Knowledge-Based Systems 223 (2021) 107058

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Comparison of neutrosophic approach to various deep learning models R

Check for

for sentiment analysis @
Mayukh Sharma, Ilanthenral Kandasamy *, W.B. Vasantha

School of Computer Science and Engineering, VIT, Vellore, Tamil Nadu, 632014, India

ARTICLE INFO ABSTRACT

Article history:

Received 12 December 2020

Received in revised form 4 March 2021
Accepted 17 April 2021

Available online 23 April 2021

Deep learning has been widely used in numerous real-world engineering applications and for classi-
fication problems. Real-world data is present with neutrality and indeterminacy, which neutrosophic
theory captures clearly. Though both are currently developing research areas, there has been little
study on their interlinking. We have proposed a novel framework to implement neutrosophy in deep
learning models. Instead of just predicting a single class as output, we have quantified the sentiments

Keywords: using three membership functions to understand them better. Our proposed model consists of two
Neutrosophy blocks, feature extraction, and feature classification. Having a separate feature extraction block enables
Sentiment analysis us to use any model as a feature extractor. We experimented with BiLSTM using GloVe (Global Vectors
BiLSTM for word representation), BERT (Bidirectional Encoder Representations from Transformers), ALBERT
ALBERT (A Lite BERT), RoBERTa (Robustly optimized BERT approach), MPNet, and stacked ensemble models.
EEEERTA Feature classification performs prediction and dimensionality reduction of features. Experimental
MPNet analysis was done on the SemEval 2017 Task 4 dataset (Subtask A). We used the intermediate layer

features to define membership functions of Single Valued Neutrosophic Sets (SVNS). We used these
membership functions for prediction as well. We have compared our models with the top five teams
of the task and recent state-of-the-art systems. Our proposed stacked ensemble model achieved the
best recall (0.733) score.

Stacked ensemble

© 2021 Elsevier B.V. All rights reserved.

1. Introduction Sentiment analysis analyzes the polarity of the sentiment be-
hind a sentence or a social media post. It helps to understand
social media on specific subjects. The existing conventional sen-
timent analysis tools that work on various platforms aim at
categorizing the target subject into negative or positive polarity.
Ascertaining a tweet’s polarity is an essential exercise in NLP and
data science. It is widely used in several practical applications
ranging from scrutinizing popular events to mining trading indi-
cators by scrutinizing tweets about companies/corporates. These
systems learn to utilize syntactic and semantic features and their
impact on the sentiment of natural language. Work done in [1]
discusses the applications of sentiment analysis in the real world

Neural networks that had piped much interest in artificial
intelligence reached a stagnation stage in the 1990s because they
were mostly shallow networks due to lesser computation powers.
With the advent of better hardware like GPU, internet, and the
massive amount of data, neural networks in the form of deep
learning (neural networks with more than three layers) have
taken off credibly. Deep learning uses cascading different layers of
processing units for transformation and feature extraction, which
are non-linear. Layers near the input layer learn simple basic fea-
tures whereas, the higher layers learn more complicated features
from the previous layers. Deep learning has produced fantastic

results in many engineering and application-oriented scientific
problems from image processing to Natural Language Processing
(NLP). In recent years, deep learning has been used extensively in
sentiment analysis, NLP, and Natural Language Generation(NLG).

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.

* Corresponding author.

E-mail addresses: mayukh.sharma2016@vitalum.ac.in (M. Sharma),

ilanthenral.k@vit.ac.in (I. Kandasamy), vasantha.wb@vit.ac.in (W.B. Vasantha).

https://doi.org/10.1016/j.knosys.2021.107058
0950-7051/© 2021 Elsevier B.V. All rights reserved.

and discusses knowledge-based, statistical, and hybrid techniques
for sentiment analysis and affective computing. For the past ten
years, SemEval (Semantic Evaluation) competitions/workshops
are organized for various tasks to evaluate computational se-
mantic analysis systems. The SemEval-2017: Task 4 came with
a similar challenge of sentiment analysis on tweets. An impor-
tant aspect of this task involved classifying the sentiment into
the positive, negative, or neutral class rather than just finding
the positive or negative polarity. For an exhaustive report on
SemEval-2017 Task 4, see [2]. Recently, deep learning methods
have drastically surpassed conventional techniques in numerous

https://doi.org/10.1016/j.knosys.2021.107058
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107058&domain=pdf
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:mayukh.sharma2016@vitalum.ac.in
mailto:ilanthenral.k@vit.ac.in
mailto:vasantha.wb@vit.ac.in
https://doi.org/10.1016/j.knosys.2021.107058

M. Sharma, I. Kandasamy and W.B. Vasantha

NLP tasks [3-6], and opinion mining is no exemption [7,8], and
they have been used extensively in SemEval tasks.

The neutrosophy concept was proposed by Smarandache [9],
which was shortly transformed into SVNS by Wang et al. [10].
SVNS is a generalization of fuzzy sets [11]. Neutrosophic refined
sets were introduced by Smarandache [12] and have been applied
to sentiment analysis in [13,14]. The existing conventional senti-
ment analysis or fuzzy sentiment analysis does not capture the
indeterminacy present in the tweets/opinion.

In the social media context, the concept of neutrosophy is a
formidable tool for sentiment analysis. Opinions in social media
are based on a user’s perception of the topic. He/She can take an
assortment of attitudes on an issue that can vary from strongly
positive to strongly negative. Human sentiment is a complex
combination of emotions. Current sentiment analysis systems try
to predict the most powerful one, completely ignoring other sen-
timents. SVNS overcomes this by assigning membership functions
to each sentiment. The final sentiment is represented as a set
of each sentiment corresponding to its independent membership
function. Moreover, the user may not have a strong opinion,
and the sentiment falls in the indeterminate/neutral category.
Neutrosophy bases its estimates on these indeterminacies of a
sentiment present in a sentence.

