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Abstract

We present a neutrosophic set-based model for a time-dependent decision-support system (DSS) with multi-
attribute criteria decision-making. We describe such DSS as one that includes multiple conflicting objectives
having strategies spanning over several time-periods. In this paper, we utilize the concept of neutrosophic
sets and some of its operations to present a computational model that captures decision trees with various
imprecise preferences for a time-dependent DSS. Given a time-dependent DSS with (a countable number of)
N objectives spanning over time-periods ranging from t = t0 to t = tn, we are able to use a set of m attributes,
denoted by variables a1, . . . , am, where each variable ak (k = 1, . . . ,m), for each t ∈ [t0, tn], is described by a
triplet variable xk

(
τkt , ikt , fkt

)
, with the terms τkt , ikt , and fkt defined as degrees of truthfulness membership,

indeterminacy membership, and falsity membership for attribute ak at time t, respectively. We then define a
set of m time-dependent vectors of imprecise consequences S q corresponding to a set of strategies, denoted
by S = {sk(t)}, derived from the membership of each attribute ak. For each time t, we normalize the set of
imprecise consequences to define the weighted values for each attribute. We conclude with an interpretation
and a sensitivity analysis of the results to account for the influence of the decision-maker in the model.

Keywords: Neutrosophic set, neutrosophic logic, single-valued neutrosophic set, geometric operator
score, set-theoretic model theory, decision theory.
2010 MSC: 03C55, 03E70, 03E72, 62C86.

1. Introduction

1.1. Reflecting on decision-support systems computational modeling literature
The challenges in decision-making about complex problems that are rapidly changing and not easily

specified in advance has led to the development of model-driven decision-support systems (DSS)1. Model-
driven DSS can be described as complex systems in which a set of specific required data (or attributes)
are carefully studied and analyzed to develop multiple sets of strategies, which allows the decision-maker
to select the most efficient set of strategies that achieves a predefined set of objectives. That said, model-
driven DSS have evolved over the past three decades from simple model-oriented systems to advanced
multi-function entities2. This stems from the continuous evolution of the necessary computational modeling
required to solve most of these challenges. As a result, the growing need for decision-support in such
problems has shaped most DSS models to be robustly designed specifically to3 4 5:
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• facilitate dynamic decision processes through the use of a series of attributes to reach a set of strate-
gies.

– Interdependency between each of the attributes and their consequent strategies is accounted for
and supported.

– Each strategy is then capable of affecting future attributes and/or strategies at some later time.

• support rather than just automate decision-making.

– Some DSS models will make decisions based on predefined rules in the environment where
the DSS operates. However, in the most complex situations, many of those rules may not be
as relevant as originally thought of. Thus, the best DSS models are also capable of presenting
the decision-maker with relevant information about each strategy and how it aligns with the
corresponding objective(s). In the end, the decision-maker will select the best set of strategies.

• be able to respond quickly to the changing needs of decision-makers.

– DSS models must support a body of knowledge for the DSS4 5; which is best described as
allowing a record-keeping capability that can present information on an ad hoc basis in both
standardized and customized reports, a capability for selecting a desired subset of stored strate-
gies for either presentation or for deriving new strategies, and must be designed to interact
directly with a decision-maker in such a way that the user has a flexible choice and sequence of
knowledge-management activities5 6.

In light of those stated specifications above, efficient model-driven DSS serve as critical tools for the
decision-maker, in that they facilitate him/her with the ability to select the best strategies based on any
given set of attributes in the present, foresee consequences in the future, and present ad hoc information on
each strategy’s alignment with each of the given objectives at any given time. Moreover, in more complex
situations, such as having multiple conflicting objectives spanning over several time-periods, ranging from
t0 to tn, and a predefined set of attributes (and the weights and uncertainty surrounding them) that are allowed
to change over time; model-driven DSS have been developed to help identify optimal strategies by using
interactive multi-objective simulated annealing1 or imprecise multi-attribute additive modeling7. In both
cases, each attribute is assigned an absolute weight value so that at each point in time, the decision-maker is
able to evaluate its importance or preference over other attributes at that point in time. In contrast, each at-
tribute can also be set to a different weight value at each time t, (t ∈ [t0, tn]), as more data become available8.
Either way, it becomes very difficult to assess each attribute (whether by the decision-maker’s preference;
the attribute’s importance; or the attribute’s relevance, at time t) when presented with a sufficiently large
amount of attributes or time units within the [t0, tn] interval. Consequently, since most multi-attribute DSS
models use a finite large amount of attributes (time-dependent or not), we approach this problem using a
neutrosophic set-based computational model, as described in more detail in section 2. In our model, rather
than restricting each individual attribute to a weighting value, we first define three categories of membership
(truthfulness τ, indeterminacy i, and falsity f ); then, we assign each attribute a time-dependent triplet vari-
able x

(
τt, it, ft

)
, meaning whether that attribute holds true, indeterminate, or false at time t; and a strategy

is then developed based on the membership of that attribute at time t. This allows us to only need to know
what the membership of the attribute is at time t, and therefore affords us the ability to bypass the need to
evaluate each attribute individually by preference, importance, or relevance, at each time t, as mentioned
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above. Such model is a neutrosophic set-based model, derived from the neutrosophic theory. The next sub-
section (Subsection 1.2) highlights the main properties of neutrosophic logic and derived neutrosophic sets
deemed necessary for the development of our model.

1.2. Reflecting on neutrosophic sets literature
Neutrosophic sets derive from neutrosophy which studies the origin, nature, and scope of neutralities,

as well as their interactions with different ideational spectra9. Since decision-making involves the analysis
of a finite set of alternatives described in terms of evaluative criteria, neutrosophic sets can be useful in the
development of DSS models. As a result, we define the general concepts and operations on neutrosophic
sets.

1.2.1. General concepts of neutrosophic sets
Definition 1.1. (Neutrosophic set)10 Let A be a subset of a universe of discourse U. Each element x ∈ U
has degrees of truthful membership, indeterminacy membership, and falsity membership in A, which are
subsets of the hyperreal interval ]−0, 1+[. The notation x(τ, i, f ) ∈ A means that

• the degree of truthfulness of x in A is the neutrosophic component τ;

• the degree of indeterminacy of x in A is the neutrosophic component i;

• the degree of falsity of x in A is the neutrosophic component f .

A is called neutrosophic set, whereas τ, i, f are called neutrosophic components of the element x with respect
to A.

From Definition 1.1, the superior sum of the scalar neutrosophic components, namely nsup, is defined
as nsup = sup(τ) + sup(i) + sup( f ) and may be as high as 3 or 3+, while the inferior sum of the components
is defined as nin f = inf(τ) + inf(i) + inf( f ), which may be as low as −0 or 0. The notion of neutrosophic set
was introduced by Florentin Smarandache in 1995 as a generalization of intuitionistic fuzzy set9 10 when
nsup = 1, of intuitionistic set11 when nsup < 1, and of paraconsistent set12 when nsup > 1. The main
distinctions between neutrosophic sets and intuitionistic fuzzy sets are the facts that (a) in neutrosophic
sets, nsup does not necessarily equal to 1, and can be any number in the range ]−0, 3+[ in order to allow
the characterization of incomplete or paraconsistent information; and (b) in neutrosophic sets, one uses the
non-standard interval ]−0, 1+[ for the neutrosophic components in order to differentiate between absolute
membership (denoted by 1+) and relative membership (denoted by 1), while the standard interval [0, 1] is
used in intuitionistic fuzzy sets9.

