processed
on time 0; however, their finishing times are neutrosophic
numbers and the fluctuations are marked in the figure. In
assigning operation J1.3 on machine M3, this operation
should be started after both its machine predecessor J3.1 and
job predecessor J1.2; according to the maximization operator
of neutrosophic numbers, the starting time of operation J1.3
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FIGURE 3. An example of decoding.

is determined by the finishing time of operation J1.2 because
the finishing time of operation J1.2 is later than that of opera-
tion J3.1. In addition, operation J3.2 is assigned on machine
M2 and the time slot between operations J2.1 and J1.2 is
checked to judge whether it is appropriate to insert operation
J3.2 in this slot. After calculating the possible finishing time
of operation J3.2 and applying the ranking method, this time
slot is feasible and operation J3.2 is thus inserted between
operations J2.1 and J1.2; otherwise, it can only be appended
after operation J1.2. Operation J2.2 is not so lucky to be
inserted in the time slot between operations J3.1 and J1.3
since the processing time of this operation is quite long
and the time slot between operations J3.1 and J1.3 cannot
hold it.

Such active scheduling method where operations may
properly be inserted in feasible time slots can effectively
shorten the makespan, since makespan is also an important
criterion in this research: a scheduling scheme that considers
only the robustness criterion may increase the completion
times of jobs. However, existing researches reveal that only
the active scheduling method is not enough to shorten the
makespan. In the following section, the N5 and Nm neigh-
borhoods based VNS local search method will be introduced
to intensify the search ability.

The two criteria, e.g. the nominal makespan as well as the
robustness of a schedule (the deviation of makespan values),
are considered in a weighted sum manner since they are
both quite crucial in real life production situations. Since
the makespan is a neutrosophic number and can be obtained
by the ranking method, the deviation value is thus exactly
the fluctuation range of makespan and it equals (C̄max +

C̃maxβ
+) − (C̄max + C̃maxβ

−) = C̃max(β+ − β−), where
I = [β−, β+]. Apparently, a solution is more robust pro-
vided that it has a smaller value of deviation. The selection
method should consider both of the two criteria simultane-
ously: we present here a normalized weighted sum based
tournament selection method to distinguish a more promis-
ing individual. In this method, values of the two criteria of
each individual are divided by the global worst ones respec-
tively; the total fitness of an individual can be calculated as

w×criterion1+(1 − w)×criterion2. Therefore, an individual
with a smaller sum after addition of the two normalized values
will be more promising.

B. THE VNS LOCAL SEARCH METHOD
The nominal makespan is also quite important and a robust
scheduling scheme with large makespan value is unaccept-
able because this may delay the subsequent production plan
and reduce the machine utilization. The local search meth-
ods are thus considered to shorten the nominal makespan.
As an important part of MA, the local search technique is
quite important in improving the solution quality because
the solution quality improvement bymeta-heuristic algorithm
is limited. Unfortunately, existing researches on scheduling
problems with uncertain processing times usually consider
no local search methods in optimization algorithms or just
applying rough and aimless local search methods. There-
fore, more sophisticated and problem oriented local search
method is required for further exploitation search for a single
individual. On the other hand, many existing local search
methods have usually a few parameters and the optimization
effect mainly relies on the parameters settings; this hinders
wide applications of such local search methods. This research
adopts the VNS local search technique to perform the local
search procedure. The VNS algorithm is a simple while
effective and powerful local search methodology with less
parameters. By systematic jumps from one neighborhood
structure to the other, the VNS local search procedure can
effectively help an individual to avoid being trapped into local
optimum through performing some perturbations (or moves)
on an individual; this is totally different from the traditional
local search procedure where the only optimization trajectory
on an individual is followed till there is no further improve-
ment. The outstanding feature of the VNS search procedure
is that it is capable to change the current search direction or
search trajectory in search space and a better solution may be
obtained from a distinct perspective.