Two of the popular theory in artificial intelligence and soft
computing are deep learning techniques and neutrosophy. Con-
sequently, to build a state-of-the-art sentiment classifier, we
integrated these techniques to build a system that combines
both. We have proposed a deep learning system that predicts
the sentiment of a sentence as an SVNS, that is in terms of three
membership values. Our proposed architecture makes use of fea-
ture extraction and feature classification components. Feature
extraction acts as a black-box for generating features from the
text allowing us to experiment with different models while using
the same architecture for generating SVNS values. The proposed
model’s high-level architecture is given in Fig. 1.

One of our proposed models makes use of Recurrent Neural
Networks (RNN) based on Long Short Term Memory (LSTM) and
Gated Recurrent Units (GRU) on pre-trained GloVe embeddings
for learning the class features. We used optimization techniques
like Batch Normalization (BatchNorm) and Dropout for perfor-
mance enhancement. We also experimented with BERT (Bidirec-
tional Encoder Representations from Transformers), ALBERT (A
Lite BERT), RoBERTa (Robustly optimized BERT approach), MPNet,
and stacked ensemble models. K-means clustering on features
learned by intermediate layers of our neural network was used
for calculating the SVNS values.

The paper organization is as follows: Section 1 is introduc-
tory in nature. Section 2 justifies the use of neutrosophy along
with deep learning for sentiment analysis. In Section 3, a brief
overview of neutrosophy, deep learning models, and SemEval
2017 Task 4 is presented. Section 4 provides the dataset descrip-
tion. Then, Section 5 describes the various model architectures
in detail along with the neutrosophic approach. Section 6 ex-
plains the experimental setup. Section 7 provides the experimen-
tal results of the six models (BiLSTM with GloVe, BERT, ALBERT,
RoBERTa, MPNet, and Stacked Ensemble) along with the error
analysis. Section 8 compares the model with the first five teams
of the SemEval 2017 Task 4 (Subtask A), current state-of-the-
art systems, and it outperforms all competing teams and models.
Finally, Section 9 concludes the research study.

2. Why use neutrosophy with deep learning for sentiment
analysis

1. Deep learning models have turned out to be state-of-the-
art for solving problems related to NLP. They perform clas-
sification tasks efficiently but are incapable of quantifying

Knowledge-Based Systems 223 (2021) 107058

the input over the output classes. Multi-label classification
problems use softmax as the final activation. Softmax en-
sures that the sum of the probabilities for output classes
is 1. Multi-label classification problems use cross-entropy
loss which is, defined as:

C
- tilog(s:) (1

where t; is the ground truth, s; is predicted value and C
represents the number of classes. It alters the loss value
only with respect to the truth value of the current sample,
trying to maximize its probability against other classes
for which the cross entropy value will be zero. The prob-
lem with cross-entropy for sentiment analysis is that it
completely ignores other sentiments in natural language.
Neutral sentiment may be a partial combination of both
positive and negative sentiments. The neural network will
learn to identify the neutral component and maximize its
probability but at the cost of losing information about other
sentiments. Neutrosophy on the other hand deals with
neutralities. SVNS can be used to define the membership
function for each class. So instead of simply predicting the
correct class, we can quantify the sample into SVNS values.
This allows us to capture all the sentiments in the final
output. This can help in improving the understanding of
language using neural networks.

2. Understanding language and emotion is a difficult task.
Especially on social media platforms where people use
varied emotions and sarcasm. RNN’s have shown success in
language modeling tasks such as sentiment analysis, ma-
chine translation, and classification. However, they fail to
understand the combination of emotions and simply assign
the polarity with maximum probability. However, language
is never a single emotion. It is a combination of emotions
that the person uses to present his belief. Thus, instead
of labeling a sentence as positive, negative, or neutral, we
can use SVNS to represent them as a combination of sen-
timents using membership functions. So in our approach,
we used state-of-the-art machine learning algorithms and
combined them with neutrosophy to achieve the results.

3. A survey on machine learning in neutrosophic environ-
ments done in [15] covers the machine learning algorithms
used to date with neutrosophy. For classification tasks,
models were trained using support vector machines (SVM).
Although SVM’s [16] attain good results, they fail to capture
the sequential nature of the text. We employed RNN’s with
attention which are best known for such tasks. We also
performed experiments with pre-trained language mod-
els based on transformer architecture [17] which attain
the current state-of-the-art results. Neural networks [18]
have been employed earlier for predicting the membership
functions given the input data. They used separate neural
networks for each membership function which makes the
task computationally expensive. Our proposed method em-
ploys neural networks to learn feature vectors of different
dimensions and use clustering on them for calculating the
SVNS values. We will describe the approach in more detail
in the following sections.

4. As we all know, big data has become an important part
of machine learning systems. Moreover, machine learn-
ing algorithms are highly dependent on large datasets for
better performance. Deep learning systems are developed
keeping this in mind. Libraries like TensorFlow' and Py-
Torch? allow us to train on large datasets. These libraries

1 https://www.tensorflow.org.
2 https://pytorch.org.

https://www.tensorflow.org
https://pytorch.org

M. Sharma, I. Kandasamy and W.B. Vasantha

Text
pre-processing |

Neural Network

Text Feature Extraction

Q0000
(o]ele)

Knowledge-Based Systems 223 (2021) 107058

Intermediate | i
Layers
A :
: v
Dimensionality SVNS
Reduction Calculation
i i
1 1
v v

Classification | | SVNS Values

Feature Classification

Fig. 1. High-level architecture of our system.

are optimized for speeding performance on GPUs which
is not the case with traditional machine learning systems.
Another important aspect of using deep learning systems
is transfer learning. They allow us to use features learned
on massive datasets containing millions of samples over
weeks of training. We can use these learned features in our
problem helping in saving time as well as computational
effort.