Definition 1.2. (Complement)9 Given a neutrosophic set A, for all x ∈ U such that x(τA, iA, fA) ∈ A, the
complement of A, denoted cA, is defined by

τcA = 1 − τA; (1)

icA = 1 − iA; (2)

fcA = 1 − fA. (3)

Definition 1.3. (Containment) Given neutrosophic sets A1 and A2, for all x ∈ U such that x(τA1, iA1, fA1) ∈
A1 and x(τA2, iA2, fA2) ∈ A2, A1 ⊆ A2 if and only if

inf(τA1) ≤ inf(τA2), sup(τA1) ≤ sup(τA2); (4)

inf( fA1) ≥ inf( fA2), sup( fA1) ≥ sup( fA2). (5)
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Definition 1.4. (Union) Given neutrosophic sets A1 and A2, for all x ∈ U such that x(τA1, iA1, fA1) ∈ A1 and
x(τA2, iA2, fA2) ∈ A2, the neutrosophic components of x with respect to the union A3 = A1 ∪ A2 are defined
as

τA3 = τA1 + τA2 − τA1 × τA2 ; (6)

iA3 = iA1 + iA2 − iA1 × iA2 ; (7)

fA3 = fA1 + fA2 − fA1 × fA2 . (8)

Definition 1.5. (Intersection) Given neutrosophic sets A1 and A2, for all x ∈ U such that x(τA1, iA1, fA1) ∈
A1 and x(τA2, iA2, fA2) ∈ A2, the neutrosophic components of x with respect to the intersection A3 = A1∩A2
are defined as

τA3 = τA1 × τA2 ; (9)

iA3 = iA1 × iA2 ; (10)

fA3 = fA1 × fA2 . (11)

Definition 1.6. (Single-valued neutrosophic set)9 13 Let u ⊂ U be a space of points (or objects), given a
neutrosophic set A in u, for all x ∈ u such that x(τ, i, f ) ∈ A, A is a single-valued neutrosophic set (SVNS) if
and only if τ, i, and f ∈ [0, 1].

From Definition 1.6, there is no restriction on the nin f and nsup values, which may be as low as 0 and as
high as 3, respectively. Moreover, if u is continuous, for all x ∈ u, the SVNS A can be written as

A =

{ ∫
u

〈
x : τA, iA, fA

〉
, x ∈ u

}
(12)

Otherwise, if u is discrete, again, for all x ∈ u, A become

A =

{ N∑
j=1

〈
x j : τA, iA, fA

〉
, x j ∈ u

}
(13)

For simplicity, we use the simple notation for a SVNS A using Definition 1.6: A =
{〈

x : τ, i, f
〉
, x ∈ u

}
.

1.2.2. Operations on single-valued neutrosophic sets
The following definitions highlight the set-theoretic operations on SVNSs.

Definition 1.7. 13 Given a SVNS A =
{〈

x : τA, iA, fA
〉
, x ∈ u

}
; then,

1. the complement of A is given by

cA =
{〈

x : fA, 1 − iA, τA
〉
, x ∈ u

}
. (14)

2. for λ > 0, we have

λ × A =
{〈

x : 1 − (1 − τA)λ, iλA, f λA
〉
, x ∈ u

}
; (15)

Aλ =
{〈

x : τλA, 1 − (1 − iA)λ, 1 − (1 − fA)λ
〉
, x ∈ u

}
. (16)

Definition 1.8. 9 13 14 Given 2 SVNSs A1 =
{〈

x : τA1 , iA1 , fA1

〉
, x ∈ u

}
and A2 =

{〈
x : τA2 , iA2 , fA2

〉
, x ∈ u

}
;

then,
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1. A1 ⊆ A2 if and only if
τA1 ≤ τA2 , iA1 ≥ iA2 , fA1 ≥ fA2 . (17)

2. A1 = A2 if and only if
τA1 = τA2 , iA1 = iA2 , fA1 = fA2 . (18)

3. A3 = A1 ∪ A2 is defined by

A3 =
{〈

x : max(τA1 , τA2),min(iA1 , iA2),min( fA1 , fA2)
〉
, x ∈ u

}
. (19)

4. A3 = A1 ∩ A2 is defined by

A3 =
{〈

x : min(τA1 , τA2),max(iA1 , iA2),max( fA1 , fA2)
〉
, x ∈ u

}
. (20)

5. A3 = A1 + A2 is defined by

A3 =
{〈

x : τA1 + τA2 − τA1τA2 , iA1 iA2 , fA1 fA2

〉
, x ∈ u

}
. (21)

6. A3 = A1 × A2 is defined by

A3 =
{〈

x : τA1τA2 , iA1 + iA2 − iA1 iA2 , fA1 + fA2 − fA1 fA2

〉
, x ∈ u

}
. (22)

Definition 1.9. 13 Given a SVNS A =
{〈

x : τA, iA, fA
〉
, x ∈ u

}
, then the score function σ : u 7→ [−1, 1],

accuracy function α : u 7→ [−1, 1], and certainty function υ : u 7→ [0, 1] of A are defined as

σ(A) =
2 + τA − iA − fA

3
; (23)

α(A) = τA − fA; (24)

υ(A) = τA. (25)

As an extension13 of Definition 1.9, using the 2 SVNSs A1 and A2 from Definition 1.8, ifσ(A1) > σ(A2),
then A1 > A2. Moreover, if σ(A1) = σ(A2) and α(A1) > α(A2), then A1 > A2. Furthermore, assuming that
σ(A1) = σ(A2) and α(A1) = α(A2), if υ(A1) > υ(A2), then A1 > A2. Conversely, if σ(A1) = σ(A2),
α(A1) = α(A2), and υ(A1) = υ(A2), then A1 = A2.

Remark 1.1. For a zero set, denoted as 0N =
{〈

x : 0, 1, 1
〉
, x ∈ u

}
, σ(0N) = 0, α(0N) = −1, and υ(0N) = 0.

Proof. We hold this proof to be self-evident.

Definition 1.10. (Truth- and falsity-favorite)9 Given a SVNS A1 =
{〈

x : τA1 , iA1 , fA1

〉
, x ∈ u

}
, then the

SVNS A2, whose neutrosophic components are related to A1 is a

1. truth-favorite of A1 and is denoted by A2 = ∆A1 if and only if

A2 =
{〈

x : min(τA1 + iA1 , 1), 0, fA1

〉
, x ∈ u

}
. (26)

2. falsity-favorite of A1 and is denoted by A2 = ∇A1 if and only if

A2 =
{〈

x : τA1 , 0,min(iA1 + fA1 , 1)
〉
, x ∈ u

}
. (27)
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Remark 1.2. The complement of a zero set is denoted as c0N =
{〈

x : 1, 0, 0
〉
, x ∈ u

}
implies that 0N ⊂ c0N .