It has been observed that the makespan value of a schedul-
ing scheme is determined by the critical path [32], which
contains the operations each can affect the total completion
time of an schedule. Therefore, to shorten the makespan,
one should reconstructing the critical path by reordering the
critical operations in the critical block or shifting the crit-
ical operations to other machines to break existing critical
path; otherwise, the makespan cannot be shortened. In N5
neighborhood structure, swaps of two neighbouring opera-
tions near the borderline of a critical block is performed.
A critical path u of a schedule G(π) is composed of some
segments of (partial) operation permutations on themachines,
e.g. πk , k = 1, 2, . . .K , and segments of such (partial) oper-
ation permutations are called critical blocks B1,B2, . . . ,Br .
Nowicki and Smutnicki have shown that the size of the N5
neighborhood is reduced by abandoning the moves that will
not directly improve the makespan; therefore, only the moves
where swapping the first two or (and) last two operations in
a block is considered:
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• For the first block B1, only the last two operations are
swapped provided that B1 contains at least two critical
operations;

• For the last block Br , only the first two operations are
swapped provided that Br contains at least two critical
operations;

• For other blocks that contains at least two critical oper-
ations, the first two and the last two operations can be
swapped.

For the schedule scheme in the Gantt chart in Figure 4 a),
the critical path contains three blocks: B1 = {O3.1}, B2 =
{O3.2,O2.1}, B3 = {O2.2,O3.3,O1.4}; since B1 contains
only one operation, the moves of swapping two operations
can be considered for other two critical blocks and the pos-
sible moves are: 1) swapping operations O3.2, O2.1 in B2
and 2) swapping operations O2.2, O3.3 in B3. Figure 4 b) is
the corresponding Gantt chart where the move of swapping
operations O3.2, O2.1 is performed; clearly, the nominal
makespan has been shortened.

The Nm neighborhood structure takes the advantage of the
operation flexibility: it removes a critical operation to another
available machine to shorten the critical path u. A critical
operation v in u can be rescheduled on another machine k ,
if it follows the correct precedence relationships: v can be
reinserted after its job predecessor and before its job succes-
sor. In Figure 4 a), the makespan is solely determined by the
critical path (O3.1 − O3.2 − O2.1 − O2.2 − O3.3 − O1.4)
(shaded operations) and noncritical operations can be started
at the latest starting times without increasing the makespan.
Operations O2.1 and O2.2 in Figure 4 c) are reinserted in
machinesM2 andM3 respectively; note that noncritical oper-
ation O1.3 in Figure 4 c) can be started later as long as it is
started before the starting time of O1.4. The new scheduling
scheme is illustrated in Figure 4 d), where the new makespan
value is reduced.

Instead of aimless local search methods in other publica-
tions, the VNS search method is problem oriented and the
later experimental results also reflects its effectiveness. Algo-
rithm 2 presents the work flow of the VNS search procedure.
The search procedure begins from the last critical block till
it encounters the first one. If a solution cannot be improved
by a neighborhood structure, it jumps to the other one until
there is no further improvement. Whenever the individual
is improved, a new critical path is determined and search
procedure continues.

C. THE WORK FLOW OF MA
The main work flow is given in Figure 5. The genetic opera-
tors are performed at first in each iteration, and the VNS local
search procedure is performed later for each individual. The
iteration continues till the stop criterion is meet. Since both
the nominal makespan as well as the robustness criteria are
considered, the global best solution updating method, which
strikes a balance between the two criteria, is developed as
follows.

FIGURE 4. Examples of the neighborhood structures: a) the Gantt chart of
the original schedule; b) the Gantt chart of the optimized schedule using
the N5 neighborhood structure; c) Determination of the possible moves;
and d) the optimized scheduling scheme using the Nm neighborhood
structure.

• Identify the maximum nominal makespanC1max and the
maximum deviation on completion times as C2max in
both the global best individual GBest and current best
individual CBest .

• Calculate the normalized fitness values using equa-
tion Fit = w(nominalmakespan/C1max) + (1 −
w)(deviation/C2max) for both GBest and CBest .

• If FitGBest > FitCBest replace GBest with CBest .