3. Basic concepts/overview
3.1. Neutrosophy

The concept of neutrosophy and related definitions are rewrit-
ten here in relation to opinion mining. Neutrosophy analyzes an
opinion “O” and associates membership values to it in terms of
positive, neutral, and negative memberships.

Definition 1 ([10]). Let X be a space of opinions, concepts or
points with elements in X denoted by x. A SVNS R in X is
characterized by three membership functions namely negative or
false Ngr(x) membership function, neutral or indeterminacy Iz(x)
membership function, and positive or truth Pg(x) membership
function. Vx € X, where Ng(x), Ig(x), Pr(x) € [0,1], and 0 <
Nr(x) + Iz(x) 4+ Pr(x) < 3. Therefore, an SVNS of an opinion O
can be represented by

R = {{x, Ng(x), I(x), Pr(x)) | x € X}. (2)

The distance measures over two opinions represented by R and
Q in a universe of discourse, X = x;, X, ..., X,, iS given in the
following:

R and Q are denoted by
R = {(x;, Nr(x:), [r(x:), Pr(x:)) | x; € X}, and

Q = {(xi, No(xi), Io(x:), Po(x:)) | i € X},
where Ng(x;), Ir(X;), Pr(Xi), No (%i), Io(xi), Po(x;) € [0, 1]; Vx; € X.
Let w; be the weight of an element x; with w; > 0(i = 1,2,...,n)
and Z?ﬂwi = 1. Then, the neutrosophic weighted distance of R
and Q is defined as follows:

1 n
d:(R. Q) = {5 D will Ne(xs) = No(xi) I* + | Ie(x) — I (i) I* +
i=1
+ | Pr(xi) = Po(xi) M1}
(3)

where A > 0.

The distance measures over two SVNSs are discussed in de-
tail in [19,20]. They also define several similarity measures be-
tween them and investigate their properties [19,21,22]. To make
a more refined and accurate representation of the indeterminacy
present in the real-world data, refined neutrosophic sets [23]
were defined. Double Valued Neutrosophic Sets (DVNS) was de-
fined [24,25] with two indeterminate memberships. Triple Re-
fined Indeterminate Neutrosophic Sets (TRINS) have been used
for personality classification and Likert Scaling [26]. Clustering of
neutrosophic sets have been carried out in [13,19,24,27], using
k-means clustering algorithm or MSTs.

Refined neutrosophic sets [13,14,24,26-29] have been used
in sentiment analysis. Recently Multi Refined Neutrosophic Sets
(MRNS) have been used for sentiment analysis [14], they do not
represent each tweet as a neutrosophic element. Instead, they
study the indeterminacy present in the overall opinion on a
seven-point scale. Individual analysis of each tweet is not carried
out and importance is not given to the indeterminacy present in
each tweet.

A remarkable application of SVNS to sentiment analysis is
where each tweet is analyzed separately and represented as SVNS
with negative, positive, and indeterminate memberships [13],
and they did not use deep learning while analyzing the #MeToo
movement tweets. The imaginative play in children was studied
using single-valued refined neutrosophic sets in [27]. In [30], a
new sentiment similarity measure was proposed between pairs
of words, which are considered as SVNS. In [31], “Senti-NSetPSO”,
a hybrid framework is proposed to analyze large-sized text; it
is comprised of two classifiers: binary and ternary based on
hybridization of Particle Swarm Optimization (PSO) with a neu-
trosophic set.

3.2. Pre-trained embeddings (transfer learning)

Embeddings refer to the representation of words in an n-
dimensional vector space. These are capable of carrying complex
syntactic and semantic information and encode many linguistic
regularities and patterns [32]. There are many open-source word
vector representations available like GloVe [33], word2Vec [34]
and fastText [35]. In our work, we will be using GloVe to perform
experiments on the test set [36]. It is an unsupervised learning al-
gorithm developed by Stanford, for generating word embeddings
by aggregating global word-word co-occurrence matrix from a
corpus. The embeddings map words from vocabulary into dense
vectors of fixed size (embedding vectors). These embeddings can
be further trained, to better fit the neural network model. The
advantage of using embeddings is their linear sub-structure that
is similar words will have similar euclidean distances in their

M. Sharma, I. Kandasamy and W.B. Vasantha

<t—1>

&

<>
O 0
<7>¢

(4
a<lf1>
<t>
<t> () ~ (:) a
I; <> > a<t>
l"<l>
o

<t>
Is

|f0rgel gale” update gate ” tanh || output gate I

i t t f

LSTM cell

Fig. 2. LSTM Cell.

respective vector spaces. The other benefit is they save a lot of
computational cost and training time by providing pre-trained
features for several NLP tasks.

3.3. LSTM and GRU

LSTM [37] and GRU [38] are an improved form of RNN that
overcome the problem of vanishing gradients that traditional
RNN'’s suffer. The gradients shrink as the RNN back propagates
through time. Sometimes the gradient values may become small,
and they do not contribute to learning. Thus, the layers getting
small gradients eventually stop learning. Those are usually the
earlier layers. Due to this, it becomes difficult to carry infor-
mation from earlier timestamps to later ones [39]. However,
LSTM’s overcome this problem. They have cell states and various
gates. The cell state helps transport relative information down the
sequences. It can be considered as the memory of the network. As
the cell state moves down the sequence, information gets added
or removed as decided by the gates of the cell. The combined
effect of the memory cells aided by the gates helps the LSTM and
GRU to learn long-term dependencies.