Furthermore, c0N = c∇ON
, i.e., cON is the complement of the false-favorite of 0N, with σ(c0N) = 1, α(c0N) = 1,

and υ(c0N) = 1.

Proof. We hold this proof to be self-evident.

Remark 1.3. Given a SVNS A =
{〈

x : τA, iA, fA
〉
, x ∈ u

}
, then 0N ⊆ A.

Proof. This remark is a generalization of Remark 1.2. If A is a zero-set, then A = 0N, which also implies
that 0N ⊆ A. Otherwise, for all x ∈ u, it is clear that 0 ≤ τA, 1 ≥ iA, and 1 ≥ fA for all τA, iA, fA ∈ [0, 1] (See
Definition 1.8).

2. Developing our DSS computational model

2.1. Defining objectives and attributes

We developed our model to support a finite number of predefined objectives over a time-period ranging
from t0 to tn. The model supports the rearrangement of the objectives into an objective tree with n objective
levels matching the time interval [t0, tn], as seen in figure 1. Previous studies have been able to determine
that an objective’s importance can change over time based on how the decision-maker perceives each ob-
jective and its alignment with the strategies developed for each attribute1; thus, the model also need to take
this finding into account. As a result, the model is designed to support a finite number m time-dependent
attributes, denoted, a1, . . . , am, spanning over each t ∈ [t0, tn] (Figure 1). That is, each ak, with k ∈ [1,m], is
a (n + 1)-tuple, thus

ak =
{
ak(t0), . . . , ak(tn)

}
. (28)

For our model, each attribute ak’s value at time t is determined based on the neutrosophic values assigned to
that attribute. That is, we bypass the need to determine the importance of attribute ak at time t beforehand.
The model solely asks, once known, whether ak is true, indeterminate, or false at time t. Those values
then lead to determining a few factors (including the consequences of strategies needed to achieve the set of
objectives) about each attribute and will be readily available to the decision-maker. He or she will then assess
the attribute based on his/her perception of value for that attribute. Last, this model does not manipulate or
make changes to the objectives; any manipulation/assessment other than rearrangement into an objective
tree is left to the decision-maker. Thus, the first definition for our model is as follows:

Definition 2.1. Given a non-empty set N of predefined objectives and m time-dependent attributes, all
spanning over [t0, tn]; each attribute ak is a SVNS, and is defined by

ak =

{〈
x : τkt , ikt , fkt

〉
, x ∈ [1,m] × [t0, tn]

}
, (29)

where τkt , ikt , fkt ∈ [0, 1], m ∈ N∗, k ∈ [1,m], and t ∈ [t0, tn].

Remark 2.1. For k ∈ [1,m], ak is a non-zero set.

Proof. We prove that the following conditions are met:

1. For k ∈ [1,m], 0N ⊆ ak, which we proved in Remark 1.3.
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2. Let xval ∈ u, where u = [1,m] × [t0, tn], for which we have 2 non-empty SVNSs aval1 =
{〈

xval :
τval1 , ival1 , fval1

〉
, xval ∈ u

}
⊂ ak and aval2 =

{〈
xval : τval2 , ival2 , fval2

〉
, xval ∈ u

}
⊂ ak, if there exist

λ1, λ2 > 0 such that λ1 × aval1 + λ2 × aval2 ⊂ ak, then ak is non-zero set. From Definition 1.8, we know
that

λ1 × aval1 =

{〈
xval : 1 − (1 − τval1)λ1 , iλ1

val1
, f λ1

val1

〉
, xval ∈ u

}
; (30)

λ2 × aval2 =

{〈
xval : 1 − (1 − τval2)λ2 , iλ2

val2
, f λ2

val2

〉
, xval ∈ u

}
. (31)

Thus, let aval = λ1 × aval1 + λ2 × aval2 , we have

aval =

{〈
xval : 1 − (1 − τval1)λ1(1 − τval2)λ2 , iλ1

val1
iλ2
val2

, f λ1
val1

f λ2
val2

〉
, xval ∈ u

}
(32)

We know that τval1 , ival1 , fval1 , τval2 , ival2 , fval2 ∈ [0, 1], thus for any λ1, λ2 > 0, 0 ≤ iλ1
val1

iλ2
val2
≤ 1 and

0 ≤ f λ1
val1

f λ2
val2
≤ 1. Furthermore, 1 − τval1 ≤ 1 implies that (1 − τval1)λ1 ≤ 1. The same applies for

(1 − τval2)λ2 . As a result, 0 ≤ 1 − (1 − τval1)λ1(1 − τval2)λ2 ≤ 1 for any λ1, λ2 > 0. Now, since with
xval ∈ u, and aval1 , aval2 ⊂ ak, then aval ⊂ ak for all xval ∈ u.

3. aval1 ∩ aval2 ⊂ ak. if aval1 ∩ aval2 = 0N, then condition 1 applies. Otherwise,

aval1 ∩ aval2 =

{〈
xval : min(τval1 , τval2),max(ival1 , ival2),max( fval1 , fval2)

〉
, xval ∈ u

}
. (33)

It becomes trivial that aval1 ∩ aval2 ⊂ ak, being that aval1 , aval2 are non-empty sets.

All 3 conditions being met leads to the conclusion that ak is a non-zero set.

Having stated both Definition 2.1 and Remark 2.1, it becomes possible to rank between attributes using
the score function, compare attributes using the accuracy function, and determine the likelihood of an
attribute using the certainty function. In doing so, we are also able to derive strategies from attributes.
The next subsection introduces a few more definitions and remarks.

2.2. Defining consequences of strategies

Definition 2.2. Given a non-empty set N of predefined objectives and m time-dependent attributes repre-
sented by the SVNS ak =

{〈
x : τkt , ikt , fkt

〉
, x ∈ [1,m] × [t0, tn]

}
, let S be the set of available strategies

derived from ak, the imprecise consequences of such strategies, denoted S q, is a stream defined by a vector
of intervals, and can be written as

S q =
{
sq1(t), . . . , sqm(t)

}
; (34)

with each sqk (t), k ∈ [1,m], being defined by

sqk (t) ∈
[
sL

k (t), sU
k (t)

]
, (35)

where sL
k (t) and sU

k (t) are, respectively, the lower and upper endpoints of the imprecise consequence for
attribute ak at time t ∈ [t0, tn].

This model is based on the assumption that S q ∈ S . We also assume that there is a continuous distribu-
tion between sL

k (t) and sU
k (t) endpoints.
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Figure 1: Objective tree including time-periods.

