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ABSTRACT. In this paper, the notion of compact neutrosophic soft metric space is introduced. The concept of neutrosophic

soft function and the composition of functions in a neutrosophic soft metric space along with suitable examples also have been

brought. The continuity and uniform continuity of a neutrosophic soft function in this space have been defined and verified by

proper examples. Several related properties, theorems and structural characteristics of these have been investigated here.

1 Introduction

The theory of Neutrosophic set (NS) introduced by Smarandache [19, 20] is the generalization of many theories

e.g., fuzzy set, intuitionistic fuzzy set etc practiced to handle the various uncertainties in many real application

over the past many years. The neutrosophic logic includes the information about the percentage of truth, in-

determinacy and falsity grade in several real world problem like in law, medicine, engineering, management,

industrial, IT sector etc which is not available in fuzzy set theory and intuitionistic fuzzy set theory.

Molodtsov has shown that each of the above topics dealing with uncertainties suffer from inherent difficulties

possibly due to inadequacy of their parametrization tool. So, Molodtsov [1] proposed the concept of ‘soft set
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theory’ for modeling vagueness and uncertainties. It is completely free from the parametrization inadequacy

syndrome. This makes the theory very convenient, efficient and easy to apply in practice. In accordance of this,

Maji et al. [2-4] studied the several basic operations in soft sets theory over fuzzy sets and intuitionistic fuzzy sets.

The notions of fuzzy metric space were studied in [5-13] from different point of view. Roy and Samanta [14] have

defined open and closed sets on fuzzy topological spaces. Park [15] and Alaca et al. [16] defined the concept of

intuitionistic fuzzy metric space in term of continuous t-norms and continuous t-conorms as a generalisation of

fuzzy metric space. Using all these concepts, Beaula et al. [17,18] proposed the notion of fuzzy soft metric spaces

in terms of fuzzy soft points.

After introduction of NS theory, Maji [21] has brought a combined notion Neutrosophic soft set (NSS). In

continuation, several mathematicians have presented their research works in different mathematical structures.

Deli and Broumi [22], Cetkin and Aygun [24-26], Bera and Mahapatra [27-34] studied some fundamental algebraic

structures in NSS theory context. Deli and Broumi [23] have also modified some operations related to indetermin-

istic function of NSSs given by Maji. Broumi et al. [35, 36] have done some consecutive works in graph theory

over NSS.

The motivation of the present paper is to extend the concept neutrosophic soft metric space (NSMS) proposed

in [32]. The current article presents the notion of compact NSMS, the continuity and uniform continuity of a

neutrosophic soft function in an NSMS along with investigation of some related properties and theorems. The

content of the present paper is designed as follows :

Section 2 gives some preliminary useful definitions, examples and theorems which will be used through out

the paper. In section 3, compactness of NSMS is defined and illustrated by examples. Some related basic properties

have been studied here, also. Section 4 deals with the continuity of neutrosophic soft function and the composition

of neutrosophic soft functions in an NSMS along with the study of their structural characteristics. The concept

of uniform continuity of a neutrosophic soft function in an NSMS has been introduced in section 5. Finally, the

conclusion of the present work is stated in section 6.

2 Preliminaries

We recall some basic definitions and theorems related to fuzzy set, soft set, NS, NSS, NSMS for the sake of com-

pleteness.

2.1 Definitions related to Fuzzy Set and Soft set

This section gives some important definitions related to Fuzzy set, Soft Set [1, 28] :

1. A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is continuous t - norm if ∗ satisfies the following conditions :

(i) ∗ is commutative and associative.

(ii) ∗ is continuous.

(iii) a ∗ 1 = 1 ∗ a = a, ∀a ∈ [0, 1].

(iv) a ∗ b ≤ c ∗ d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].
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A few examples of continuous t-norm are a ∗ b = ab, a ∗ b = min{a, b}, a ∗ b = max{a + b− 1, 0}.

2. A binary operation � : [0, 1] × [0, 1] → [0, 1] is continuous t - conorm (s - norm) if � satisfies the following

conditions :

(i) � is commutative and associative.

(ii) � is continuous.

(iii) a � 0 = 0 � a = a, ∀a ∈ [0, 1].

(iv) a � b ≤ c � d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous s-norm are a � b = a + b− ab, a � b = max{a, b}, a � b = min{a + b, 1}.

3. Let U be an initial universe set and E be a set of parameters. Let P(U) denote the power set of U. Then for

A ⊆ E, a pair (F, A) is called a soft set over U, where F : A→ P(U) is a mapping.

2.2 Definitions related to NS and NSS

Few relevant definitions are given below [19, 21, 23, 33] :

1. Let X be a space of points (objects), with a generic element in X denoted by x. A neutrosophic set A in X

is characterized by a truth-membership function TA, an indeterminacy-membership function IA and a falsity-

membership function FA. TA(x), IA(x) and FA(x) are real standard or non-standard subsets of ]−0, 1+[. That is

TA, IA, FA : X →]−0, 1+[. There is no restriction on the sum of TA(x), IA(x), FA(x) and so, −0 ≤ sup TA(x) +

sup IA(x) + sup FA(x) ≤ 3+.

2. Let U be an initial universe set and E be a set of parameters. Let NS(U) denote the set of all NSs of U. Then for

A ⊆ E, a pair (F, A) is called an NSS over U, where F : A→ NS(U) is a mapping.

This concept has been modified by Deli and Broumi as given below :

3. Let U be an initial universe set and E be a set of parameters. Let NS(U) denote the set of all NSs of U.

Then, a neutrosophic soft set N over U is a set defined by a set valued function fN representing a mapping

fN : E → NS(U) where fN is called approximate function of the neutrosophic soft set N. In other words, the

neutrosophic soft set is a parameterized family of some elements of the set NS(U) and therefore it can be written

as a set of ordered pairs,

N = {(e, fN(e)) : e ∈ E}

= {(e, {< x, TfN(e)(x), I fN(e)(x), FfN(e)(x) >: x ∈ U}) : e ∈ E}

where TfN(e)(x), I fN(e)(x), FfN(e)(x) ∈ [0, 1] and they are respectively called the truth-membership, indeterminacy-

membership, falsity-membership function of fN(e). Since supremum of each T, I, F is 1 so the inequality 0 ≤

TfN(e)(x) + I fN(e)(x) + FfN(e)(x) ≤ 3 is obvious.

4. The complement of a neutrosophic soft set N is denoted by Nc and is defined by :

Nc = {(e, {< x, FfN(e)(x), 1− I fN(e)(x), TfN(e)(x) >: x ∈ U}) : e ∈ E}

5. Let N1 and N2 be two NSSs over the common universe (U, E). Then N1 is said to be the neutrosophic soft
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subset of N2 if ∀e ∈ E, ∀x ∈ U,

TfN1 (e)
(x) ≤ TfN2 (e)

(x); I fN1 (e)
(x) ≥ I fN2 (e)

(x); FfN1 (e)
(x) ≥ FfN2 (e)

(x).

We write N1 ⊆ N2 and then N2 is the neutrosophic soft superset of N1.

6. Let N1 and N2 be two NSSs over the common universe (U, E). Then their union is denoted by N1 ∪ N2 = N3

and is defined by :

N3 = {(e, {< x, TfN3 (e)
(x), I fN3 (e)

(x), FfN3 (e)
(x) >: x ∈ U}) : e ∈ E}

where TfN3 (e)
(x) = TfN1 (e)

(x) � TfN2 (e)
(x), I fN3 (e)

(x) = I fN1 (e)
(x) ∗ I fN2 (e)

(x) and

FfN3 (e)
(x) = FfN1 (e)

(x) ∗ FfN2 (e)
(x);

7. Let N1 and N2 be two NSSs over the common universe (U, E). Then their intersection is denoted by N1 ∩ N2 =

N3 and is defined by :

N3 = {(e, {< x, TfN3 (e)
(x), I fN3 (e)

(x), FfN3 (e)
(x) >: x ∈ U}) : e ∈ E}

where TfN3 (e)
(x) = TfN1 (e)

(x) ∗ TfN2 (e)
(x), I fN3 (e)

(x) = I fN1 (e)
(x) � I fN2 (e)

(x) and

FfN3 (e)
(x) = FfN1 (e)

(x) � FfN2 (e)
(x);

8. A neutrosophic soft set N over (U, E) is said to be null neutrosophic soft set if TfN(e)(x) = 0, I fN(e)(x) =

1, FfN(e)(x) = 1; ∀e ∈ E, ∀x ∈ U. It is denoted by φu.

A neutrosophic soft set N over (U, E) is said to be absolute neutrosophic soft set if TfN(e)(x) = 1, I fN(e)(x) =

0, FfN(e)(x) = 0; ∀e ∈ E, ∀x ∈ U. It is denoted by 1u.

Clearly, φc
u = 1u and 1c

u = φu.

9. A neutrosophic soft point in an NSS N is defined as an element (e, fN(e)) of N, for e ∈ E and is denoted by eN ,

if fN(e) /∈ φu and fN(e′) ∈ φu, ∀e′ ∈ E− {e}.

The complement of a neutrosophic soft point eN is another neutrosophic soft point ec
N such that f c

N(e) =

( fN(e))c.