V. EXPERIMENTAL STUDY
The well-known Kim’s benchmark instances are adopted
in the experiments; this set of 24 instances covers small,
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FIGURE 5. The work flow of the proposed algorithm.

medium and large scale instances and they are to be pro-
cessed on 15 different machines. As mentioned above, the
robustness criterion in the algorithm is defined as the max-
imum variation on makespan. In order to simulate different
situations of the uncertainty in processing times, three sit-
uations of fluctuations in processing times, e.g. small fluc-
tuations, medium fluctuations, and large fluctuations, are
considered by setting the factor α to 0.05, 0.15 and 0.5
respectively; the α values are used to reflect different levels
of uncertainties in processing times and a certain α value
gives the upper and low bounds of the uncertain processing
time: R =

[
pijk − αpijk , pijk + αpijk

]
, where pijk is the

nominal processing time of Oij. Since processing times of
different operations will actually fall within distinct ranges
R′, R′ ⊆ R, for better simulations of processing times
of operations, the range that the actual processing time of
operationOij on machine k will fall within can be set asR′ =[
pijk − uijkαpijk , pijk + uijkαpijk

]
, where uijk is a coefficient

by uniformly sampling in the interval [0, 1] to place the
actual restrictions on low and upper bounds of processing
times. Therefore, it follows that p̄ijk + p̃ijk I = R′ and
p̄ijk ′ + p̃ijk ′ I = R′′. For example, suppose α = 0.5 and
the nominal processing times of an operation on machines
k and k ′ are 20 and 10 respectively, the actual process times
will fall in ranges [15, 25] and [5, 15] with uijk = 0.5 and
uijk ′ = 1 respectively. Further, the range R′ can be easily
transformed into a neutrosophic number and thus uncertain
processing times used in the algorithm are available.

The proposed algorithm is coded in C++ language and
performed on a computer equipped with an Intel i5-9600

Algorithm 2 The VNS Search Procedure
Require: 1)Two neighborhood structures: N5 and Nm;

2)Initial solution S0 with makespan C̄max.
Ensure: The optimal solution Sopt
while 1 do
IsStop1 := false
while !IsStop1 do

Set StopN5 := false. Set EndPath := false. Deter-
mine a critical path and critical blocks.
while !StopN5 do
If block Bi is the last block and has more than one
operations, swap just the first two operations; if Bi
is the first block, set EndPath := true and swap just
the last two operations if the block has more than
one operations. For other cases, if Bi has more than
one operations, swap the last two operations first
and then the first two operations.
Calculate the makespan after swapping: C̄ ′max.
if C̄ ′max < C̄max then
Accept the move; update S with the current solu-
tion and set StopN5 := true, IsStop1 := false.

end if
if StopN5 == false and EndPath == true then

Set IsStop1 := true and StopN5 := true.
end if

end while
end whileRecord current solution as S1; set IsStop2 :=
false.
while !IsStop2 do

Obtain the critical path and critical operations. Set the
initial makespan as C̄max. Set StopNm := false and
EndPath := false.
while !StopNm do
Insert each critical operation into a proper posi-
tion on an alternative machine and calculate the
makespan C̄ ′max. If all the critical have been pro-
cessed, set EndPath := true.
if C̄ ′max < C̄max then
Accept the move; update S1 with the current
solution S2 and set StopNm := true, IsStop2 :=
false.

end if
if StopNm == false and EndPath == true then
Set StopNm := true and IsStop2 := true.

end if
end while

end while
if S1 is better than current solution S2 then
Set S1 := Sopt and break the while loop to stop the
VNS procedure.

end if
end while

3.7GHz CPU and 16GB memory. 800 individuals are
employed and the algorithm will be stopped after 1000 iter-
ations. Based on the initial trials, the crossover probability is
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set as 0.7. In each computation, coefficients uijks are gener-
ated at first and 10 independent computations are performed
for each instance; the nominal makespan as well as the robust-
ness criterion will be analyzed based on the results of 10
computations.