Definition 2.3. Given a non-empty set N of predefined objectives and m time-dependent attributes repre-
sented by the SVNS ak =

{〈
x : τkt , ikt , fkt

〉
, x ∈ [1,m] × [t0, tn]

}
with a derived set S of available strategies,

at time t, each sqk interval is determined by the following conditions:

1. If ikt = 0, then
sqk (t) = sL

k (t) = sU
k (t) = τkt . (36)

2. If ikt > 0, then

sL
k (t) = min

(2 + τkt − i∗kt
− fkt

3

)
, (37)

sU
k (t) = max

(2 + τkt − i∗kt
− fkt

3

)
, (38)

and
sL

k (t) ≤ sqk (t) ≤ sU
k (t), (39)

where i∗kt
= {ikt , 1 − ikt }.

In Definition 2.3, we put an emphasis on the indeterminacy of attribute ak at time t. This stems from
the fact that once we are able to precisely characterize attribute ak at time t, i.e., ikt = 0, then we only care
about its certainty (υ[ak(t)] = τkt ). This is also applicable when τkt = 0, leading to sL

k (t) = sU
k (t) = 0, and

both endpoints take the lowest possible value of 0. Conversely, if ikt = 0 and τkt = 1, then sL
k (t) = sU

k (t) = 1,
and both endpoints take the highest possible value of 1. Now, if we have imprecise knowledge of the nature
of attribute ak at time t, i.e., ikt > 0, then its indeterminacy becomes prevalent, and is used in determining
both endpoints of the imprecise consequence for that particular attribute. We do so by creating a masked
indeterminacy value i∗kt

that includes both the value of ikt and its complement 1 − ikt , and substituting them
in the score function of ak(t), as seen in equations (37) and (38).

A special case is where ikt = 1 − ikt , meaning ikt = 0.5, then sL
k (t) = sU

k (t) = σ
[
ak(t)

]
. As a result,

each sqk (t) is an interval with distinct endpoints as expected, except for cases where ikt = 0 or ikt = 0.5,
in which they are equal. We interpret this result as (a) having precise knowledge of attribute ak(t) leads to
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a single strategy consequence that is solely based on the certainty of attribute ak at time t; and (b) having
an imprecise (or, indeterminate) knowledge of akt at about 50% leads to a single strategy consequence that
takes all neutrosophic components into consideration.

It is worth pointing that, when ikt , 0, we have an interval of imprecise consequence values as seen in
equation (35). This entails that we need some creative way to generate the values between sL

k (t) and sU
k (t)

and estimate the best sqk (t) value(s) from the interval for decision-making purposes. Obviously, this model
is intended to empower the decision-maker with a weighting tool in which attributes’ impacts on the current
and future strategies are accounted for. By presenting each potential strategy as a direct consequence of a
particular attribute in the form of an interval, it is critical to predict which value(s) from the interval are
most likely, based on ikt . Thus, we proceed with the following analysis:
First, it is clear that 0 ≤ sqk (t) ≤ 1 regardless of the value of ikt . Second, let ¯ikt = 1 − ikt , if ikt < 0.5, we
agree that ¯ikt > ikt , then,

sL
k (t) =

2 + τkt −
¯ikt − fkt

3
. (40)

Conversely, with ikt > 0.5, we have ¯ikt < ikt , and

sU
k (t) =

2 + τkt −
¯ikt − fkt

3
. (41)

Consequently, for all ikt , 0, it is safe to say that

2 + τkt −max( ¯ikt , ikt ) − fkt

3
≤ sqk (t) ≤

2 + τkt −min( ¯ikt , ikt ) − fkt

3
. (42)

Naturally, it is a more favorable scenario to have ¯ikt > ikt . We denote such scenario as favorable indetermi-
nacy. This stems from the trivial fact that precise knowledge about an attribute at time t is achieved only
when ikt → 0. We also denote the opposite scenario, i.e., ¯ikt < ikt , as unfavorable indeterminacy. There-
fore, the smaller the indeterminacy, the larger the impact of the attribute’s certainty at time t. Moreover,
for ikt , 0.5, it is clear that there exists a ζt > 0 such that | ikt −

¯ikt |= ζt. Then, we provide the following
definition and remarks.

Definition 2.4. Given a non-empty set N of predefined objectives and m time-dependent attributes repre-
sented by the SVNS ak =

{〈
x : τkt , ikt , fkt

〉
, x ∈ [1,m] × [t0, tn]

}
with a derived set S of available strategies,

at time t. The SVNS akr =
{〈

x : τkt , 1 − ikt , fkt

〉
, x ∈ [1,m] × [t0, tn]

}
is called the reverse indeterminate SVNS

of ak, and the imprecise consequence interval sL
kr

(t) ≤ sqkr
(t) ≤ sU

kr
(t) is the reverse imprecise consequence

interval of ak at time t.

Remark 2.2. Given ak and akr , let ¯ikt = 1 − ikt and ikt > 0.

1. If ikt = ¯ikt , then ak = akr , and
sqkr

(t) = sqk (t) = σ
[
ak(t)

]
. (43)

2. If ikt > ¯ikt , then sL
k (t) ≤ sqkr

(t) ≤ sU
kr

(t), where

sL
k (t) =

2 + τkt − ikt − fkt

3
, (44)

sU
kr

(t) =
2 + τkt −

¯ikt − fkt

3
. (45)
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3. If ikt < ¯ikt , then sL
kr

(t) ≤ sqk (t) ≤ sU
k (t), where

sL
kr

(t) =
2 + τkt −

¯ikt − fkt

3
, (46)

sU
k (t) =

2 + τkt − ikt − fkt

3
. (47)

Proof. We hold these proofs to be self-evident.

Remark 2.3. Let k, l ∈ [1,m] such that k , l; at time t, assuming that
[
sL

k (t), sU
k (t)

]
⊆

[
sL

l (t), sU
l (t)

]
; if

ikt = min(ikt , ¯ikt ) and ilt = min(ilt , īlt ), then ak ≤ al.

Proof. We are aware that each interval is a continuous distribution, but we also know that
[
sL

k (t), sU
k (t)

]
⊆[

sL
l (t), sU

l (t)
]

is equivalent to sL
l (t) ≤ sL

k (t) ≤ sU
k (t) ≤ sU

l (t). That said, from equation (42), we agree that

2 + τlt −max(īlt , ilt ) − flt
3

≤
2 + τkt −max( ¯ikt , ikt ) − fkt

3
; (48)

2 + τkt −min( ¯ikt , ikt ) − fkt

3
≤

2 + τlt −min(īlt , ilt ) − flt
3

. (49)

Then, we can deduce that
| ikt −

¯ikt | ≤ | ilt − īlt | . (50)

From Remark 2.2, we know that if

1. ikt > ¯ikt , then sL
k (t) ≤ sqkr

(t) ≤ sU
kr

(t);

2. ikt < ¯ikt , then sL
kr

(t) ≤ sqk (t) ≤ sU
k (t).

Doing the same for ilt and īlt ; when ikt = min(ikt , ¯ikt ) and ilt = min(ilt , īlt ), we can see that sU
k (t) ≤ sU

l (t). As
a result, ak ≤ al (See the extension of Definition 1.9 in page 5).