A neutrosophic soft point eN ∈ M, M being an NSS if for e ∈ E, fN(e) ≤ fM(e) i.e., TfN(e)(x) ≤ TfM(e)(x), I fN(e)(x) ≥

I fM(e)(x), FfN(e)(x) ≥ FfM(e)(x), ∀x ∈ U.

Example : Let U = {x1, x2, x3} and E = {e1, e2}. Then,

e1N = {< x1, (0.6, 0.4, 0.8) >,< x2, (0.8, 0.3, 0.5) >,< x3, (0.3, 0.7, 0.6) >}

is a neutrosophic soft point whose complement is :

ec
1N = {< x1, (0.8, 0.6, 0.6) >,< x2, (0.5, 0.7, 0.8) >,< x3, (0.6, 0.3, 0.3) >}.

For another NSS M defined on same (U, E), let

fM(e1) = {< x1, (0.7, 0.4, 0.7) >,< x2, (0.8, 0.2, 0.4) >,< x3, (0.5, 0.6, 0.5) >}.

Then fN(e1) ≤ fM(e1) i.e., e1N ∈ M.

2.3 Definitions related to neutrosophic soft metric space

Following necessary definitions are provided here [32]:

1. Let NS(UE) be the collection of all neutrosophic soft points over (U, E). Then the neutrosophic soft metric in
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terms of neutrosophic soft points is defined by a mapping d : NS(UE)× NS(UE)→ [0, 3] satisfying the following

conditions :

NSM1 : d(eM, eN) ≥ 0, ∀eM, eN ∈ NS(UE).

NSM2 : d(eM, eN) = 0⇔ eM = eN .

NSM3 : d(eM, eN) = d(eN , eM).

NSM4 : d(eM, eN) ≤ d(eM, eP) + d(eP, eN), ∀eM, eP, eN ∈ NS(UE).

Then NS(UE) is said to form an NSMS with respect to the neutrosophic soft metric ‘d’ over (U, E) and

is denoted by (NS(UE), d). Here eM = eN in the sense that TeM (xi) = TeN (xi), IeM (xi) = IeN (xi), FeM (xi) =

FeN (xi), ∀xi ∈ U.

2. Example (i) On NS(UE) define d(eM, eN) = minxi{(|TeM (xi) − TeN (xi)|k + |IeM (xi) − IeN (xi)|k + |FeM (xi) −

FeN (xi)|k)
1
k }, k(≥ 1) being any real number. This ‘d’ satisfies all the metric axioms and so, it is a neutrosophic soft

metric over (U, E).

(ii) Let ‘d’ be a neutrosophic soft metric on NS(UE). Suppose d1(eM, eN) = d(eM ,eN)
1+d(eM ,eN)

; Then ‘d1’ satisfies all the

metric axioms. So, (NS(UE), d1) is an NSMS with respect to the neutrosophic soft metric d1.

3. Let (NS(UE), d) be a neutrosophic soft metric space and t ∈ (0, 3]. An open ball having center at eN ∈ NS(UE)

and radius ‘t’ is defined by a set B(eN , t) = {eiN ∈ NS(UE) : d(eN , eiN) < t}.

The neutrosophic soft closed ball is defined as : B[eN , t] = {eiN ∈ NS(UE) : d(eN , eiN) ≤ t}.

A neighbourhood of eN ∈ NS(UE) is defined by an open ball B(eN , t) with center at eN and radius t ∈ (0, 3].

4. In an NSMS (NS(UE), d) over (U, E), a neutrosophic soft point eN is called an interior point of NS(UE) if there

exist an open ball B(eN , t) such that B(eN , t) ⊂ NS(UE).

For an NSMS (NS(UE), d) over (U, E), an NSS M is called open if each of it’s points is an interior point.

5. A neutrosophic soft point eN in an NSMS (NS(UE), d) is called a limit point/ accumulation point of an NSS

M ⊂ NS(UE) if for every t ∈ (0, 3], B(eN , t) contains atleast one neutrosophic soft point of M distinct from eN .

Collection of all limit points of M is called derived NSS of M and is denoted by D(M). An NSS M ⊂ NS(UE)

in an NSMS (NS(UE), d) over (U, E) is closed NSS if D(M) ⊂ M or M has no limit point.

6. A sequence of neutrosophic soft points {enN} in an NSMS (NS(UE), d) is said to converge in (NS(UE), d) if

there exists a neutrosophic soft point eN ∈ NS(UE) such that d(enN , eN) → 0 as n → ∞ or enN → eN as n → ∞.

Analytically, for every ε > 0 there exists a natural number n0 such that d(enN , eN) < ε ∀n ≥ n0.

7. A sequence {enN} of neutrosophic soft point in an NSMS (NS(UE), d) is said to be a Cauchy sequence if to every

ε > 0 there exists an n0 ∈ N (set of natural numbers) such that d(emN , enN) < ε ∀m, n ≥ n0 i.e., d(emN , enN) → 0

as m, n→ ∞.

8. An NSMS (NS(UE), d) is said to be complete if every Cauchy sequence in (NS(UE), d) converges to a neutro-

sophic soft point of NS(UE).

9. Let (NS(UE), d) be an NSMS. Then the diameter of NS(UE) is defined as :

δ(NS(UE)) = sup {d(e1N , e2N) : e1N , e2N ∈ NS(UE)}.



Tuhin Bera and Nirmal Kumar Mahapatra 6

An NSS M ⊂ NS(UE) is bounded if it has a finite diameter i.e., if d(e1M, e2M) ≤ r, for r ∈ (0, 3] and

∀e1M, e2M ∈ M.

2.4 Theorems related to neutrosophic soft metric space

Some necessary theorems are stated for the sake of completeness [32]:

1. In an NSMS (NS(UE), d), every neutrosophic soft open ball B(eN , t) is open and every neutrosophic soft closed

ball B[eN , t] is closed.

2. Let (NS(UE), d) be an NSMS over (U, E). Then,

(i) the intersection of finite number of open NSSs in (NS(UE), d) is open.

(ii) the intersection of any family of closed NSSs in (NS(UE), d) is closed.

3. Every finite neutrosophic soft subset of an NSMS is closed.

3 Compactness of NSMS

In this section, the compact NSMS has been defined and illustrated by examples. Some related theorems also have

been developed here.

3.1 Definition

An NSMS (NS(UE), d) is said to be compact if every sequence of neutrosophic soft points {enM} of the space has

a subsequence {enk M} converging to a neutrosophic soft point of NS(UE).

An NSS M ⊂ NS(UE) is said to be compact if every sequence of neutrosophic soft points chosen from M has

a subsequence converging to a point of M. If the limit of the subsequence belongs to NS(UE) and not necessarily

to M, then M is said to be compact in (NS(UE), d).

3.1.1 Example

(1) Let E = {e} and U = {x, y, z}. Define a distance function on NS(UE) as :

d(eM, eN) =

 1 if eM 6= eN

0 if eM = eN .

Then ‘d’ is a neutrosophic soft metric on NS(UE) and is called discrete neutrosophic soft metric. Thus (NS(UE), d)

is a discrete NSMS. It is a compact NSMS.

(2) Consider the NSMS (NS(UE), d) where E = N (the set of natural number) be the parametric set, U = Z (the

set of all integers) be the universal set and d is defined as in (2)(i) of [2.3]; Since T, I, F ∈ [0, 1], every sequence of

neutrosophic soft points of the space has a convergent subsequence and so (NS(UE), d) is compact.

(3) Take the NSMS (NS(UE), d) where E = N (the set of natural number), U = Z (the set of all integers) and ‘d’ is

defined as in (2)(i) of [2.3]; Consider a sequence of neutrosophic soft points {enM} as, ∀x ∈ Z :
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TenM (x) = 1
2n , IenM (x) = 1− 1

2n , FenM (x) = n
1+2n for TenM , IenM , FenM ∈ (0, 1)

Then M is not compact itself but is compact on NS(UE).

(4) Let E = {e1, e2, e3, e4, e5, e6, e7, e8} and U = Z. Define ‘d’ as in (2)(i) of [2.3]; Then (NS(UE), d) is not compact.

We shall verify it by taking a sequence of neutrosophic soft points as given in Table 1.

Table 1 : Tabular form of neutrosophic soft sequence

e1M e2M e3M e4M e5M e6M e7M e8M

x1 (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (0, 0, 0) (1, 1, 1)

x2 (1, 0, 0) (0, 1, 0) (0, 0, 1) (1, 1, 0) (1, 0, 1) (0, 1, 1) (0, 0, 0) (1, 1, 1)
...

...
...

...
...

...
...

...
...

Then d(eiM, ejM) 6= 0 for i 6= j. So, neither the sequence nor any of it’s subsequence is convergent.

3.2 Theorem

A compact NSMS is complete.

Proof. Let (NS(UE), d) be a compact NSMS and {enM} be a Cauchy sequence of neutrosophic soft points in

NS(UE). Then to every ε > 0 there exists an n0 ∈ N (set of natural numbers) such that d(emM, enM) < ε, ∀n >

m ≥ n0.

Since (NS(UE), d) be compact, ∃ a subsequence {enk M} such that limn→∞ enk M = eP, say. Then d(enk M, eP) <

ε, ∀nk ≥ n0. Also d(emM, enk M) < ε, ∀nk > m ≥ n0.