In order to reflect the preference on the two criteria, the
weights are set to 0.25, 0.5, and 0.75 respectively; according
to Sec. IV-C, a small weight value means the algorithm puts
more emphasis on the robustness criterion and the algorithm
treats the two criteria equally with a weight value 0.5. In
the following, we first give an intuitive presentation on the
convergence as well as the solution quality of the most com-
plicated instance (Instance 24) with weight w = 0.5. As
depicted in Figure 6 a), the VNS local search procedure
presents the powerful search ability in a small fluctuation
factor case (α = 0.05): the nominal makespan is about
500 time units while this value is more than 550 if the
VNS search is not considered; therefore, the VNS search
procedure is quite necessary in such cases because a robust
scheduling scheme with a deteriorating makespan value can-
not deal with varied challenges in modern manufacturing and
production. Figure 6 b) gives the convergence curves with
a large α value; it means that processing time fluctuations
become larger. The nominal makespan value obtained by
the proposed VNS based MA is still a little better than the
case where the VNS local search method is not considered.
It is noteworthy that a compact operation permutation in a
scheduling scheme (or Gantt chart) indicates there is less or
no idle time between operations on a machine to absorb the
actual processing time variations and consequently, a small
makespan value is more sensitive to processing time varia-
tions (or processing time uncertainties); hence, a large time
deviation on makespan deteriorates the robustness criterion.
On the contrary, a scheduling scheme with a large nominal
makespan value may perform better in robustness criterion.
This reflects the conflict of the two criteria. In Figure 6 b),
the robustness of makespan obtained by the VNS based MA
is worse than the one obtained by the plain genetic algorithm.

As discussed in Sec. IV-C, since the global best solution
updating method considers both the two criteria simultane-
ously, the newly updated solution will certainly be better than
the old one in general although one of its criterion, e.g. the
nominal makespan criterion, may be a little worse than the
old one; therefore, values of the curves become larger than
the one in some iterations before. In addition, we can also see
from Figure 6 that the fluctuations of makespan values in both
the two cases become smaller as the optimization process
goes on, and this reflects the effectiveness of the proposed
algorithm: it can really make solutions become more robust.

As analyzed in Sec. IV-B, the determinstic makespan Cmax
depends on the length of the critical path. Suppose the critical
path is not changed in uncertain processing time environment,
the lower and the upper bounds of the makespan are (1 −
α)Cmax and (1 + α)Cmax respectively; in other words, the
fluctuation of the actual makespan will also be ±α × %. To
compare or estimate a robust scheduling scheme, twometrics,

FIGURE 6. Convergence curves of Instance 24.

namely the upper deviation (UD) and lower deviation (LD),
are defined as:

LD =
|nominal makespan− low bound of makespan|

nominal makespan
(24)

UD =
|nominal makespan+ upper bound of makespan|

nominal makespan
(25)

A solution with smaller values of UD and LU is much
more robust and a solution with a smaller value of nominal
makespan (NM) means the scheduling scheme is more effi-
cient. Computational results of Kim’s benchmark instances
with weight w = 0.5 under fluctuation factor α = 0.05 are
listed in Table 1.

The performance of the proposed MA is compared with
the plain GA (MA without VNS) in the table. For the mean
values of NM, LD, and UD in both the two cases, the better
ones are shown in bold. The merit of applying VNS based
local search procedure is reflected: mean values of nominal
makespan obtained by MA is much better that those obtained
by plain GA: MA performs better than GA for 14 instances
while GA performs better than MA for only 8 instances
from Table 1. More importantly, it can be perceived from
Table 1 that large scale instances, e.g. Instances 22, 23 and
24, receive more improvements in the nominal makespan
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TABLE 1. Results comparisons between the two algorithms with w = 0.5, α = 0.05(5%).

criterion after applying the VNS based memetic algorithm;
the reason behind this is that there are more operations in
large scale instances and conventional meta-heuristics, e.g.
plain GA, is incapable to perform individual based subtle
search procedures. Without VNS based local search method
in this research, the plain GA cannot yield solutions with
competitive nominal makespan values. As discussed in Sec
IV-C, the global best solution updating method considered
both the two criteria simultaneously and equally, and the
algorithm usually abandons solutions with competitive nom-
inal makespan values only but chooses a solution which can
achieve a balance between the two criteria as the best solution.
For some small scale instances, e.g. Instances 5, 6 and 7, it
seems that the plain GA yields competitive solutions for the
nominal makespan criterion according to Table 1; but indeed
deviation values (LD and UD values) of MA are better than
those of plain GA for these instances.