For each ak, since there is a continuous distribution between sL
k (t) and sU

k (t) endpoints, then the proba-
bility that a particular value between sL

k (t) and sU
k (t) endpoints is assumed is 0; which is fine, as the end goal

here is not to handpick a value from that interval. By contrast, assuming that the continuous distribution
between sL

k (t) and sU
k (t) endpoints is uniform, if s̄qt is the distribution mean, then we can imply that, for any

values ε, y > 0,
Pr

[
s̄qt − ε ≤ y ≤ s̄qt

]
= Pr

[
s̄qt ≤ y ≤ s̄qt + ε

]
. (51)

Thus, it is easy to see that the probability density function is

f (y) =


1

sU
k (t) − sL

k (t)
, if sL

k (t) ≤ y ≤ sU
k (t);

0, otherwise;

(52)

and that any value within the
[
min(ikt , ¯ikt ),max(ikt , ¯ikt )

]
will yield equally probable real y values, with the

condition that sL
k (t) ≤ y ≤ sU

k (t).
Now, we try a more complex distribution. Assuming that the continuous distribution is normal, using the

central limit theorem or CLT 15, we know that the density of the sum of two or more independent variables
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within the sL
k (t) ≤ y ≤ sU

k (t) interval is the convolution of their densities16. That is, as we add more
independent variables to the sum, the density of the sum tends to converge towards the normal density. If s̄qt

is the distribution mean, let ns be the number of real values in
[
sL

k (t), sU
k (t)

]
, we expect ns → ∞. Thus, the

classical CLT states that as ns gets sufficiently large, the distribution gets close to the normal distribution
with mean s̄qt and variance δ2. As a result, within each close set

[
sL

k (t), sU
k (t)

]
, we want sqk (t) to be as close to

the mean s̄qt as possible. In the end, each attribute ak has a consequence of strategy that is either presented as
a single value within [0, 1] or as a continuous distribution in

[
sL

k (t), sU
k (t)

]
, depending on whether ikt = 0 or

not. This gives the decision-maker the freedom to (a) develop a problem-solving approach on approximation
and conduct sensitivity analysis as needed, or (b) perform discounting on each attribute over time once more
data about each attribute become available and perform further sensitivity (or any other) analysis as needed.
Since this model solely relies on current data based on the neutrosophic values of each attribute, we use an
example in which we apply (a) and leave (b) for further discussions on this topic.

3. Computing

3.1. Model example input and computation

For our model example, we use an objective tree over time that consists of N = 100 objectives, n = 10
objective-levels, and 10 time-periods. We are also given 10 attributes, denoted by the time-dependent set
a = {a1, a2, . . . , a10}, as seen in Table 1. We denote the time-period as a (n + 1)-tuple, i.e., t = {0, 1, . . . , 10},
in order to account for the initial knowledge or characteristics of attributes at time t = 0. At time t =

0, it is expected that the decision-maker’s knowledge of each attribute and its relevance to objectives is
precise, and therefore there are no indeterminacy and ik = 0, with k ∈ [1, 10]. It is also assumed that
each attribute ak is a SVNS, therefore each τkt , ikt , and fkt are in [0, 1]. Also, each ak is a 11-tuple in the
form of equations (28) and (29). All simulations are run using the input values and the values recorded in
Tables 1 and 2. Neutrosophic components for each ak at times t = 1 through t = 10 are recorded in Table 2.

Neutrosophic
Component

Attributes
(
ak(t = 0)

)
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

τk 0.581 0.74 0.149 0.258 0.97 0.515 0.565 0.144 0.925 0.634
ik 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
fk 0.419 0.26 0.851 0.742 0.03 0.485 0.435 0.856 0.075 0.366

Table 1: Initial neutrosophic values for all attributes, at time t = 0.

Neutrosophic
Component

Attributes
(
ak(t > 0)

)
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

ak(t = 1)
τk 0.913 0.636 0.624 0.374 0.504 0.989 0.471 0.009 0.35 0.477
ik 0.434 0.861 0.749 0.829 0.001 0.29 0.981 0.867 0.755 0.512
fk 0.087 0.364 0.376 0.626 0.496 0.011 0.529 0.991 0.65 0.523

ak(t = 2)
τk 0.553 0.77 0.519 0.293 0.246 0.701 0.532 0.276 0.094 0.903
ik 0.966 0.126 0.951 0.797 0.544 0.373 0.782 0.596 0.482 0.033
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fk 0.447 0.23 0.481 0.707 0.754 0.299 0.468 0.724 0.906 0.097
ak(t = 3)

τk 0.223 0.256 0.014 0.898 0.026 0.994 0.851 0.887 0.704 0.257
ik 0.965 0.619 0.537 0.066 0.22 0.111 0.06 0.125 0.252 0.535
fk 0.777 0.744 0.986 0.102 0.974 0.006 0.149 0.113 0.296 0.743

ak(t = 4)
τk 0.227 0.505 0.254 0.872 0.116 0.634 0.274 0.614 0.904 0.1
ik 0.4 0.548 0.012 0.39 0.843 0.129 0.558 0.305 0.198 0.574
fk 0.773 0.495 0.746 0.128 0.884 0.366 0.726 0.386 0.096 0.9

ak(t = 5)
τk 0.345 0.103 0.481 0.036 0.01 0.692 0.479 0.85 0.495 0.187
ik 0.048 0.66 0.083 0.333 0.306 0.065 0.568 0.354 0.349 0.379
fk 0.655 0.897 0.519 0.964 0.99 0.308 0.521 0.15 0.505 0.813

ak(t = 6)
τk 0.421 0.236 0.379 0.072 0.582 0.598 0.794 0.837 0.553 0.041
ik 0.115 0.947 0.764 0.556 0.805 0.948 0.426 0.043 0.408 0.503
fk 0.579 0.764 0.621 0.928 0.418 0.402 0.206 0.163 0.447 0.959

ak(t = 7)
τk 0.431 0.498 0.436 0.27 0.235 0.004 0.468 0.334 0.564 0.568
ik 0.197 0.046 0.041 0.591 0.143 0.081 0.875 0.682 0.014 0.159
fk 0.569 0.502 0.564 0.73 0.765 0.996 0.532 0.666 0.436 0.432

ak(t = 8)
τk 0.767 0.571 0.761 0.344 0.032 0.168 0.239 0.807 0.359 0.051
ik 0.265 0.164 0.436 0.68 0.054 0.778 0.514 0.228 0.855 0.846
fk 0.233 0.429 0.239 0.656 0.968 0.832 0.761 0.193 0.641 0.949

ak(t = 9)
τk 0.005 0.318 0.816 0.064 0.286 0.337 0.622 0.457 0.09 0.554
ik 0.028 0.749 0.314 0.722 0.915 0.475 0.687 0.37 0.297 0.473
fk 0.995 0.682 0.184 0.936 0.714 0.663 0.378 0.543 0.91 0.446

ak(t = 10)
τk 0.738 0.788 0.46 0.017 0.401 0.304 0.657 0.921 0.367 0.925
ik 0.447 0.399 0.973 0.962 0.626 0.191 0.379 0.201 0.957 0.162
fk 0.262 0.212 0.54 0.983 0.599 0.696 0.343 0.079 0.633 0.075

Table 2: Neutrosophic values for all attributes, at 1 ≤ t ≤ 10.