Now for n > m, d(enM, eP) ≤ d(enM, emM) + d(emM, enk M) + d(enk M, eP) < 3ε. Thus {enM} being a Cauchy

sequence converges to a point in NS(UE) and so (NS(UE), d) be a complete NSMS.

3.3 Theorem

Every compact set in an NSMS is closed and bounded.

Proof. Let M be a compact NSS in an NSMS (NS(UE), d). Suppose M is not closed. Then there exists a sequence

{enM} of neutrosophic soft points in M converging to a point eM (say) not belong to M. Then every subsequence

of {enM} also converges to eM not belong to M. Thus there is no subsequence of {enM} converging to a point of

M which contradicts the compactness of M. Hence M is closed.

Next suppose M is not bounded and eM be fixed neutrosophic soft point. Then ∃ a point e1M ∈ M such that

d(eM, e1M) > 3. By similar argument ∃ a point e2M ∈ M such that d(eM, e2M) > d(eM, e1M) + 3. Continuing

this process, we get a sequence of neutrosophic soft points e1M, e2M, · · · , enM, · · · ∈ M such that d(eM, enM) >

d(eM, e1M) + d(eM, e2M) + · · · + d(eM, e(n−1)M) + 3. So, for n > m, d(eM, enM) > d(eM, emM) + 3. Now,

d(enM, eM) ≤ d(enM, emM) + d(emM, eM) and so d(enMemM) > 3 whenever n > m. This shows that neither

the sequence {enM} nor any of it’s subsequence can converge, contradicting the fact that M is compact. Hence M

is bounded.
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3.3.1 Remark

Converse of above may not be true. The fact is shown by the example (4) of [3.1.1];

Here, d(eiM, ejM) < 3 for all i 6= j and D(M) = φ ⊂ M. So, M is bounded and closed. But M is not compact.

4 Continuity on NSMS

Here, the concept of neutrosophic soft function, it’s continuity on an NSMS, the composition of neutrosophic soft

functions have been introduced and illustrated by suitable examples. Several properties, structural characteristics

and theorems related to these also have been presented here.

4.1 Definition

Let (NS(UE), d) and (NS(VE′ ), d′) be two NSMSs and (ϕ, ψ) : (NS(UE), d) → (NS(VE′ ), d′) be a neutrosophic

soft function where ϕ : U → V and ψ : E → E′ be two crisp functions. Consider two neutrosophic soft points

eM, e′N as :

eM = {< x, (TeM (x), IeM (x), FeM (x)) >: x ∈ U} ∈ NS(UE), e ∈ E and

e′N = {< y, (Te′N
(y), Ie′N

(y), Fe′N
(y)) >: y ∈ ϕ(U)} ∈ NS(VE′ ), e′ ∈ ψ(E)

(1) Then the image of eM under (ϕ, ψ) is denoted by (ϕ, ψ)(eM). It is also a neutrosophic soft point e′N (say) ∈

NS(VE′ ) defined as follows :

Te′N
(y) =

 maxϕ(x)=y maxψ(e)=e′ [TeM (x)], if x ∈ ϕ−1(y)

0 , otherwise.

Ie′N
(y) =

 minϕ(x)=y minψ(e)=e′ [IeM (x)], if x ∈ ϕ−1(y)

1 , otherwise.

Fe′N
(y) =

 minϕ(x)=y minψ(e)=e′ [FeM (x)], if x ∈ ϕ−1(y)

1 , otherwise.

(2) The pre-image of e′N under (ϕ, ψ), denoted by (ϕ, ψ)−1(e′N), is a neutrosophic soft point eM (say) ∈ NS(UE)

and is defined as follows, ∀x ∈ U, ∀e ∈ ψ−1(E′) :

TeM (x) = T[ψ(e)]N (ϕ(x)) = Te′N
(ϕ(x))

IeM (x) = I[ψ(e)]N (ϕ(x)) = Ie′N
(ϕ(x))

FeM (x) = F[ψ(e)]N (ϕ(x)) = Fe′N
(ϕ(x))

If ψ and ϕ are injective (surjective), then (ϕ, ψ) is injective (surjective).
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4.1.1 Example

Let E = N (the set of natural numbers) be the parametric set and U = Z (the set of integers) be the universal set.

Consider a neutrosophic soft point nM ∈ NS(ZN) as follows, for any n ∈ N and x ∈ Z :

TnM (x) =

 0 if x = 2k− 1, k ∈ Z
1
n if x = 2k, k ∈ Z.

InM (x) =

 1
2n if x = 2k− 1, k ∈ Z

0 if x = 2k, k ∈ Z.

FnM (x) =

 1− 1
n if x = 2k− 1, k ∈ Z

0 if x = 2k, k ∈ Z.

Then (NS(ZN), d) forms an NSMS where ‘d’ is defined in (2)(i) of [2.3]. Now, let ϕ : Z → Z and ψ : N → N be

two crisp functions defined as ϕ(x) = 2x + 3 = y (say) and ψ(n) = 2n − 1 = m (say), respectively. Then the

neutrosophic soft function (ϕ, ψ) : (NS(ZN), d) → (NS(ZN), d) is given by (ϕ, ψ)(nM) = mP, m ∈ N and it is

defined as :

TmP (y) =


0 if y = 4k + 1, k ∈ Z

2
1+m if y = 4k + 3, k ∈ Z

0 if y = otherwise.

ImP (y) =


1

1+m if y = 4k + 1, k ∈ Z

0 if y = 4k + 3, k ∈ Z

1 if y = otherwise.

FmP (y) =


m−1
m+1 if y = 4k + 1, k ∈ Z

0 if y = 4k + 3, k ∈ Z

1 if y = otherwise.

4.2 Proposition

Let (ϕ, ψ) : (NS(UE), d) → (NS(VE′ ), d′) be a neutrosophic soft function. Then the image set {(φ, ψ)(eM) : eM ∈

NS(UE)} forms an NSMS with respect to ‘d′’.
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Proof. Let us consider three neutrosophic soft points eM, eN , eP ∈ NS(UE). Now,

(1) eM 6= eN ⇒ d(eM, eN) > 0

i.e., (TeM (x), IeM (x), FeM (x)) 6= (TeN (x), IeN (x), FeN (x)) ⇒

d[(TeM (x), IeM (x), FeM (x)), (TeN (x), IeN (x), FeN (x))] > 0, ∀x ∈ U

i.e., (max
ϕ(x)

max
ψ(e)

[TeM (x)], min
ϕ(x)

min
ψ(e)

[IeM (x)], min
ϕ(x)

min
ψ(e)

[FeM (x)]) 6=

(max
ϕ(x)

max
ψ(e)

[TeN (x)], min
ϕ(x)

min
ψ(e)

[IeN (x)], min
ϕ(x)

min
ψ(e)

[FeN (x)]) ⇒

d′[(max
ϕ(x)

max
ψ(e)

[TeM (x)], min
ϕ(x)

min
ψ(e)

[IeM (x)], min
ϕ(x)

min
ψ(e)

[FeM (x)]),

(max
ϕ(x)

max
ψ(e)

[TeN (x)], min
ϕ(x)

min
ψ(e)

[IeN (x)], min
ϕ(x)

min
ψ(e)

[FeN (x)])] > 0

i.e., (φ, ψ)(eM) 6= (φ, ψ)(eN) ⇒ d′[(φ, ψ)(eM), (φ, ψ)(eN)] > 0

(2) eM = eN ⇔ d(eM, eN) = 0

i.e., TeM (x) = TeN (x), IeM (x) = IeN (x), FeM (x) = FeN (x), ∀x ∈ U ⇔

d[(TeM (x), IeM (x), FeM (x)), (TeN (x), IeN (x), FeN (x))] = 0, ∀x ∈ U

i.e., max
ϕ(x)

max
ψ(e)

[TeM (x)] = max
ϕ(x)

max
ψ(e)

[TeN (x)], min
ϕ(x)

min
ψ(e)

[IeM (x)] =

min
ϕ(x)

min
ψ(e)

[IeN (x)], min
ϕ(x)

min
ψ(e)

[FeM (x)] = min
ϕ(x)

min
ψ(e)

[FeN (x)] ⇔

d′[(max
ϕ(x)

max
ψ(e)

[TeM (x)], min
ϕ(x)

min
ψ(e)

[IeM (x)], min
ϕ(x)

min
ψ(e)

[FeM (x)]),

(max
ϕ(x)

max
ψ(e)

[TeN (x)], min
ϕ(x)

min
ψ(e)

[IeN (x)], min
ϕ(x)

min
ψ(e)

[FeN (x)])] = 0

i.e., (φ, ψ)(eM) = (φ, ψ)(eN) ⇔ d′[(φ, ψ)(eM), (φ, ψ)(eN)] = 0

(3) d(eM, eN) = d(eN , eM)

⇒ d[(TeM (x), IeM (x), FeM (x)), (TeN (x), IeN (x), FeN (x))]

= d[(TeN (x), IeN (x), FeN (x)), (TeM (x), IeM (x), FeM (x))]

⇒ d′[(max
ϕ(x)

max
ψ(e)

[TeM (x)], min
ϕ(x)

min
ψ(e)