Each of the gates described in Fig. 2 is governed by the equa-
tions given below.

I = o(W[a™"""", x=] + by) (4)
7 = o(Wy[a™",x"]+ by) (5)
&9 = tanh(W [a<""", x<">] + b,) (6)
C<t> — I—vf<t> OC<t—1> _,’_ I—vu<t> OE<t> (7)
I = o(Wo[a™" ", x>] + b,) (8)
a~"> = I’ o tanh(c") (9)

Each gate in the LSTM is nothing but a single-layered small
neural network with a bias term. However, when combined,
they become an immensely powerful unit. The cell state ¢=<t>
acts as a highway and helps to carry long-term dependencies
to later timestamps. An LSTM is nothing but a combination of
tiny neural networks using the same weights for each timestamp
and overcoming the problem of vanishing gradients using various
gates as mentioned in Fig. 2.

3.4. Attention

Given the task of translating a book from English to Hindi, we
will not read the entire book in English and then translate it to

Knowledge-Based Systems 223 (2021) 107058

Hindi. The general approach would be to translate at the sentence
level and focus on the parts of the English sentence corresponding
to the parts of the Hindi sentence under translation. Similarly, the
attention mechanism helps the neural network identify where it
needs to focus for a given timestamp. Attention [4] is essentially
a vector representation for a given word/token with respect to
all words/tokens in a sentence. It is calculated for each times-
tamp over a sequence and captures the context of the current
timestamp with respect to the sequence. The output of attention
is called context vectors.

Let us take a sequence of length N where t represents a
timestamp of the sequence. Context vector ¢; for timestamp t is
calculated as:

he.n = tanh (x;, Wy + x,Wp) (10
€tn =0 (ht,an) (11

a; = softmax (e,1, €2, ..., €.n) (12
= Zamxn (13
n

forn = 1to N. W represents the weight vectors. x; represents the
feature vector from timestamp t. o represents the sigmoid func-
tion. Fig. 3 helps us visualize the attention mechanism. We used
additive attention. The first step creates a joint representation by
combining features at timestamp t with respect to timestamps
n of our sequence. The joint features are then passed through
a dense layer with weights W, and sigmoid activation. Next,
we convert joint features into a probability distribution over the
sequence N by passing through a softmax layer. These are the
attention weights for timestamp t represented by a;. Finally, we
find the context vectors as a sum of the linear combination of
attention weights over features vectors of the sequence N.

)
)
)
)

3.5. Scaled dot product attention

It was proposed first for use in transformers [17] and is based
on self-attention. They defined the attention function as a map-
ping of query and key-value pair to an output function. Queries,
keys, and values are all vectors. The output function is a weighted
sum of values where the weight assigned to each value is com-
puted using a compatibility function of query and its correspond-
ing key. Queries, keys, and values are computed from embeddings
of inputs using independent weight matrices for queries (W),
keys (Wy), and values (W,). Keys and queries have a dimension
dy. Dimension of values is d,. The dot product of queries and
keys is taken, divided by +/d; and finally passed through softmax
to calculate attention weights. The weighted sum of values and
attention weights finally gives the context vector for a particular
timestamp t of the sequence N. In practice attention function
for all queries is calculated simultaneously using matrix opera-
tions. Queries, Keys, and values are packed into matrices Q, K, V.
Context vector for entire sequence N is computed as :

Attention(Q, K, V) = softmax(QK" //d)V

where dimension of Q and K is (N, d), dimension of V is (N, d,).
The output of attention step has dimension of (N, d,) which
represent the context vectors.

3.6. Multi-head attention

Instead of computing a single attention function, it was found,
using multiple attention functions yields better results. Queries,
keys, and values are linearly projected h times with different
learned projection functions to dy, di, and d, dimensional fea-
tures. Attention function is then performed parallelly for each set

M. Sharma, I. Kandasamy and W.B. Vasantha

Knowledge-Based Systems 223 (2021) 107058

N
context, = 3., Xy,

a; 1 a2 a,N
A A A
| Softmax(evs, &z, .. €) |
A A A
eu1 €2 erN
O'(h(_ch) foes o(h“NWC)
! !
h(.l hl‘2 th
| XWa + X1Wh l XtWa + XoWp | | XtWa + XnWhp |
A A

A

Xt X1

A

X2 XN

Fig. 3. Additive self-attention.

of projected features to yield d, dimensional features. These fea-
tures are then concatenated and once again projected, resulting
in final values. This allows the model to jointly attend to different
subspaces of information at different positions.

., headp)W?°

where head; = Attention(QW 2, KWX, vw!), where the projec-
tions are parameter matrices WiQ, Wi’(having dimension (dpmoger,
dy) and WiV having dimension (dyodel, dy) Where dpode is dimen-
sion of query, key and values.

MultiHead(Q, K, V) = Concat(head, head,, . .

3.7. Transformers

Transformers were proposed in [4] and have become the most
popular choice for solving NLP tasks. LSTM’s, due to their se-
quential nature are dependent on the output of the previous
timestamp for future computations. This helps them learn long-
range dependencies. However, it also introduces difficulty to per-
form parallel computations on them using modern GPUs. Trans-
formers solved this problem by removing sequential nature and
relying entirely on attention to understand dependencies in a
sequence. They use dot product and multi-head attention which
forms the core of transformer models. They make use of standard
encoder-decoder architecture using multi-head attention to learn
dependencies instead of using RNN. This allows both the encoder
and decoder to compute features independently and in parallel.
This makes them highly efficient for running on distributed sys-
tems. Positional embeddings are used to retain position-based
information. Detailed architecture can be found at [17].