We calculate the score, accuracy, and certainty functions for each ak for all t, as seen in Tables 3. Using
Definition 2.3 and equations (36) through (38), we then determine the imprecise consequences intervals for
each ak at all t in Table 4. As expected, since the neutrosophic values used for t = 0 have 0 indeterminacy,
the imprecise consequences intervals only takes one value, which is the value of τk. In this case, the term
imprecise is an oxymoron since technically, the consequence for each ak is precise and refers to the certainty
of that ak. At times t > 0, we have the specified intervals with minimums and maximums for each attributes
ak. As we said in the definition of this model, those intervals are continuous distributions and will be used
as such in our analysis.
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Function Attributes
(
ak

)
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

ak(t = 0)
σ(ak) 0.721 0.827 0.433 0.505 0.98 0.677 0.71 0.429 0.95 0.756
α(ak) 0.162 0.48 -0.702 -0.484 0.94 0.03 0.13 -0.712 0.85 0.268
υ(ak) 0.581 0.74 0.149 0.258 0.97 0.515 0.565 0.144 0.925 0.634

ak(t = 1)
σ(ak) 0.797 0.47 0.5 0.306 0.669 0.896 0.32 0.05 0.315 0.481
α(ak) 0.826 0.272 0.248 -0.252 0.008 0.978 -0.058 -0.982 -0.3 -0.046
υ(ak) 0.913 0.636 0.624 0.374 0.504 0.989 0.471 0.009 0.35 0.477

ak(t = 2)
σ(ak) 0.38 0.805 0.362 0.263 0.316 0.676 0.427 0.319 0.235 0.924
α(ak) 0.106 0.54 0.038 -0.414 -0.508 0.402 0.064 -0.448 -0.812 0.806
υ(ak) 0.553 0.77 0.519 0.293 0.246 0.701 0.532 0.276 0.094 0.903

ak(t = 3)
σ(ak) 0.16 0.298 0.164 0.91 0.277 0.959 0.881 0.883 0.719 0.326
α(ak) -0.554 -0.488 -0.972 0.796 -0.948 0.988 0.702 0.774 0.408 -0.486
υ(ak) 0.223 0.256 0.014 0.898 0.026 0.994 0.851 0.887 0.704 0.257

ak(t = 4)
σ(ak) 0.351 0.487 0.499 0.785 0.13 0.713 0.33 0.641 0.87 0.209
α(ak) -0.546 0.01 -0.492 0.744 -0.768 0.268 -0.452 0.228 0.808 -0.8
υ(ak) 0.227 0.505 0.254 0.872 0.116 0.634 0.274 0.614 0.904 0.1

ak(t = 5)
σ(ak) 0.547 0.182 0.626 0.246 0.238 0.773 0.463 0.782 0.547 0.332
α(ak) -0.31 -0.794 -0.038 -0.928 -0.98 0.384 -0.042 0.7 -0.01 -0.626
υ(ak) 0.345 0.103 0.481 0.036 0.01 0.692 0.479 0.85 0.495 0.187

ak(t = 6)
σ(ak) 0.576 0.175 0.331 0.196 0.453 0.416 0.721 0.877 0.566 0.193
α(ak) -0.158 -0.528 -0.242 -0.856 0.164 0.196 0.588 0.674 0.106 -0.918
υ(ak) 0.421 0.236 0.379 0.072 0.582 0.598 0.794 0.837 0.553 0.041

ak(t = 7)
σ(ak) 0.555 0.65 0.61 0.316 0.442 0.309 0.354 0.329 0.705 0.659
α(ak) -0.138 -0.004 -0.128 -0.46 -0.53 -0.992 -0.064 -0.332 0.128 0.136
υ(ak) 0.431 0.498 0.436 0.27 0.235 0.004 0.468 0.334 0.564 0.568

ak(t = 8)
σ(ak) 0.756 0.659 0.695 0.336 0.337 0.186 0.321 0.795 0.288 0.085
α(ak) 0.534 0.142 0.522 -0.312 -0.936 -0.664 -0.522 0.614 -0.282 -0.898
υ(ak) 0.767 0.571 0.761 0.344 0.032 0.168 0.239 0.807 0.359 0.051

ak(t = 9)
σ(ak) 0.327 0.296 0.773 0.135 0.219 0.4 0.519 0.515 0.294 0.545
α(ak) -0.99 -0.364 0.632 -0.872 -0.428 -0.326 0.244 -0.086 -0.82 0.108
υ(ak) 0.005 0.318 0.816 0.064 0.286 0.337 0.622 0.457 0.09 0.554

ak(t = 10)
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σ(ak) 0.676 0.726 0.316 0.024 0.392 0.472 0.645 0.88 0.259 0.896
α(ak) 0.476 0.576 -0.08 -0.966 -0.198 -0.392 0.314 0.842 -0.266 0.85
υ(ak) 0.738 0.788 0.46 0.017 0.401 0.304 0.657 0.921 0.367 0.925

Table 3: Score (α), accuracy (σ), and certainty (υ) functions for all attributes’ SVNSs, at time t ∈ [0, 10].

Imprecise Consequences Set
(
S q

)
of Strategies Set S

sq1 sq2 sq3 sq4 sq5

sq6 sq7 sq8 sq9 sq10

t = 0
0.581 0.74 0.149 0.258 0.97
0.515 0.565 0.144 0.925 0.634

t = 1
[0.753, 0.797] [0.47, 0.711] [0.5, 0.666] [0.306, 0.526] [0.336, 0.669]
[0.756, 0.896] [0.32, 0.641] [0.05, 0.295] [0.315, 0.485] [0.481, 0.489]

t = 2
[0.38, 0.691] [0.555, 0.805] [0.362, 0.663] [0.263, 0.461] [0.316, 0.345]

[0.592, 0.676] [0.427, 0.615] [0.319, 0.383] [0.223, 0.235] [0.613, 0.924]
t = 3

[0.16, 0.47] [0.298, 0.377] [0.164, 0.188] [0.621, 0.91] [0.091, 0.277]
[0.7, 0.959] [0.587, 0.881] [0.633, 0.883] [0.553, 0.719] [0.326, 0.35]

t = 4
[0.285, 0.351] [0.487, 0.519] [0.173, 0.499] [0.711, 0.785] [0.13, 0.358]
[0.466, 0.713] [0.33, 0.369] [0.511, 0.641] [0.669, 0.87] [0.209, 0.258]

t = 5
[0.246, 0.547] [0.182, 0.289] [0.348, 0.626] [0.135, 0.246] [0.109, 0.238]
[0.483, 0.773] [0.463, 0.509] [0.685, 0.782] [0.446, 0.547] [0.251, 0.332]

t = 6
[0.319, 0.576] [0.175, 0.473] [0.331, 0.507] [0.196, 0.233] [0.453, 0.656]
[0.416, 0.715] [0.671, 0.721] [0.572, 0.877] [0.505, 0.566] [0.193, 0.195]

t = 7
[0.353, 0.555] [0.347, 0.65] [0.304, 0.61] [0.316, 0.377] [0.204, 0.442]
[0.03, 0.309] [0.354, 0.604] [0.329, 0.45] [0.381, 0.705] [0.432, 0.659]

t = 8
[0.6, 0.756] [0.435, 0.659] [0.653, 0.695] [0.336, 0.456] [0.039, 0.337]