[IeM (x)], min
ϕ(x)

min
ψ(e)

[FeM (x)]),

(max
ϕ(x)

max
ψ(e)

[TeN (x)], min
ϕ(x)

min
ψ(e)

[IeN (x)], min
ϕ(x)

min
ψ(e)

[FeN (x)])]

= d′[(max
ϕ(x)

max
ψ(e)

[TeN (x)], min
ϕ(x)

min
ψ(e)

[IeN (x)], min
ϕ(x)

min
ψ(e)

[FeN (x)]),

(max
ϕ(x)

max
ψ(e)

[TeM (x)], min
ϕ(x)

min
ψ(e)

[IeM (x)], min
ϕ(x)

min
ψ(e)

[FeM (x)])]

⇒ d′[(φ, ψ)(eM), (φ, ψ)(eN)] = d′[(φ, ψ)(eN), (φ, ψ)(eM)]



Tuhin Bera and Nirmal Kumar Mahapatra 11

(4) d(eM, eN) ≤ d(eM, eP) + d(eP, eN)

⇒ d[(TeM (x), IeM (x), FeM (x)), (TeN (x), IeN (x), FeN (x))]

≤ d[(TeM (x), IeM (x), FeM (x)), (TeP (x), IeP (x), FeP (x))] +

d[(TeP (x), IeP (x), FeP (x)), (TeN (x), IeN (x), FeN (x))], ∀x ∈ U

⇒ d′[(max
ϕ(x)

max
ψ(e)

[TeM (x)], min
ϕ(x)

min
ψ(e)

[IeM (x)], min
ϕ(x)

min
ψ(e)

[FeM (x)]),

(max
ϕ(x)

max
ψ(e)

[TeN (x)], min
ϕ(x)

min
ψ(e)

[IeN (x)], min
ϕ(x)

min
ψ(e)

[FeN (x)])]

≤ d′[(max
ϕ(x)

max
ψ(e)

[TeM (x)], min
ϕ(x)

min
ψ(e)

[IeM (x)], min
ϕ(x)

min
ψ(e)

[FeM (x)]),

(max
ϕ(x)

max
ψ(e)

[TeP (x)], min
ϕ(x)

min
ψ(e)

[IeP (x)], min
ϕ(x)

min
ψ(e)

[FeP (x)])]

+d′[(max
ϕ(x)

max
ψ(e)

[TeP (x)], min
ϕ(x)

min
ψ(e)

[IeP (x)], min
ϕ(x)

min
ψ(e)

[FeP (x)])

(max
ϕ(x)

max
ψ(e)

[TeN (x)], min
ϕ(x)

min
ψ(e)

[IeN (x)], min
ϕ(x)

min
ψ(e)

[FeN (x)])]

⇒ d′[(φ, ψ)(eM), (φ, ψ)(eN)] ≤ d′[(φ, ψ)(eM), (φ, ψ)(eP)] + d′[(φ, ψ)(eP), (φ, ψ)(eN)]

This completes the proof.

4.3 Proposition

Let (ϕ, ψ) : (NS(UE), d)→ (NS(VE′ ), d′) be an onto neutrosophic soft function. Then the pre-image set {(ϕ, ψ)−1(e′Q) :

e′Q ∈ NS(VE′ )} forms also an NSMS with respect to ‘d’. [ Note that (ϕ, ψ)−1 is the inverse image of NS(VE′ ) under

the mapping (ϕ, ψ). Here (ϕ, ψ)−1 may not be a mapping.]

Proof. Let eM, eN , eP ∈ NS(UE) and e′Q, e′R, e′S ∈ NS(VE′ ) such that (ϕ, ψ)−1(e′Q) = eM, (ϕ, ψ)−1(e′R) = eN , (ϕ, ψ)−1(e′S) =

eP and ϕ(x) = y for x ∈ U, y ∈ V. Now,

(1) e′Q 6= e′R ⇒ d′(e′Q, e′R) > 0

i.e., (Te′Q
(y), Ie′Q

(y), Fe′Q
(y)) 6= (Te′R

(y), Ie′R
(y), Fe′R

(y)) ⇒

d′[(Te′Q
(y), Ie′Q

(y), Fe′Q
(y)), (Te′R

(y), Ie′R
(y), Fe′R

(y))] > 0, ∀y ∈ V

i.e., (TeM (x), IeM (x), FeM (x)) 6= (TeN (x), IeN (x), FeN (x)) ⇒

d[(TeM (x), IeM (x), FeM (x)), (TeN (x), IeN (x), FeN (x))] > 0

i.e., eM 6= eN ⇒ d(eM, eN) > 0 i.e.,

(ϕ, ψ)−1(e′Q) 6= (ϕ, ψ)−1(e′R) ⇒ d[(ϕ, ψ)−1(e′Q), (ϕ, ψ)−1(e′R)] > 0
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(2) e′Q = e′R ⇔ d(e′Q, e′R) = 0

i.e., Te′Q
(y) = Te′R

(y), Ie′Q
(y) = Ie′R

(y), Fe′Q
(y) = Fe′R

(y), ∀y ∈ V ⇔

d[(Te′Q
(y), Ie′Q

(y), Fe′Q
(y)), (Te′R

(y), Ie′R
(y), Fe′R

(y))] = 0, ∀y ∈ V

i.e., TeM (x) = TeN (x), IeM (x) = IeN (x), FeM (x) = FeN (x) ⇔

d[(TeM (x), IeM (x), FeM (x)), (TeN (x), IeN (x), FeN (x))] = 0

i.e., eM = eN ⇔ d(eM, eN) = 0

i.e., (ϕ, ψ)−1(e′Q) = (ϕ, ψ)−1(e′R) ⇔ d[(ϕ, ψ)−1(e′Q), (ϕ, ψ)−1(e′R)] = 0

(3) d′(e′Q, e′R) = d′(e′R, e′Q)

⇒ d′[(Te′Q
(y), Ie′Q

(y), Fe′Q
(y)), (Te′R

(y), Ie′R
(y), Fe′R

(y))] =

d′[(Te′R
(y), Ie′R

(y), Fe′R
(y)), (Te′Q

(y), Ie′Q
(y), Fe′Q

(y))]

⇒ d[(TeM (x), IeM (x), FeM (x)), (TeN (x), IeN (x), FeN (x))] =

d[(TeN (x), IeN (x), FeN (x)), (TeM (x), IeM (x), FeM (x))]

⇒ d(eM, eN) = d(eN , eM) i.e.,

d[(ϕ, ψ)−1(e′Q), (ϕ, ψ)−1(e′R)] = d[(ϕ, ψ)−1(e′R), (ϕ, ψ)−1(e′Q)]

(4) d′(e′Q, e′S) ≤ d′(e′Q, e′R) + d′(e′R, e′S)

⇒ d′[(Te′Q
(y), Ie′Q

(y), Fe′Q
(y)), (Te′S

(y), Ie′S
(y), Fe′S

(y))]

≤ d′[(Te′Q
(y), Ie′Q

(y), Fe′Q
(y)), (Te′R

(y), Ie′R
(y), Fe′R

(y))] +

d′[(Te′R
(y), Ie′R

(y), Fe′R
(y)), (Te′S

(y), Ie′S
(y), Fe′S

(y))], ∀y ∈ V

⇒ d[(TeM (x), IeM (x), FeM (x)), (TeP (x), IeP (x), FeP (x))]

≤ d[(TeM (x), IeM (x), FeM (x)), (TeN (x), IeN (x), FeN (x))] +

d[(TeN (x), IeN (x), FeN (x)), (TeP (x), IeP (x), FeP (x))]

⇒ d(eM, eP) ≤ d(eM, eN) + d(eN , eP) i.e.,

d[(ϕ, ψ)−1(e′Q), (ϕ, ψ)−1(e′S)] ≤ d[(ϕ, ψ)−1(e′Q), (ϕ, ψ)−1(e′R)]

+d[(ϕ, ψ)−1(e′R), (ϕ, ψ)−1(e′S)]

This completes the proof.

4.4 Proposition

Let P, Q ⊂ NS(UE) and M, N ⊂ NS(VE′ ). Then for a neutrosophic soft function (ϕ, ψ) : (NS(UE), d) →

(NS(VE′ ), d′), the followings hold.

(1) (ϕ, ψ)−1(M) ⊆ (ϕ, ψ)−1(N) ⇔ M ⊆ N.

(2) P ⊆ Q ⇔ (ϕ, ψ)(P) ⊆ (ϕ, ψ)(Q).
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(3) M ⊆ (ϕ, ψ)(P) ⇔ (ϕ, ψ)−1(M) ⊆ P.

(4) (ϕ, ψ)(Q) ⊆ N ⇔ Q ⊆ (ϕ, ψ)−1(N).