3.8. Pre-trained language models (PLM)

NLP contains a variety of tasks ranging from sentiment anal-
ysis, named-entity recognition, machine translation, language
modeling. Deep learning models have become a popular choice
for solving these problems and have led to good results in several
tasks. Training these models requires a large amount of data for

supervised learning problems. Most datasets for NLP tasks contain
only a few hundred or a thousand human-labeled samples. The
solution to this problem came in form of a method known
as pre-training which aims to learn general-purpose language
representation by training on large amounts of an unlabeled text
corpus. The majority of PLM’s make use of transformer archi-
tecture. The PLM can then be fine-tuned on several downstream
tasks and have shown excellent results. BERT [40], RoBERTa [41],
ALBERT [42], MPNet [43] are examples of pre-trained language
models.

3.9. Dropout

Ensemble models created by combining different models help
to increase the efficiency of the network. In the real world, the
idea of averaging outputs of different neural networks becomes
computationally expensive. For producing good results, we need
to train models with different architectures. At the same time,
we need large datasets for training these models, which are not
always available. Even if we are successful in training models with
different architectures over different subsets of data, using them
as a combination to predict output is infeasible at run-time where
an immediate response may be required. Dropout solves both
these problems. It enables us to combine exponentially many
architectures and prevent over-fitting.

“Dropout” [44] means randomly dropping neurons during the
training phase of the neural network. The neurons are dropped
temporarily and include dropping all outgoing and incoming con-
nections. The dropping is random and is guided by a probability
parameter. Neurons are not dropped while predicting and the
whole network is used during the prediction phase.

3.10. Batch normalization
The process of training neural networks involves changing the

weights of our network to minimize the loss function. This causes
a change in the distribution of the weight of each layer as input

M. Sharma, I. Kandasamy and W.B. Vasantha

parameters from the previous layer change. This slows down the
training process as we need lower learning rates, use careful
parameter initialization, and makes it difficult to train models
with non-linearities.

This problem is called internal covariate shift and is addressed
by normalizing the inputs for that particular layer. Batch Nor-
malization [44] draws its strength from the fact that it makes
normalization part of the model architecture and performs nor-
malization for each mini-batch. Batch Normalization enables us
to use much higher learning rates and be less careful about ini-
tialization. It tries to reduce the internal covariate shift and helps
in accelerating the training speed of neural networks. It uses the
normalization step to fix the variance and mean of layer inputs.
It improves the gradient flow through the network as it reduces
the dependence of gradients on the initial value of parameters
or their scale. This allows us to use higher learning rates. Batch
Normalization also enables us to use saturating non-linearities as
it prevents the network from getting stuck at saturating nodes.

3.11. Feature extraction from intermediate layers

Dense Neural Networks (DNN) can learn powerful functions.
They hierarchically learn features of given data, layer by layer. As
we go deep into the neural network, they learn more complex
features. Each neuron learns to identify a specific feature and
is activated by it. This characteristic can be used to map input
features into an n-dimensional vector space corresponding to the
output classes from the deeper layers. A similar approach with
Convolutional Neural Networks (CNN’s) has been used in neural
image transfer [45] for generating artistic images. They used the
intermediate layers for defining the similarity cost function, and
particularly good results were obtained. SenticNet 6 proposed
in [46] makes use of contextual features learned by LSTM’s and
BERT and use them for automatic discovery of concept clusters
that are semantically related. The encoder-decoder architecture-
based systems also use a similar approach. Another example can
be machine translation [47] where sentence features are con-
densed into a small vector space using an encoder which is then
used by a decoder to output the sentence in another language.
Another advantage of using such an approach is that we can get
feature vectors of different dimensions from different depths of
neural networks. We propose a similar approach for finding out
the SVNS values using pre-final layers that learn a similar set of
features for each class. Another reason for using pre-final layers
instead of the final layer is the use of softmax activation. As
discussed before, it maximizes the probability of one class and
loses information about the remaining classes. Thus SVNS from
this layer will not be effectively able to understand sentiment
corresponding to each membership function. The results from
intermediate layers showed that predictions using SVNS from in-
termediate layers performed equally well or better in most cases.
Hence, the features are correctly learned by the intermediate
layers.

3.12. SVNS calculation

SVNS values, as defined in [48] are a set of membership
functions for an entity. A neutrosophic set A € X is charac-
terized by a truth-membership function T4, an indeterminacy
membership function I, and a falsity-membership function Fj.
The range of each of these membership functions is (0,1). It
represents the likeliness of element X belonging to each of the
given classes and must be independent. For SVNS calculation we
use the feature vectors extracted from the intermediate layers of
our trained neural networks. These vectors provide a feature-rich
numerical representation of tweet samples. Since these vectors

Knowledge-Based Systems 223 (2021) 107058

are extracted from models trained over supervised data, sam-
ples belonging to the same classes will have similar features
and vice-versa. We use this property to separate the features
into clusters corresponding to their respective class. We used k-
means clustering for this step. Once we obtain the clusters, we
find the cluster centers by simply averaging the feature vectors
for the given cluster. We define SVNS using these cluster cen-
ters and feature vectors. Let us define the SVNS values for each
sample as (SVNSpositives SYNSnegatives SYNSneutrar), cluster centers as
(Cpositive> Cregative> Creutral) and feature vectors F of N samples then:

SVNS positive = Cosine_distance(Cyositive, Fn)/2 (14)
SVNS pegative = Cosine_distance(Cpegative, Fn)/2 (15)
SVNS neutrar = Cosine_distance(Cueytral, Fn)/2 (16)
Cosine_distance = 1 — Cosine_similarity(Cy, Fy,) (17)

for x € (positive, negative, neutral) and n € N, the number of
samples.