[0.186, 0.371] [0.321, 0.331] [0.614, 0.795] [0.288, 0.524] [0.085, 0.316]
t = 9

[0.013, 0.327] [0.296, 0.462] [0.649, 0.773] [0.135, 0.283] [0.219, 0.496]
[0.383, 0.4] [0.519, 0.644] [0.428, 0.515] [0.159, 0.294] [0.527, 0.545]

t = 10
[0.641, 0.676] [0.658, 0.726] [0.316, 0.631] [0.024, 0.332] [0.392, 0.476]
[0.266, 0.472] [0.564, 0.645] [0.681, 0.88] [0.259, 0.564] [0.671, 0.896]

Table 4: Imprecise consequence intervals for all attributes’ SVNSs, at time t ∈ [0, 10].
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3.2. Approximation-based approach

In Definition 2.4, and remarks 2.2 and 2.3, we introduced the concept of reverse indeterminate SVNS
and imprecise consequence interval for each attribute. These are critical in determining one of the two
endpoints in the imprecise intervals for each ak at time t when ikt > ¯ikt . We also determined that, for distinct
k, l ∈ [1,m], at time t, having

[
sL

k (t), sU
k (t)

]
⊆

[
sL

l (t), sU
l (t)

]
where ikt = min(ikt , ¯ikt ) and ilt = min(ilt , īlt )

leads to the conclusion that ak ≤ al from an attribute scoring standpoint. Depending on the amount of
objectives and attributes being present, drawing such conclusion can be a tough task for a fairly large
amount of attributes. Thus, we describe the following approximation-based approach to help determine
the most desirable attribute(s) at time t. We assume that each imprecise consequence interval is a normal
distribution, and we look at the median of each distribution at time t (Table 5). Once again, at time t = 0,
we had both endpoints being equal; therefore, for t = 0, we just take that τ value. The ¯sqk values in Table 5
are then normalized to generate each attribute weight value at time t, with the sum of all ak at time t
being equal to 1 (See Table 6). If determining which attribute to prioritize at time t is indeed the goal for
the decision-maker, then the ˆsqk results in Table 6 can be used to assign attribute weights based on their
imprecise consequence values. As a result, to obtain the ˆsqk values in Table 6, at each t, with m = 10 and
k ∈ [1,m], we use

ˆsqk =
¯sqk

m∑
k=1

¯sqk

. (53)

Time (t) Imprecise Consequence Median Values ( ¯sqk ) for ak at Time t
¯sq1 ¯sq2 ¯sq3 ¯sq4 ¯sq5 ¯sq6 ¯sq7 ¯sq8 ¯sq9 ¯sq10

t = 0 0.581 0.74 0.149 0.258 0.97 0.515 0.565 0.144 0.925 0.634
t = 1 0.775 0.59 0.583 0.416 0.503 0.826 0.481 0.172 0.4 0.485
t = 2 0.536 0.68 0.512 0.362 0.33 0.634 0.521 0.351 0.229 0.768
t = 3 0.315 0.338 0.176 0.766 0.184 0.829 0.734 0.758 0.636 0.338
t = 4 0.318 0.503 0.336 0.748 0.244 0.59 0.35 0.576 0.77 0.233
t = 5 0.396 0.236 0.487 0.19 0.174 0.628 0.486 0.734 0.497 0.292
t = 6 0.448 0.324 0.419 0.215 0.554 0.566 0.696 0.724 0.536 0.194
t = 7 0.454 0.498 0.457 0.347 0.323 0.169 0.479 0.39 0.543 0.546
t = 8 0.678 0.547 0.674 0.396 0.188 0.278 0.326 0.704 0.406 0.2
t = 9 0.17 0.379 0.711 0.209 0.358 0.392 0.582 0.472 0.226 0.536
t = 10 0.659 0.692 0.474 0.178 0.434 0.369 0.604 0.78 0.412 0.784

Table 5: Imprecise consequence intervals medians for at time t, for each ak.

Time (t) Imprecise Consequence Weighted Values ( ˆsqk ) for ak at Time t
m∑

k=1
ˆsqk

ˆsq1 ˆsq2 ˆsq3 ˆsq4 ˆsq5 ˆsq6 ˆsq7 ˆsq8 ˆsq9 ˆsq10

t = 0 0.106 0.135 0.027 0.047 0.177 0.094 0.103 0.026 0.169 0.116 1.00
t = 1 0.148 0.113 0.111 0.08 0.096 0.158 0.092 0.033 0.076 0.093 1.00
t = 2 0.109 0.138 0.104 0.074 0.067 0.129 0.106 0.071 0.047 0.156 1.00
t = 3 0.062 0.067 0.035 0.151 0.036 0.163 0.145 0.149 0.125 0.067 1.00
t = 4 0.068 0.108 0.072 0.16 0.052 0.126 0.075 0.123 0.165 0.05 1.00
t = 5 0.096 0.057 0.118 0.046 0.042 0.152 0.118 0.178 0.121 0.071 1.00
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t = 6 0.096 0.069 0.09 0.046 0.118 0.121 0.149 0.155 0.115 0.041 1.00
t = 7 0.108 0.118 0.109 0.083 0.077 0.04 0.114 0.093 0.129 0.13 1.00
t = 8 0.154 0.124 0.153 0.09 0.043 0.063 0.074 0.16 0.092 0.045 1.00
t = 9 0.042 0.094 0.176 0.052 0.089 0.097 0.144 0.117 0.056 0.133 1.00
t = 10 0.122 0.128 0.088 0.033 0.081 0.069 0.112 0.145 0.076 0.146 1.00

Table 6: Imprecise consequence weight values at time t for each ak, obtained via the normalization of the imprecise consequence
values of ak for each t.

3.3. Interpretation of results and sensitivity analysis

By corresponding each weight value in Table 6 to its relative attribute, the decision-maker can choose
to prioritize directly based on these weight values. Additionally, these values can also be used to perform
discounting on each attribute with the end goal being the prioritization of attributes at time t. Using dis-
counting, however, is an extra measure for comparing attributes, for the purpose of this paper; so it has been
left to the decision-maker’s discretion.