Proof. Let ϕ(x) = y and ψ(e) = e′ for x ∈ U, y ∈ V and e ∈ E, e′ ∈ E′. Then,

(1) M ⊆ N

⇔ Te′M
(y) ≤ Te′N

(y), Ie′M
(y) ≥ Ie′N

(y), Fe′M
(y) ≥ Fe′N

(y), ∀e′, ∀y;

⇔ T[ψ(e)]M (ϕ(x)) ≤ T[ψ(e)]N (ϕ(x)), I[ψ(e)]M (ϕ(x)) ≥ I[ψ(e)]N (ϕ(x)),

F[ψ(e)]M (ϕ(x)) ≥ F[ψ(e)]N (ϕ(x)), ∀e, ∀x;

⇔ Te(ϕ,ψ)−1(M)
(x) ≤ Te(ϕ,ψ)−1(N)

(x), Ie(ϕ,ψ)−1(M)
(x) ≥ Ie(ϕ,ψ)−1(N)

(x),

Fe(ϕ,ψ)−1(M)
(x) ≥ Fe(ϕ,ψ)−1(N)

(x), ∀e, ∀x;

⇔ (ϕ, ψ)−1(M) ⊆ (ϕ, ψ)−1(N)

(2) (ϕ, ψ)(P) ⊆ (ϕ, ψ)(Q)

⇔ max
ϕ(x)

max
ψ(e)

[TeP (x)] ≤ max
ϕ(x)

max
ψ(e)

[TeQ (x)], min
ϕ(x)

min
ψ(e)

[IeP (x)]

≥ min
ϕ(x)

min
ψ(e)

[IeQ (x)], min
ϕ(x)

min
ψ(e)

[FeP (x)] ≥ min
ϕ(x)

min
ψ(e)

[FeQ (x)]

⇔ TeP (x) ≤ TeQ (x), IeP (x) ≥ IeQ (x), FeP (x) ≥ FeQ (x), ∀e, ∀x

⇔ P ⊆ Q

(3) M ⊆ (ϕ, ψ)(P)

⇔ Te′M
(y) ≤ max

ϕ(x)
max
ψ(e)

[TeP (x)], Ie′M
(y) ≥ min

ϕ(x)
min
ψ(e)

[IeP (x)],

Fe′M
(y) ≥ min

ϕ(x)
min
ψ(e)

[FeP (x)]

⇔ T[ψ(e)]M (ϕ(x)) ≤ max
ϕ(x)

max
ψ(e)

[TeP (x)], I[ψ(e)]M (ϕ(x)) ≥

min
ϕ(x)

min
ψ(e)

[IeP (x)], F[ψ(e)]M (ϕ(x)) ≥ min
ϕ(x)

min
ψ(e)

[FeP (x)]

⇔ Te(ϕ,ψ)−1(M)
(x) ≤ TeP (x), Ie(ϕ,ψ)−1(M)

(x) ≥ IeP (x), Fe(ϕ,ψ)−1(M)
(x) ≥ FeP (x), ∀e, ∀x

⇔ (ϕ, ψ)−1(M) ⊆ P

(4) (ϕ, ψ)(Q) ⊆ N

⇔ max
ϕ(x)

max
ψ(e)

[TeQ (x)] ≤ Te′N
(y), min

ϕ(x)
min
ψ(e)

[IeP (x)] ≥ Ie′N
(y),

min
ϕ(x)

min
ψ(e)

[FeQ (x)] ≥ Fe′N
(y)

⇔ max
ϕ(x)

max
ψ(e)

[TeQ (x)] ≤ T[ψ(e)]N (ϕ(x)), min
ϕ(x)

min
ψ(e)

[IeQ (x)] ≥

I[ψ(e)]N (ϕ(x)), min
ϕ(x)

min
ψ(e)

[FeQ (x)] ≥ F[ψ(e)]N (ϕ(x))

⇔ TeQ (x) ≤ Te(ϕ,ψ)−1(N)
(x), IeQ (x) ≥ Ie(ϕ,ψ)−1(N)

(x), FeQ (x) ≥ Fe(ϕ,ψ)−1(N)
(x), ∀e, ∀x

⇔ Q ⊆ (ϕ, ψ)−1(N)
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4.5 Definition

Let (NS(UE), d) and (NS(VE′ ), d′) be two NSMSs. Then a neutrosophic soft function (ϕ, ψ) : (NS(UE), d) →

(NS(VE′ ), d′) is said to be continuous at e0N ∈ NS(UE) if for each ε > 0 there exists a δ > 0 such that

d′[(ϕ, ψ)(eM), (ϕ, ψ)(e0N)] < ε whenever d(eM, e0N) < δ, eM ∈ NS(UE).

i.e., if (ϕ, ψ)[Bu(e0N , δ)] ⊂ Bv((ϕ, ψ)(e0N), ε) holds. (ϕ, ψ) is called neutrosophic soft continuous function if it is

continuous at every point in NS(UE).

4.6 Theorem

Let (ϕ, ψ) : (NS(UE), d)→ (NS(VE′ ), d′) be a neutrosophic soft function.

(1) If e0N is a limit point of NS(UE), then (ϕ, ψ) is neutrosophic soft continuous at e0N iff limeM→e0N (ϕ, ψ)(eM) =

(ϕ, ψ)(e0N).

(2) (ϕ, ψ) is continuous at e0N ∈ NS(UE) iff for every sequence {enN} of neutrosophic soft points in NS(UE)

converging to e0N , we have limn→∞ (ϕ, ψ)(enN) = (ϕ, ψ)(e0N).

Proof. (1) It is straight forward.

(2) First suppose that (ϕ, ψ) is continuous at e0N ∈ NS(UE) and limn→∞ enN = e0N . Then given ε > 0, there

exists a δ > 0 such that

d′[(ϕ, ψ)(eM), (ϕ, ψ)(e0N)] < ε whenever d(eM, e0N) < δ, eM ∈ NS(UE).

Since limn→∞ enN = e0N , there exists a natural number n0 such that

d(enN , e0N) < δ, ∀n ≥ n0. Putting eM = enN , we have

d′[(ϕ, ψ)(enN), (ϕ, ψ)(e0N)] < ε whenever d(enN , e0N) < δ, ∀n ≥ n0.

Thus d′[(ϕ, ψ)(enN), (ϕ, ψ)(e0N)] < ε, ∀n ≥ n0 and this completes the ‘if’ part.

Conversely, let the condition be hold but (ϕ, ψ) is not continuous at e0N ∈ NS(UE). Then given ε > 0, there

exists a δ > 0 such that

d′[(ϕ, ψ)(eM), (ϕ, ψ)(e0N)] ≥ ε whenever d(eM, e0N) < δ, eM ∈ NS(UE); · · · (1)

But by hypothesis, there exists a natural number n0 such that

d′[(ϕ, ψ)(enN), (ϕ, ψ)(e0N)] < ε whenever d(enN , e0N) < δ, ∀n ≥ n0.

Putting eM = enN in (1), we have

d′[(ϕ, ψ)(enN), (ϕ, ψ)(e0N)] ≥ ε whenever d(enN , e0N) < δ

This contradicts the hypothesis and so (ϕ, ψ) is continuous at e0N ∈ NS(UE).

4.6.1 Example

1. Let E = N (the set of natural numbers), E′ = I (unit interval [0, 1]) and U = V = Q? (the set of nonzero rational

numbers). Consider a neutrosophic soft sequence {nM} in NS(Q?
N) as following, for any n ∈ N :

TnM (x) = n
n+1 , InM (x) = 1

2n , FnM (x) = 1
3n , ∀x ∈ Q?.

Then (NS(Q?
N), d) forms an NSMS where ‘d’ is defined in (2)(i) of [2.3]. Now, let ϕ : Q? → Q? and ψ : N → I

be two crisp functions defined as ϕ(x) = 1
x = y (say) and ψ(n) = 1 − 1

n = m (say), respectively. Then the
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neutrosophic soft function (ϕ, ψ) : NS(Q?
N)→ NS(Q?

I ) is given by (ϕ, ψ)(nM) = mP, m ∈ I and is defined as :

TmP (y) =
1

2−m , ImP (y) =
1−m

2 , FmP (y) =
1−m

3 , ∀y = 1
x ∈ Q?.

We now define a neutrosophic soft point aS ∈ NS(Q?
N), a ∈ N given as :

TaS (x) = 1, IaS (x) = 0, FaS (x) = 0, ∀x ∈ Q?.

We shall estimate the distance function ‘d’ here for k = 1 only. Similar conclusion can be drawn for different

values of k.

d(nM, aS) = |TnM (x)− TaS (x)|+ |InM (x)− IaS (x)|+ |FnM (x)− FaS (x)|

= | n
n + 1

− 1|+ | 1
2n
− 0|+ | 1

3n
− 0|

=
1

n + 1
+

1
2n

+
1

3n

=
11n + 5

6n2 + 6n
=

11 + 5
n

n(6 + 6
n )

Hence, d(nM, aS) −→ 0 as n −→ ∞ i.e., {nM} converges to aS.

To test the continuity of (ϕ, ψ) at aS, we shall use the theorem (2) of [4.6].

Clearly, (ϕ, ψ)(aS) = {< y, (1, 0, 0) >: y ∈ ϕ(Q?)}; For same ‘d’ stated above,

d[(ϕ, ψ)(nM), (ϕ, ψ)(aS)] = | 1
2−m

− 1|+ |1−m
2
− 0|+ |1−m

3
− 0|

=
1−m
2−m

+
1−m

2
+

1−m
3

=
(1−m)(16− 5m)

6(2−m)

This shows d[(ϕ, ψ)(nM), (ϕ, ψ)(aS)] −→ 0 as n −→ ∞ (i.e., as m → 1). Hence {(ϕ, ψ)(nM)} converges to

(ϕ, ψ)(aS) and so (ϕ, ψ) is continuous at (aS).