4. Dataset description

Our work makes use of the SemEval 2017 Task 4(Subtask A)
dataset. It involved classifying tweets into positive, neutral, and
negative classes. It is one of the largest available datasets which
contains the neutral class in annotations instead of just positive
and negative classes. Since neutrosophy deals with neutralities,
we found it suitable for carrying out experimental analysis for
our proposed work. The statistics of the training and testing data
are given in Table 1.

For the comparison with our model, the best five systems from
the task are taken into consideration; their brief description is as
follows.

Datastories: [36] This team used the LSTM model coupled
with an attention mechanism for predicting the sentiment of
tweets. GloVe embeddings were used for representing the words
of tweets in vectorized form. They developed their tool ekphrasis
for cleaning and pre-processing the tweets before training their
model.

BBtwtr: [49] This team used an ensemble model of CNN and
LSTM based model for the task. The CNN model [50] on the
word vector representations of the tweets along with BiLSTM was
used. They experimented on embeddings trained on Stanford’s
GloVe [33], Google’s word2Vec [34], and Facebook’s FastText [51].

LIA: [52] This team used a fusion technique for learning sen-
timents using different classifiers trained on different kinds of
embeddings. The classifiers consisted of a combination of CNN-
LSTM based neural networks. They used four different kinds of
embeddings and fused the output of each classifier which is used
for final prediction using another neural network.

Sentil7: [53] This team used a unique approach based on
voting. They used ten CNN models. Each model was initialized
with the same embeddings for tweets but different initializations
for weights were used. The predictions are then counted for each
label. The final output was the label with maximum votes.

NNEMBs: [54] This team made use of the RCNN [55] based
model for sentence polarity detection. They used an ensemble
of these RCNN based models on different word embeddings.
Different embeddings trained using different methods and they
can carry different semantics. They used this fact to build an
ensemble model on them and use it for final predictions.

5. Model description
5.1. Text preprocessing and cleaning
Data preprocessing plays a pivotal role in creating an efficient

machine learning model. Data from social media platforms con-
tain a lot of noise, making it difficult to understand its underlying

M. Sharma, I. Kandasamy and W.B. Vasantha

Table 1
Dataset statistics.
Dataset Labels Total
Neutral Positive Negative
Train 22524 19799 7809 50132
Test 5937 3972 2375 12284
Table 2
Common chat-words and their meanings.
Chat-word Meaning
LOL Laugh out loud
BTW By the way
FYI For your information
U You
Table 3

Normalization of common words.

Un-normalized word Normalized word

www.linkedin.com < URL >
@stark < USER >

4 < NUMBER >
Jun 29 < DATE >

meaning. The dataset we used was extracted from Twitter and
contained hashtags, emojis, emoticons, web-URLs. We process the
data so that useful information can be extracted from them. We
describe the data cleaning process as follows:

Removing website names: Tweets sometimes contain a small
description which is followed by a URL to the actual source.
These URLs do not carry any semantic information about the
tweet. Hence, one approach can be removing the URLs from the
tweet. Another option is to replace all URLs with a common word
similar to “URL”. We use the latter in our proposed data-cleaning
pipeline.

Chat word conversion: (e.g. LOL — laugh out loud). The use of
slang words is common on Twitter. These words are not part of
standard vocabulary, but when expanded, provide useful insights
about the sentiment present in the tweet. We, therefore, use a
dictionary of common slang words for converting them into their
actual meaning. Some common slang words and their meanings
are given in Table 2.

Replacing emoticons and emojis with their meaning: Using emo-
jis and emoticons to represent sentiment is common on social
media platforms. They can be of significant importance while try-
ing to identify the sentiment of the tweet. To make full use of in-
formation provided by emojis and emoticons we used the python
package emoji° for converting emojis into their textual meaning.
For emoticons, we used a dictionary mapping the emoticons to
their respective meaning.

Ekphrasis library: For the next step, we use the python Ekphra-
sis* [36] library. It normalizes the URLs, money, date, and num-
bers so that a single representation of them can be used across
the dataset. Some examples of normalization are given in Table 3.
It annotates ‘hashtag’, ‘allcaps’, ‘elongated’, ‘repeated’, ‘emphasis’,
‘censored’. The pre-trained embeddings usually contain vector
representations for these annotated words, and thus, they can
help in better understanding the sentence within these annota-
tions. e.g., STRONGLY DISAGREE will be converted to < allcaps >
strongly disagree < allcaps >.

Hashtag segmentation and spelling correction Hashtags are used
to represent the topic of the tweet by users. It may contain

3 https://github.com/carpedm20/emoji/.
4 https://github.com/cbaziotis/ekphrasis.

Knowledge-Based Systems 223 (2021) 107058

useful information about events and the associated sentiment.
Sometimes different words are grouped to represent the topic.
We also perform spelling correction. Tweets sometimes con-
tain intentional spelling mistakes which may be understood by
users but pose a challenge for language modeling tasks. We
used the implementation of the Viterbi algorithm [56] and Peter
Norvig’s algorithm® based on Twitter corpus by Ekphrasis library
for hashtag segmentation and spelling correction.

Out-of-vocabulary words: We skip the out-of-vocabulary words
after the above pre-processing steps. Most of them were num-
bers, spelling mistakes, unsegmented hashtags having a low fre-
quency of occurrence. Another option is to replace all out-of-
vocabulary words with a special (< UNKNOWN >) token. But
this makes every unknown word to be represented equally which
may not be the case.

Tokenization for PLM’s: Different PLM’s have their own set
of vocabulary which they use during the pre-training process.
They use tokenizers to break the words into sub-words which
makes up the vocabulary for PLM’s. Some popular tokenization
algorithms PLM'’s use are Byte-Pair Encoding (BPE) [57], Word-
Piece [58], and SentencePiece [59]. For fine-tuning these models
on our dataset, we need to tokenize the tweets into PLM’s vocab-
ulary. For this step, we used Hugging Faces’s implementation of
FastTokenizers® for the respective models.