According to Table 1, mean UD and LD values are all less
than the fluctuation factor α; this reveals that the solutions
obtained by MA and GA are quite robust. Obviously, the so-
called optimal solutions obtained by novel algorithms for the
deterministic IPPS problemmay performs poorly with uncer-
tain processing times. Therefore, the optimization method
that once applied to solve the deterministic IPPS problem
cannot be directly applied to solve the uncertain IPPS prob-
lem. Based on the observation on LD and UD values of both
MA and GA (MA without VNS) in Table 1, deviations of
actual makespan of MA is much better than those of GA,
and therefore the resultant solutions of MA are more robust
and they can absorb certain processing time fluctuations.

In the following, we analyze the solutions obtained by both
MA and GA with large processing time fluctuations (with
weight w = 0.5 under fluctuation factor α = 0.5(50%)) and
corresponding results are summarized in Table 2.

Similar situations can be observed in Table 2: nominal
makespan values obtained by MA are generally better than
those yielded by the plain GA and this also reveals that the
proposed VNS is powerful in shortening makespan values
for complicated scheduling instances despite large or small
fluctuations in processing times. For the robustness criterion,
as presented by the LD and UD values, resultant solutions of
MA have smaller LD andUD values; therefore, themaximum
completion times of these scheduling schemes have smaller
fluctuation ranges. Table 2 also shows the talent and strength
of the proposed memetic algorithm: the maximum LD and
UD values are all less than 10% while the fluctuation factor
α of processing times is 50%. In other words, the fluctuation
of maximum completion time is smaller than the fluctuation
of the processing time of a single operation. Meanwhile,
computational results in both the two tables also indicate
that considering only the (nominal) makespan criterion is
usually not enough to cope with common processing time
fluctuations in real life production situations.

We analyze here the cases with different weights; besides
the above cases with w = 0.5, two weights, w = 0.25 and
w = 0.75, are assigned and corresponding results will be
studied. The algorithm puts more emphasis on the nominal
makespan criterion provided that a larger weight is assigned
and conversely, a smaller weight means the proposed algo-
rithm lays particular stress on the robustness of the resultant
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TABLE 2. Results comparisons between the two algorithms with w = 0.5, α = 0.5(50%).

TABLE 3. Results comparisons with distinct weights under small processing time fluctuations (α = 0.05(5%)).

solution. For the sake of simplicity, partial instances that stand
for small, medium and large scale instances are chosen in the
following study: Instances 1-2, 12-13, and 23-24 are selected
to represent the small, medium and large scale instances.
Table 3 gives the results of these instances with distinct
weights (w = 0.25, 0.5, 0.75) under small fluctuation factor
(α = 0.05(5%)). Clearly, Table 3 reveals that the weight
factor is quite important in solution updating procedure and
the selection operator: by rationally adjusting the weight
factor, one can compromise between the two criteria and
obtain solutions according to one’s preference. By comparing
with data in columns 2-4 and columns 8-10 in Table 3, it
shows that mean values of the nominal makespan of weight
0.75 is much better than those of 0.25; on the contrary, the
mean values of LD and UD of weight 0.25 are generally less
than those of weight 0.75. Therefore, to reach a compromise
between the two criteria, the weight can be set as w = 0.5
as shown in columns 5-7 in Table 3. For cases of medium
and large processing time fluctuations, corresponding data

are summarized in Tables 4 and 5. As the situation in Table 3,
the weight factor regulates the preference of the two criteria.
Clearly, the algorithm can thrashed out a compromise with a
wight of 0.5. For a smaller value of the weight, the yielded
solutions have better robustness; for instance, the LD and the
UD values of Instance 24 with the weight factor w = 0.25
in Tables 4 and 5 are smaller than the ones of the same
instance with the weight factor w = 0.75. For the nominal
makespan criterion, similar with the situations in Table 3,
its performance also depends on the weight factor. In Table
5, the average value of nominal makespan of Instance 24 is
only 510.6 with weight 0.75; however, the value increases
to 583.7 when the weight is set to 0.25. From the analysis
above with the data in Tables 3, 4 and 5 we can see that the
nominal makespan criterion and the robustness criterion are
two conflict objectives.

Different with single objective case, the proposed MA
should strike a balance between the two criteria, and hence
the algorithm falls into a time consuming seesaw battle.
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TABLE 4. Results comparisons with distinct weights under medium processing time fluctuations (α = 0.15(15%)).