2. Consider a neutrosophic soft sequence {nM} in NS(ZN) (Z being the set of integers and N being the set of

natural numbers) as following, for any n ∈ N :

TnM (x) = 1− 1
n , InM (x) = 1

7n , FnM (x) = 1
n+1 , ∀x ∈ Z.

Then (NS(ZN), d) forms an NSMS where ‘d’ is defined in (2)(i) of [2.3]. Now, let a neutrosophic soft function

(ϕ, ψ) : NS(ZN) → NS(ZN∪{0}) be given by (ϕ, ψ)(nM) = mP, m ∈ N where ϕ : Z → Z and ψ : N → N ∪ {0}

be two crisp functions defined as ϕ(x) = 3x = y (say) and ψ(n) = n− 1 = m (say). Then (ϕ, ψ)(nM) = mP is

defined as :

TmP (y) =

 1− 1
m+1 if y = ϕ(x)

0 otherwise.

ImP (y) =


1

7(m+1) if y = ϕ(x)

1 otherwise.

FmP (y) =

 1
m+2 if y = ϕ(x)

1 otherwise.

We now define a neutrosophic soft point aS ∈ NS(ZN), a ∈ N given as :
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TaS (x) = 1, IaS (x) = 0, FaS (x) = 0, ∀x ∈ Z. Then for k = 1,

d(nM, aS) = |TnM (x)− TaS (x)|+ |InM (x)− IaS (x)|+ |FnM (x)− FaS (x)|

= |1− 1
n
− 1|+ | 1

7n
− 0|+ | 1

n + 1
− 0|

=
1
n
+

1
7n

+
1

n + 1

=
15n + 8

7n2 + 7n
=

15 + 8
n

n(7 + 7
n )

Similar conclusion can be drawn for different choice of k. Hence, d(nM, aS) −→ 0 as n −→ ∞ i.e., {nM}

converges to aS. But {(ϕ, ψ)(nM)} does not converge to (ϕ, ψ)(aS) clearly and hence, (ϕ, ψ) is not continuous at

aS.

4.7 Theorem

Let (ϕ, ψ) : (NS(UE), d) → (NS(VE′ ), d′) be a neutrosophic soft function. Then (ϕ, ψ) is continuous on NS(UE)

iff (ϕ, ψ)−1(P) is open in NS(UE) whenever P ⊂ NS(VE′ ) is open.

Proof. First suppose (ϕ, ψ) be continuous on NS(UE) and P ⊂ NS(VE′ ) be an open NSS. Let e0M ∈ (ϕ, ψ)−1(P).

Then (ϕ, ψ)(e0M) ∈ P. Since P is open NSS, there exists an open ball Bv((ϕ, ψ)(e0M), ε) ⊂ P. Again as (ϕ, ψ) is

continuous at e0M, there exists δ > 0 such that d′[(ϕ, ψ)(eN), (ϕ, ψ)(e0M)] < ε whenever d(eN , e0M) < δ for eN ∈

NS(UE). It implies (ϕ, ψ)(eN) ∈ Bv((ϕ, ψ)(e0M), ε), ∀eN ∈ Bu(e0M, δ). But (ϕ, ψ)(eN) ∈ Bv((ϕ, ψ)(e0M), ε) ⊂

P ⇒ eN ∈ (ϕ, ψ)−1(P). Thus Bu(e0M, δ) ⊂ (ϕ, ψ)−1(P) whenever e0M ∈ (ϕ, ψ)−1(P). Hence e0M is an interior

point of (ϕ, ψ)−1(P). Since e0M is arbitrary, (ϕ, ψ)−1(P) is open in NS(UE).

Conversely, assume that (ϕ, ψ)−1(P) is open in NS(UE) for every open NSS P ⊂ NS(VE′ ) and e0M ∈ NS(UE)

be arbitrary but fixed. Then (ϕ, ψ)(e0M) ∈ NS(VE′ ) and Bv((ϕ, ψ)(e0M), ε) being an open ball is an open set in

NS(VE′ ). So by hypothesis, (ϕ, ψ)−1[Bv((ϕ, ψ)(e0M), ε)] is open in NS(UE). Now (ϕ, ψ)(e0M) ∈ Bv((ϕ, ψ)(e0M), ε),

clearly and so e0M ∈ (ϕ, ψ)−1[Bv((ϕ, ψ)(e0M), ε)]. Since (ϕ, ψ)−1[Bv((ϕ, ψ)(e0M), ε)] is open in NS(UE), so

Bu(e0M, δ) ⊂ (ϕ, ψ)−1[Bv((ϕ, ψ)(e0M), ε)]. Let eN ∈ Bu(e0M, δ) ⊂ (ϕ, ψ)−1[Bv((ϕ, ψ)(e0M), ε)]. Then eN ∈

Bu(e0M, δ) and (ϕ, ψ)(eN) ∈ Bv((ϕ, ψ)(e0M), ε). This shows that d′[(ϕ, ψ)(eN), (ϕ, ψ)(e0M)] < ε whenever

d(eN , e0M) < δ i.e., (ϕ, ψ) is continuous at e0M. Since e0M ∈ NS(UE) is arbitrary, so (ϕ, ψ) is continuous on

NS(UE).

4.8 Theorem

Let (ϕ, ψ) : (NS(UE), d) → (NS(VE′ ), d′) be an injective and continuous neutrosophic soft function. Then

(ϕ, ψ)−1(Q) is closed in NS(UE) whenever Q ⊂ NS(VE′ ) is closed.

Proof. Let e0M ∈ NS(UE) be a limit point of (ϕ, ψ)−1(Q) ⊂ NS(UE) and eN ∈ Bu(e0M, δ)∩ (ϕ, ψ)−1(Q), eN 6= e0M.

Then by sense of [2.2] (9), eN ∈ Bu(e0M, δ) and eN ∈ (ϕ, ψ)−1(Q) ⇒ eN ∈ Bu(e0M, δ) and (ϕ, ψ)(eN) ∈ Q. Again

as (ϕ, ψ) is continuous at e0M, there exists ε > 0 such that (ϕ, ψ)(eN) ∈ Bv((ϕ, ψ)(e0M), ε) whenever eN ∈

Bu(e0M, δ) for eN ∈ NS(UE). Thus (ϕ, ψ)(eN) ∈ Bv((ϕ, ψ)(e0M), ε) ∩Q with (ϕ, ψ)(eN) 6= (ϕ, ψ)(e0M), as (ϕ, ψ)
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is injective. This shows that (ϕ, ψ)(e0M) is a limit point of Q. Since Q is closed in NS(VE′ ), so (ϕ, ψ)(e0M) ∈ Q i.e.,

e0M ∈ (ϕ, ψ)−1(Q). Hence e0M being a limit point of (ϕ, ψ)−1(Q) belongs to (ϕ, ψ)−1(Q). Since e0M is arbitrary,

so (ϕ, ψ)−1(Q) is closed in NS(UE).

4.9 Definition

Let (NS(UE), d) be an NSMS over (U, E) and M ⊂ NS(UE) be an arbitrary NSS. Then the closure of M is denoted

by M and is defined as follows :

M = ∩{N ⊂ NS(UE) : N is neutrosophic soft closed and N ⊃ M}

i.e., it is the intersection of all closed neutrosophic soft supersets of M.

4.9.1 Example

Let (NS(UE), d) be an NSMS with respect to ‘d’ defined in (2)(i) of [2.3] where U = {x1, x2, x3} and E = {e1, e2}.

Then every NSS defined over (U, E) is finite. Also every finite NSS on an NSMS is closed by [2.4](3). Now consider

four NSSs M, N, P, 1u ⊂ NS(UE) such that M ⊂ N, P, 1u only and they are given as following :

fM(e1) = {< x1, (0.6, 0.7, 0.8) >,< x2, (0.5, 0.3, 0.7) >,< x3, (0.4, 0.4, 0.5) >}

fM(e2) = {< x1, (0.4, 0.5, 0.7) >,< x2, (0.3, 0.4, 0.8) >,< x3, (0.6, 0.4, 0.6) >}

fN(e1) = {< x1, (0.6, 0.5, 0.8) >,< x2, (0.6, 0.3, 0.5) >,< x3, (0.5, 0.3, 0.4) >}

fN(e2) = {< x1, (0.5, 0.4, 0.7) >,< x2, (0.4, 0.2, 0.6) >,< x3, (0.6, 0.2, 0.5) >}

fP(e1) = {< x1, (0.7, 0.4, 0.6) >,< x2, (0.8, 0.2, 0.4) >,< x3, (0.6, 0.2, 0.3) >}

fP(e2) = {< x1, (0.6, 0.2, 0.5) >,< x2, (0.5, 0.1, 0.5) >,< x3, (0.7, 0.1, 0.2) >}

f1u (e1) = {< x1, (1, 0, 0) >,< x2, (1, 0, 0) >,< x3, (1, 0, 0) >}

f1u (e2) = {< x1, (1, 0, 0) >,< x2, (1, 0, 0) >,< x3, (1, 0, 0) >}

Then M = 1u ∩ N ∩ P = N. The corresponding t-norm (∗) and s-norm (�) are : a ∗ b = min{a, b} and a � b =

max{a, b}.