5.2. Model architecture

Our architecture is made up of two components i.e., text fea-
ture extraction and feature classification. The feature classifica-
tion component is built on the features learned by the text feature
extraction component. We use three different architectures to
define the text feature extraction component. We used BiLSTM-
GRU with GloVe embeddings, PLM’s, and a stacked ensemble
approach for our feature extraction component. The second part
of our model, feature classification, is used for the prediction
and dimensionality reduction of features. The outputs of the
feature extraction component make the input for it. We used
the output of the feature extraction component and intermediate
layer features from the feature classification component for SVNS
calculation. The advantage of separating the model into two com-
ponents is that it provides us with the flexibility to use any model
inside the feature extraction component. This is important as it
makes our architecture compatible with different models. Once
we choose an architecture the whole model is trained end to end
just like any other machine learning model. It also provides scope
for including future models making our architecture very robust.
The system architecture of our model is given in Fig. 4.

Next, we define the architectures of the two components of
our model in detail. Text feature extraction used a BiLSTM, a
PLM model, and a stacked ensemble architecture. Text feature
classification consists of a simple dense layer for dimensionality
reduction and feature normalization.

5.2.1. Text feature extraction
1. BiLSTM GRU: The concept of Dropout is from [44], Batch
Normalization is from [60] and L2 Regularization is from
[61]. The model consists of a 100-dimensional embedding
layer that converts the words into respective embedding
vectors. Gaussian noise with ¢ = 0.2 and a Dropout of
0.3 were used for regularization in the embedding layer.
Two BIiLSTM layers of size 150 (300 for bi-directional)
stacked above each other form the next layer. We use the
bi-directional layer to capture the overall context of the

5 https://norvig.com/spell-correct.html.
6 https://huggingface.co/transformers/tokenizer_summary.html.

https://github.com/carpedm20/emoji/
https://github.com/cbaziotis/ekphrasis
https://norvig.com/spell-correct.html
https://huggingface.co/transformers/tokenizer_summary.html

M. Sharma, 1. Kandasamy and W.B. Vasantha Knowledge-Based Systems 223 (2021) 107058

| ,\L‘_. > BiLSTM v Self Attention GRU
%* »| BiLsTM | ! Self Attention GRU
5 iy 5
BILSTM 2 g g
Architecture 3 8 &
3
£
&
> Xu {»| BiLSTM ® self Attention GRU o =
o ° Batch | ps °
g=° [™|Nomalisation| ™| o070
Stacked x 2 o |
Dense | | Classification |
K-means K-means K-means
Pre-trained SVNS SUNS SUNS
Language [CLS]/ <s> (GRU) (BatchNorm) (Prediction)

HE)

Positional |
Encodings| Stacked x n

models
architecture

Embeddings
\J
Multi-head
attention
Add & Norm
Feed Forward
Add & Norm

Transformer Encoder

ext Feature Extraction
L

sentence before we feed it to the attention layer. A Dropout
of 0.2 is used between intermediate layers and 0.25 be-
tween recurrent connections of LSTM’s. The output of the
second BiLSTM is fed to the attention layer. The context
vectors from the attention layer are used as GRU’s input.
The size of GRU is 64 units, with a Dropout of 0.2 and a
recurrent Dropout of 0.25. It encodes the information from
the attention layers. Only the output of the last timestamp
of GRU is used which is the output of our BILSTM-GRU text
feature extraction component.

. Pre-trained language models (PLM): We used final layer
features from PLM for extracting the overall feature rep-
resentation of textual data. We experimented with BERT,
RoBERTa, ALBERT, and MPNet. We used the features of
[CLS] token for BERT, RoBERTa, and < s > token for MPNet,
RoBERTa as final outputs for PLM architecture. We briefly
describe the architecture of each model as:

BERT: BERT (Bidirectional Encoder Representations from
Transformers), is a language model proposed by Google in
the paper [40]. It was the first model to learn bidirectional,
unsupervised language representation from unsupervised
data. BERT learns these bi-directional representations us-
ing a Masked Language Modeling (MLM) objective during
the pre-training step. It essentially masks certain words
and tries to predict them from neighboring textual data.
BERT also uses the Next Sentence Prediction (NSP) objec-
tive while pre-training where it tries to learn if the next
sentence is a continuation of the first. Once the general
representations are learned BERT can be fine-tuned for
several downstream tasks.

RoBERTa: A Robustly Optimized BERT pre-training ap-
proach (RoBERTa), was proposed by Facebook [41]. It uses
the same architecture as BERT. They replicated BERT and
measured the impact of hyper-parameters and training size
on performance. It was found that BERT was under-trained
and, its performance can further be improved. BERT uses
static masking which was replaced by dynamic masking.
They also trained the model with greater data and with a
bigger batch size. Their experiments also found that NSP
loss was not useful for the performance of the model and
pre-training without it led to equal or better performance
hence, they removed it.