At first glance, it is easy to see that at time t = 0, attribute a5 would be ranked first, followed closely by
attribute a9, then by a2, a10, a1, a7, a6, a4, a3, and a8, respectively. Doing the same for t = 1, the attribute
ranking is a6, a1, a2, a3, a5, a10, a7, a4, a9, and a8, respectively. For t = 2, we have a10, a2, a6, a1, a7, a3,
a4, a8, a5, and a9, in that order. The same process is used to determine the ranking or priority for the same
attributes at times t = 3, . . . , 10.

The approximation-based approach using the medians of the imprecise consequence intervals in Sub-
section 3.2 gives us an outlet in assigning a weighted value to each attribute because it allows us to bypass
the need to compare each imprecise consequence interval with another (See Remark 2.3). That approach,
however, does not take into account whether attribute ak contains a favorable or unfavorable indeterminacy
at time t. This stems from the fact that the median is the closest to the halfway point between sL

k (t) and
sU

k (t), therefore that approach does not take into account whether ikt = min(ikt , ¯ikt ) (favorable indetermi-
nacy) or ikt = max(ikt , ¯ikt ) (unfavorable indeterminacy). We know that each

[
sL

k (t), sU
k (t)

]
is a continuous

distribution, so we denote εkt = dsqk(t) as an arbitrary infinitesimal variation from the median ¯sqk (t) such that
¯sqk (t) − εkt ≤

¯sqk (t) ≤ ¯sqk (t) + εkt , at time t. Thus, we recompute the weighted values ( ˆsqk ) using

ˆsqk =



¯sqk + εkt

m∑
k=1

¯sqk

, if ikt = min(ikt , ¯ikt );

¯sqk − εkt

m∑
k=1

¯sqk

, otherwise.

(54)

For simplicity, we use the same εkt throughout t = 1, . . . , 10. However, it is normal to envision a case where
the decision-maker would choose a different εkt value as t progresses on. Moreover, since at t = 0, there is
no imprecise consequence interval for any of the attributes (See Table 4), the newly computed values only
affect the previous weighted values in Table 6 from time t = 1 through t = 10. Those newly computed
weighted values are then reflected in Table 7 using εkt = 0.1.

Time
(t > 0)

Imprecise Consequence Weighted Values ( ˆsqk ) for ak at Future t
m∑

k=1
ˆsqk
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ˆsq1 ˆsq2 ˆsq3 ˆsq4 ˆsq5 ˆsq6 ˆsq7 ˆsq8 ˆsq9 ˆsq10

t = 1 0.167 0.094 0.092 0.06 0.115 0.177 0.073 0.014 0.057 0.074 0.923
t = 2 0.089 0.158 0.084 0.053 0.047 0.149 0.086 0.051 0.067 0.176 0.96
t = 3 0.042 0.047 0.015 0.171 0.056 0.183 0.164 0.169 0.145 0.047 1.039
t = 4 0.09 0.086 0.093 0.182 0.031 0.148 0.054 0.145 0.186 0.028 1.043
t = 5 0.12 0.033 0.142 0.07 0.067 0.177 0.094 0.202 0.145 0.095 1.145
t = 6 0.117 0.048 0.068 0.025 0.097 0.1 0.17 0.176 0.136 0.02 0.957
t = 7 0.132 0.142 0.132 0.059 0.101 0.064 0.09 0.069 0.153 0.154 1.096
t = 8 0.177 0.147 0.176 0.067 0.065 0.04 0.051 0.183 0.07 0.023 0.999
t = 9 0.067 0.069 0.201 0.027 0.064 0.122 0.119 0.142 0.081 0.158 1.05
t = 10 0.141 0.147 0.069 0.014 0.062 0.087 0.131 0.163 0.058 0.164 1.036

Table 7: Imprecise consequence weight values at future time t for each ak, obtained via adding or subtracting an arbitrary εkt = 0.1
from the imprecise consequence interval median for each attribute ak, depending on whether the value of ikt is less than 0.5 or not,
at time t > 0.

Using the results in Table 7, there are no new attribute weighting or ranking for t = 0, as expected. For
t = 1, we have the attributes in which ikt = min(ikt , ¯ikt ) (i.e., a6, a1, and a5, respectively), then followed by
those in which ikt , min(ikt , ¯ikt ), such as a2, a3, a10, a7, a4, a9, and a8, in that order. For t = 2, we have a10,
a2, a6, a1, a7, a3, a9, a4, a8, and a5, in that order. The same process is repeated to determine the rankings at
times t = 3, . . . , 10.

As expected, our first observation is that when ikt = min(ikt , ¯ikt ), attributes with largest τkt and smallest
ikt values yield a larger ˆsqk than those that do not. Moreover, we can see that when two or more attributes
contain ikt , min(ikt , ¯ikt ), priority is given to the one(s) with the largest τkt . This new ranking aligns more
with Remark 2.3 than the approximation-based approach of just using the normalized weights of the median
values of the imprecise consequence intervals (Table 6). For instance, at t = 4, a4 has ikt = 0.39 while ikt

for a9 is 0.198; we also can see that [0.711, 0.785] ⊆ [0.669, 0.87], and according to both Remark 2.3
and the ˆsqk values obtained in Table 7, we observe that a9 would be ranked just ahead of a4. As a result,
where applicable, either Remark 2.3 or the approach in Table 7 can be used to determine with attribute
has the most impactful strategy between any given set of attributes, at a specific time in the future. The
challenge, in applying the approach in Table 7, is how to determine which εkt is best to facilitate prioritizing
attributes with favorable indeterminacy over those with unfavorable indeterminacy. The standard deviations
from the imprecise consequence interval medians, at each t > 0, are 0.178, 0.163, 0.247, 0.189, 0.179,
0.174, 0.11, 0.189, 0.166, and 0.187, respectively. Thus, choosing εkt = 0.1 is a sensible pick. Any pick
too small (i.e., εkt → 0) would get us right around the median value, which defeats the purpose of establish
some bias towards favorable indeterminacy. Any pick too large creates a significant gap between attributes
with favorable indeterminacy and those with unfavorable indeterminacy. Ultimately, having the intervals
available to the decision-maker empowers him/her in choosing any approximation approach that suits the
end-goal of the scenario at hand.

4. Future work and discussion

We have developed a DSS computation model for decision-support scenarios where we have N objec-
tives with m attributes spanning over n time-periods. We present each attribute in the form of a single-valued
neutrosophic set and performed necessary operations to determine a specific set of strategies in which each
attribute’s imprecise consequence can be presented as a continuous distribution interval. We proceed with
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defining the model to detect when indeterminacy is favorable or unfavorable, and present approaches that
help achieve that bias. We provide a computation example in which the model is used, and conduct a sensi-
tivity analysis on the results. The example seems to have provided a clear application of the model but we
are aware that certain areas still need clarification. Such areas, which can be addressed in future discussions
regarding this computation model, so far include, but are not limited to:

1. Since each imprecise consequence is given in the form of a continuous distribution interval, assuming
that the distribution is normal, would the normal density of each interval help establish a trend about
each attribute?

2. Can the neutrosophic components of an attribute be linked with any property other than how impactful
the attribute would be in the future?
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