4.9.2 Proposition

Let (NS(UE), d) be an NSMS and M ⊂ NS(UE). Then the followings hold.

(1) M is the smallest closed NSS containing M.

(2) M = M if and only if M is closed.

(3) M ⊂ P⇒ M ⊂ P.

(4) M = M.

(5) M ∪ P = M ∪ P.

(6) M ∩ P ⊂ M ∩ P.

Proof. (1) Since intersection of a family of closed NSSs in an NSMS is closed and M is the intersection of all closed

neutrosophic soft supersets of M, so the proof is completed.
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(2) If M = M, then M is closed by (1).

Conversely, let M be closed. By (1), M ⊂ M. Hence, we shall only show M ⊂ M.

M = ∩{P ⊂ NS(UE) : P is neutrosophic soft closed and P ⊃ M}

⊂ {M ⊂ NS(UE) : M is neutrosophic soft closed and M ⊃ M} = M

(3) M ⊂ M and P ⊂ P⇒ M ⊂ P ⊂ P⇒ M ⊂ P

But M is the smallest closed set containing M i.e., M ⊂ M ⊂ P. Hence, M ⊂ P.

(4) If N is closed then N = N. Since M is closed, replacing N by M, we get M = M.

(5) M ⊂ M ∪ P and P ⊂ M ∪ P⇒ M ⊂ M ∪ P and P ⊂ M ∪ P⇒ M ∪ P ⊂ M ∪ P.

Also, M ⊂ M and P ⊂ P⇒ M ∪ P ⊂ M ∪ P. But we have, M ∪ P ⊂ M ∪ P ⊂ M ∪ P.

Thus, M ∪ P = M ∪ P.

(6) M ∩ P ⊂ M and M ∩ P ⊂ P⇒ M ∩ P ⊂ M and M ∩ P ⊂ P

⇒ M ∩ P ⊂ M ∩ P.

4.10 Theorem

Let (ϕ, ψ) : (NS(UE), d)→ (NS(VE′ ), d′) be an injective as well as continuous neutrosophic soft function. Then,

(1) (ϕ, ψ)(N) ⊂ (ϕ, ψ)(N) in NS(VE′ ) for every N ⊂ NS(UE).

(2) (ϕ, ψ)−1(M) ⊂ (ϕ, ψ)−1(M) in NS(UE) for every M ⊂ NS(VE′ ).

Proof. (1) Here (ϕ, ψ)(N) ∈ NS(VE′ ) and so (ϕ, ψ)(N) is closed in NS(VE′ ). Since (ϕ, ψ) is continuous, so

(ϕ, ψ)−1[(ϕ, ψ)(N)] is closed in NS(UE) by [4.8]. Then (ϕ, ψ)−1[(ϕ, ψ)(N)] = (ϕ, ψ)−1[(ϕ, ψ)(N)] by [4.9.2](2).

Now (ϕ, ψ)(N) is the closure of (ϕ, ψ)(N). So, (ϕ, ψ)(N) ⊂ (ϕ, ψ)(N) ⇒ N ⊂ (ϕ, ψ)−1[(ϕ, ψ)(N)] ⇒ N ⊂

(ϕ, ψ)−1[(ϕ, ψ)(N)] = (ϕ, ψ)−1[(ϕ, ψ)(N)]. Thus (ϕ, ψ)(N) ⊂ (ϕ, ψ)(N).

(2) Here M is closed in NS(VE) and so is (ϕ, ψ)−1(M) in NS(UE) by [4.8]. But M ⊂ M ⇒ (ϕ, ψ)−1(M) ⊂

(ϕ, ψ)−1(M) ⇒ (ϕ, ψ)−1(M) ⊂ (ϕ, ψ)−1(M) = (ϕ, ψ)−1(M),

as (ϕ, ψ)−1(M) is closed. Thus (ϕ, ψ)−1(M) ⊂ (ϕ, ψ)−1(M).

4.11 Definition

Let (ϕ1, ψ1) : (NS(UE), d1) → (NS(VE′ ), d2), (ϕ2, ψ2) : (NS(VE′ ), d2) → (NS(WE′′ ), d3) be two neutrosophic soft

functions where (NS(UE), d1), (NS(VE′ ), d2), (NS(WE′′ ), d3) are three NSMSs. Then the composition of these two

functions is given by :

(ϕ2, ψ2) ◦ (ϕ1, ψ1) : (NS(UE), d1)→ (NS(WE′′ ), d3) and is defined as :

[(ϕ2, ψ2) ◦ (ϕ1, ψ1)](eM) = (ϕ2, ψ2)[(ϕ1, ψ1)(eM)] = (ϕ2, ψ2)(e′N) = e′′R,
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where eM ∈ NS(UE), e′N ∈ NS(VE′ ), e′′R ∈ NS(WE′′ ) and for x ∈ U, z ∈W

Te′′R
(z) =

 max(ϕ2◦ϕ1)(x)=z max(ψ2◦ψ1)(e)=e′′ [TeM (x)], if x ∈ (ϕ2 ◦ ϕ1)
−1(z)

0 otherwise.

Ie′′R
(z) =

 min(ϕ2◦ϕ1)(x)=z min(ψ2◦ψ1)(e)=e′′ [IeM (x)], if x ∈ (ϕ2 ◦ ϕ1)
−1(z)

1 otherwise.

Fe′′R
(z) =

 min(ϕ2◦ϕ1)(x)=z min(ψ2◦ψ1)(e)=e′′ [FeM (x)], if x ∈ (ϕ2 ◦ ϕ1)
−1(z)

1 otherwise.

4.11.1 Example

Let (ϕ1, ψ1) : (NS(UE), d) → (NS(VE), d), (ϕ2, ψ2) : (NS(VE), d) → (NS(WE), d) be two neutrosophic soft

functions where d is defined in (2)(i) of [2.3]. Let U = {x1, x2} and E = {e1, e2}. We consider the NS(UE) as given

by the Table 2.

Table 2 : Tabular form of NS(UE)

e1A e2A e1B e2B e1C e2C

x1 (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3) (0.6,0.2,0.3) (0.8,0.6,0.2) (0.7,0.2,0.5)

x2 (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2) (0.4,0.3,0.5) (0.5,0.7,0.4) (0.1,0.5,0.8)

Now let ϕ1(x1) = y1, ϕ1(x2) = y1 and ψ1(e1) = e2, ψ1(e2) = e1. Suppose,

(ϕ1, ψ1)(e1A) = e2D, (ϕ1, ψ1)(e2A) = e1G, (ϕ1, ψ1)(e1B) = e2G

(ϕ1, ψ1)(e2B) = e1H , (ϕ1, ψ1)(e1C) = e2H , (ϕ1, ψ1)(e2C) = e1D

Then the following table (Table 3) represents (ϕ1, ψ1)(NS(UE)) :

Table 3 : Tabular form of (ϕ1, ψ1)(NS(UE))

e1D e2D e1G e2G e1H e2H

y1 (0.7,0.2,0.5) (0.5,0.6,0.3) (0.7,0.3,0.3) (0.7,0.4,0.2) (0.6,0.2,0.3) (0.8,0.6,0.2)

y2 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0,1,1)

One calculation is provided here to make out the Table 3.

Te1G (y1) = max
{ϕ1(x1), ϕ1(x2)}

max
ψ1(e2)

[Te2A (x)], as x1, x2 ∈ ϕ−1
1 (y1)

= max (0.6, 0.7) = 0.7

Ie1G (y1) = min
{ϕ1(x1), ϕ1(x2)}

min
ψ1(e2)

[Ie2A (x)], as x1, x2 ∈ ϕ−1
1 (y1)

= min (0.3, 0.4) = 0.3

Fe1G (y1) = min
{ϕ1(x1), ϕ1(x2)}

min
ψ1(e2)

[Fe2A (x)], as x1, x2 ∈ ϕ−1
1 (y1)

= min (0.5, 0.3) = 0.3

Further Te1G (y2) = 0, Ie1G (y2) = 1, Fe1G (y2) = 1 as x1, x2 /∈ ϕ−1
1 (y2).
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Now assume ϕ2(y1) = z2, ϕ2(y2) = z1 and ψ2(e1) = e1, ψ2(e2) = e2. Suppose,

(ϕ2, ψ2)(e1D) = e1L, (ϕ2, ψ2)(e1G) = e1Q, (ϕ2, ψ2)(e1H) = e1M

(ϕ2, ψ2)(e2D) = e2M, (ϕ2, ψ2)(e2G) = e2L, (ϕ2, ψ2)(e2H) = e2Q

Then (ϕ2, ψ2)[(ϕ1, ψ1)(NS(UE))] is given by the Table 4.