TABLE 5. Results comparisons with distinct weights under large processing time fluctuations (α = 0.5(50%)).

FIGURE 7. The Gantt chart of Instance 24 with nominal processing times.

For the most complex instance, e.g. Instance 24, the maxi-
mum computational time is about 1000 seconds; that is, it
takes about 1000 seconds to complete 1000 iterations. How-
ever, the actual computational time needed is usually less than
1000 seconds because a solution usually converges before the
1000th iteration. For a medium or small scale instance, there
is a significant decrease in computational time.

Figure 7 gives the Gantt chart of Instance 24 with
nominal processing times and the nominal makespan is
503; Figure 8 presents the Gantt chart of the same
instance with actual processing times. In this case, the
actual makespan is 497.77. However, in other cases, the
actual makespan values may be larger than the nominal
one.
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FIGURE 8. The Gantt chart of Instance 24 with actual processing times.

VI. CONCLUSIONS
The integration of process planning and scheduling can bring
convenience in pursuing an efficient utilization of manu-
facturing resources and reducing conflicts of equipments.
However, uncertain processing times in real life usually make
a so-called optimal scheduling scheme inefficient or useless.
Therefore, the optimal solution obtained in a deterministic
environment may not perform well in real life situations and
the solution method for more robust scheduling schemes is
needed urgently. This paper presents a neotrosophic number
based modeling technique as well as a VNS based solution
method for the IPPS problem to seek more robust solutions.
Based on the theory of neutrosophic numbers, correspond-
ing Type-2 MILP model is developed to facilitate the IPPS
problem with uncertain processing times. By far, it is the
first MILP model for such problem. In the proposed model,
the operation flexibility, the sequencing flexibility and the
processing flexibility are handled properly by introducing
suitable constraints or variables and more importantly, rela-
tive neutrosophic variables and some constraints are mapped
into the determinacy and the indeterminacy parts. Due to
the NP-hardness of the problem and the complexity in solv-
ing the problem using the proposed MILP model, a VNS
based memetic algorithm is proposed for the problem to
seek more robust solutions. The nominal makespan crite-
rion and the deviation criterion, which stands for the robust-
ness of a solution, have been considered in a weighted sum
manner in the proposed memetic algorithm. Corresponding
genetic operators, such as the decoding method, the selection
method and the solution updatingmethod, are also developed.
The well-known Kim’s benchmark instances are introduced

in the experiments to test the performance of the proposed
algorithm and also seeking robust solutions. Different weight
factors as well as degrees of fluctuations are also defined
in experiments. It shows that the solutions yielded by the
proposed memetic algorithm are in general better than the
ones obtained by the plain genetic algorithms where the VNS
local search procedure is not considered. This reflects that
the VNS local search method has powerful search capability
to capture promising results. Further study indicates that the
two criteria, e.g. the nominal makespan criterion and the
robustness criterion are two conflict objectives and it is quite
necessary to take the two criteria into account simultaneously
to strike a medium between the two objectives. By setting
distinct weight factor, solutions with different preferences can
be obtained.

In most cases, instead of the precise probability distribu-
tion, workshop staff can only tell the range of the processing
time of an operation processed by a certain machine; such
characteristics of real life processing times of operations
render the application of neutrosophic numbers in processing
time modelling; the proposed memetic algorithm where neu-
trosophic numbers are used to model actual processing times
can be applied to obtain more robust scheduling solutions.
This research therefore presents a novel perspective as well
as an optimization methodology for uncertain IPPS or other
similar scheduling problems.

The weighted sum method is adopted in multi-objective
optimization process and the resultant optimal solution is
totally dependent on the weight factor w; nevertheless, such
method narrows the scope of the solution space and ignores
the potential satisfactory solutions. Therefore, the Pareto
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based multi-objective optimization method as well as the
novel neutrosophic sets based decision method [75] can be
considered in further research. In addition, there are other
uncertain events in the shop floor, such as job random arrivals
and machine breakdowns; such uncertain events can be con-
sidered in the IPPS problem as new research directions. The
IPPS problem with time-of-use (TOU) electricity price is
more close to real life situations, and such research can also
be performed in subsequent studies.
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