Table 4 : Tabular form of (ϕ2, ψ2)[(ϕ1, ψ1)(NS(UE))]

e1L e2L e1M e2M e1Q e2Q

z1 (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0,1,1) (0,1,1)

z2 (0.7,0.2,0.5) (0.7,0.4,0.2) (0.6,0.2,0.3) (0.5,0.6,0.3) (0.7,0.3,0.3) (0.8,0.6,0.2)

Thus the Table 4 gives (ϕ2, ψ2)[(ϕ1, ψ1)(NS(UE))] = [(ϕ2, ψ2) ◦ (ϕ1, ψ1)](NS(UE)). For convenience,

[(ϕ2, ψ2) ◦ (ϕ1, ψ1)](e1A) = (ϕ2, ψ2)[(ϕ1, ψ1)(e1A)] = (ϕ2, ψ2)(e2D) = e2M and so on.

4.12 Theorem

Let (ϕ1, ψ1) : (NS(UE), d1) → (NS(VE′ ), d2), (ϕ2, ψ2) : (NS(VE′ ), d2) → (NS(WE′′ ), d3) be two neutrosophic

soft functions where (NS(UE), d1), (NS(VE′ ), d2), (NS(WE′′ ), d3) are three NSMSs. If (ϕ1, ψ1) is continuous at

e0N ∈ NS(UE) and (ϕ2, ψ2) is continuous at the corresponding point (ϕ1, ψ1)(e0N) ∈ NS(VE′ ), then the composite

function (ϕ2, ψ2) ◦ (ϕ1, ψ1) : (NS(UE), d1)→ (NS(WE′′ ), d3) is continuous at e0N ∈ NS(UE).

Proof. Let {enN} be a sequence of neutrosophic soft points in NS(UE) such that limn→∞ enN = e0N ∈ NS(UE).

Since (ϕ1, ψ1) is continuous at e0N , so (ϕ1, ψ1)(enN) → (ϕ1, ψ1)(e0N) ∈ NS(VE′ ) as n → ∞. Again since (ϕ2, ψ2)

is continuous at (ϕ1, ψ1)(e0N), so (ϕ2, ψ2)[(ϕ1, ψ1)(enN)] → (ϕ2, ψ2)[(ϕ1, ψ1)(e0N)] ∈ NS(WE′′ ) as n → ∞. This

implies [(ϕ2, ψ2) ◦ (ϕ1, ψ1)](enN)→ [(ϕ2, ψ2) ◦ (ϕ1, ψ1)](e0N) ∈ NS(WE′′ ) as n→ ∞.

Hence (ϕ2, ψ2) ◦ (ϕ1, ψ1) is continuous at e0N ∈ NS(UE).

4.13 Theorem

Continuous image of a compact NSMS is compact.

Proof. Let (ϕ, ψ) : (NS(UE), d) → (NS(VE′ ), d′) be a continuous neutrosophic soft function and NS(UE) be a

compact NSMS. We are to show that (ϕ, ψ)(NS(UE)) = NS(V′E′ ) ⊆ NS(VE′ ) (say) is compact. Let {e′nN} be a soft

sequence in NS(V′E′ ). Then for each e′nN there exists enM ∈ NS(UE) such that (ϕ, ψ)(enM) = e′nN , n = 1, 2, 3, · · · ;

Since NS(UE) is compact, the soft sequence {enM} has a subsequence {enk M} such that limk→∞ enk M = e0P ∈

NS(UE) (say). Again (ϕ, ψ) is continuous on (NS(UE), d), so it is continuous at e0P. Then by (2) of theorem

[4.6], limk→∞(ϕ, ψ)(enk M) = (ϕ, ψ)(e0P); But, (ϕ, ψ)(enk M) = e′nk N and so limk→∞ e′nk N = (ϕ, ψ)(e0P); Thus a soft

sequence {e′nN} in NS(V′E′ ) has a subsequence {e′nk N} converging to a soft point in NS(V′E′ ). This follows the

theorem.



Tuhin Bera and Nirmal Kumar Mahapatra 21

5 Uniform continuity on NSMS

This section gives the concept of uniform continuity of a neutrosophic soft function on an NSMS and it’s charac-

teristics on NSMS.

5.1 Definition

Let (NS(UE), d) and (NS(VE′ ), d′) be two NSMSs. Then a neutrosophic soft function (ϕ, ψ) : NS(UE)→ NS(VE′ )

is said to be uniformly continuous on NS(UE) if for each ε > 0 there exists a δ > 0 depending only on ε, not on

the point such that

d′[(ϕ, ψ)(eM), (ϕ, ψ)(eN)] < ε whenever d(eM, eN) < δ ∀eM, eN ∈ NS(UE).

5.1.1 Example

Consider a neutrosophic soft function (ϕ, ψ) : (NS(ZE), d) → (NS(ZE), d) where ‘d’ is defined in (2)(i) of [2.3]

and Z be the set of integers. The function is defined as (ϕ, ψ)(eM) = ρ̃(eM, P) for any NSS P ⊂ NS(ZE) and

eM ∈ NS(ZE), where

ρ̃(eM, P) = {< x, min
eP∈P
{|TeM (x)− TeP (x)|}, max

eP∈P
{|IeM (x)− IeP (x)|},

max
eP∈P
{|FeM (x)− FeP (x)|} >: x ∈ Z}

Now for any two points eM, eN ∈ NS(ZE) and for P ⊂ NS(ZE) , we have

d[(ϕ, ψ)(eM), (ϕ, ψ)(eN)]

= d[ρ̃(eM, P), ρ̃(eN , P)]

= min
x
〈 |min

eP∈P
{|TeM (x)− TeP (x)|} −min

eP∈P
{|TeN (x)− TeP (x)|}|

+ |max
eP∈P
{|IeM (x)− IeP (x)|} −max

eP∈P
{|IeN (x)− IeP (x)|}|

+ |max
eP∈P
{|FeM (x)− FeP (x)|} −max

eP∈P
{|FeN (x)− FeP (x)|}| 〉

< min
x
〈 |min

eP∈P
{TeM (x) + TeP (x)} −min

eP∈P
{TeN (x) + TeP (x)}|

+ |max
eP∈P
{IeM (x) + IeP (x)} −max

eP∈P
{IeN (x) + IeP (x)}|

+ |max
eP∈P
{FeM (x) + FeP (x)} −max

eP∈P
{FeN (x) + FeP (x)}| 〉

= min
x
〈 |min

eP∈P
{TeM (x) + TeP (x)− TeN (x)− TeP (x)}|

+ |max
eP∈P
{IeM (x) + IeP (x)− IeN (x)− IeP (x)}|

+ |max
eP∈P
{FeM (x) + FeP (x)− FeN (x)− FeP (x)}| 〉

= min
x
〈 |TeM (x)− TeN (x)|+ |IeM (x)− IeN (x)|+ |FeM (x)− FeN (x)| 〉

= d(eM, eN) < δ = ε

Hence (ϕ, ψ) is uniformly continuous on NS(ZE).
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5.2 Theorem

The image of a Cauchy sequence in an NSMS under a uniformly continuous neutrosophic soft function is again a

Cauchy sequence.

Proof. Let (ϕ, ψ) : (NS(UE), d) → (NS(VE′ ), d′) be a uniformly continuous neutrosophic soft function. Then for

each ε > 0 there exists a δ > 0 depending only on ε, not on the point such that

d′[(ϕ, ψ)(eM), (ϕ, ψ)(eN)] < ε whenever d(eM, eN) < δ ∀eM, eN ∈ NS(UE).

Let {enP} be a Cauchy sequence in NS(UE). Then to every δ > 0 there exists an n0 ∈ N (set of natural numbers)

such that d(emP, enP) < δ ∀m, n ≥ n0.

This shows d′[(ϕ, ψ)(emP), (ϕ, ψ)(enP)] < ε ∀m, n ≥ n0 and that ends the theorem.

5.3 Theorem

Every uniformly continuous neutrosophic soft function on an NSMS is continuous.

Proof. Replacing eN by e0N , an arbitrary but fixed neutrosophic soft point, it directly follows from definition [5.1];

5.4 Theorem

Uniform continuous image of a complete NSS in an NSMS is complete.

Proof. Let (ϕ, ψ) : (NS(UE), d) → (NS(VE′ ), d′) be a uniformly continuous neutrosophic soft function and M ⊂

NS(UE) be a complete NSS. We are to show that (ϕ, ψ)(M) = P (say) is complete. Let {enM} be a neutrosophic

soft Cauchy sequence in M such that limn→∞ enM = e0M ∈ M. Then {(ϕ, ψ)(enM)} is a Cauchy sequence in P by

theorem [5.2]; Again (ϕ, ψ) being uniformly continuous neutrosophic soft function is continuous by theorem [5.3]

and so, limn→∞ (ϕ, ψ)(enM) = (ϕ, ψ)(e0M) ∈ P by theorem (2) of [4.6]; Thus a cauchy sequence {(ϕ, ψ)(enM)} in

P converges to a point in P and this completes the proof.

5.5 Theorem

Uniform continuous image of a compact NSMS is compact.

Proof. It is the combination of theorem [5.3] and the theorem [4.13];

6 Conclusion

In this paper, the notion of compact NSMS has been introduced and is illustrated by suitable examples. The

continuity and uniform continuity of a neutrosophic soft function in an NSMS have been defined and verified by

proper examples. Several related properties, theorems and structural characteristics of these in an NSMS have

been investigated. Some are justified by suitable examples also. The motivation of the present paper is to put
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forward the concept introduced in [32]. We expect, these concepts will bring an opportunity of further research

work to develop the NSS theory.
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