ALBERT: A Lite BERT for self-supervised learning of lan-
guage representations [42] is a modification of BERT aiming
to improve the efficiency by allocating the model’s capacity

Features

sl

Fig. 4. Detailed overview of our system architecture. In text feature extraction we show BiLSTM and PLM-based architectures. Both were used independently and
are shown together only for illustration. The PLM architecture shows the structure of a transformer which is the basic building block of PLM’s.

more efficiently. This helped reducing memory consump-
tion and shortens training times. The authors focused that
input level embeddings need to learn context-independent
embeddings while hidden layer embeddings need to learn
context-dependent representations. They achieved this us-
ing factorization of the embedding parametrization. The
embedding matrix was split into input-level embeddings
with a relatively lower dimension while the hidden layer
embeddings used higher dimensionalities. This step helped
in an 80% reduction of parameter size. They also observed
that different layers learned to perform similar functions
on the output and hence introduced parameter sharing
across all layers. These two steps helped reduce the param-
eter size by almost 89%. They also replaced NSP loss with
Sentence Order Prediction (SOP) loss based on coherence.
MPNet: Masked and Permuted Pre-training for Language
Understanding [43], was proposed by Microsoft. It aimed
to use the best of both Auto-Encoding (AE) and Auto-
Regressive (AR) modeling techniques. MPNet builds from
the advantages of both MLM and permuted language mod-
eling. MLM cannot learn the dependencies between the
masked tokens. permuted language modeling on the other
hand cannot see the complete positional information which
is visible in downstream tasks. To overcome both these
problems MPNet introduced a unified view of permuted
language modeling and MLM. To model dependency among
predicted tokens, they used two-Stream self-attention. To
make input information consistent with downstream tasks
they introduced position compensation.

. Stacked ensemble of PLM’s: Ensemble models aim to

improve the overall performance of a system by combining
the outputs of several candidate systems. The main goal
is to use the best of each candidate for enhancing the
performance. Traditional ensemble techniques include Bag-
ging [62], Boosting [63], and Voting [64]. We use a Multi-
Layer Perceptron (MLP) based ensemble model similar to
one proposed in [65]. Our approach combines features of all
individually trained PLM’s. We extract the features gener-
ated from the text feature extraction component for BERT,
ALBERT, RoBERTa, and MPNet. The features are extracted
from already fine-tuned PLM’s. We concatenate the fea-
tures forming the output of the feature extraction compo-
nent which are fed to the feature classification layer. Only
the feature classification layer is trained in this approach
as we use features from already fine-tuned models.

M. Sharma, I. Kandasamy and W.B. Vasantha

5.2.2. Text feature classification

We pass the features from the text feature extraction compo-
nent through a dense layer of 32 hidden units with elu activation.
We normalize the output of the previous layer using Batch Nor-
malization to reduce the activation mean to zero and standard
deviation to one. The next and final layer is a dense layer with
three units and tanh activation. The final dense layer uses the
L2 Regularization of 0.0001 to reduce overfitting. The final layer’s
output is fed into softmax activation, which predicts the proba-
bility of each class. The maximum of the three values is taken as
the predicted label of our neural network system.

Layers used for SVNS calculation: Two layers from the above
system were used for calculating the SVNS values. The details of
intermediate layers are:

e Output of feature extraction component: The output of this
layer marks the end of our feature extraction component
used for learning the sequential text information. The fea-
tures in this layer are 64 dimensional in the case of BILSTM-
GRU, 768 dimensional in the case of BERT, RoBERTa, MPNet,
and 1024 dimensional in the case of ALBERT.

e Batch Normalization layer: This is the pre-final layer of
our feature classification network which contains the 32-
dimensional feature vectors for each sample generated from
the GRU layer. The values have been normalized using the
Batch Normalization layer. This reduces the variance in the
features used for SVNS calculation.

6. Experimental setup
6.1. Hyper-parameters:

Text Feature Extraction

1. BiLSTM Architecture: We used 100-dimensional GloVe vec-
tors for representing the words of the tweets. Gaussian
noise of 0.2 and a Dropout of 0.3 was added to the em-
bedding layer. Two stacked BiLSTM of size 150 were used
on the embedding layer. A Dropout of 0.2 was used after
each LSTM and a recurrent Dropout of 0.25 was used. Post
attention GRU of size 64 with a recurrent Dropout of 0.25
was used.

2. PLM Architecture: We experimented with BERT, RoBERTa,
ALBERT, and MPNet for our pre-trained language model
architecture. We used the [CLS] token (trained on SOP/NSP
loss) for BERT and ALBERT, while < s > token (start token)
was used in the case of RoBERTa and MPNet. The dimension
of these features were 768 for BERT, RoBERTa, MPNet, and
1024 for ALBERT. Parameters of each model are given in
Table 4.

Text Feature Classification The final dense network for clas-
sification consisted of 2 dense layers of size 32 and 3 neurons.
The 32-neuron dense layer was followed by Batch Normalization.
L2 regularization of 0.0001 was used in dense layers. Dense
layers use an elu and tanh activation followed by a final softmax
activation.

6.2. Training

We trained/fine-tuned our model to minimize the cross-
entropy loss. We used ADAM [66] optimizer for back-propagation.
We used a learning rate of 1e-3 for BiLSTM, 2e-5 for RoBERTa, and
le-5 for BERT, ALBERT, MPNet, and stacked ensemble. We fine-
tuned BERT, RoBERTA, ALBERT, MPNet, stacked ensemble using
a batch size of 32 for 6 epochs. BiLSTM-GRU was trained for
50 epochs with a batch size of 128. There was an imbalance

Knowledge-Based Systems 223 (2021) 107058

in training samples for given classes. This may affect the model
by adding bias and reduce efficiency. We used class weights to
overcome this problem. We used class weights described as:

weight; = max(X)/(X; + max(X)) (18)

where X is the vector containing counts of each given class.
6.3. System setup

1. BiLSTM: We developed the model on python using keras’
library which is an open-source tool for developing, pro-
totyping, and testing machine learning tasks. Tensorflow
backend was used along with libraries like numpy.® Pan-
das? and Ekphrasis were used for importing the dataset
and applying the pre-processing steps on tweets.

2. PLM: For using PLM’s we used the transformers'® package
by Hugging Face. We extended their models using Keras
to build our custom models. Tokenization is required for
making input consistent with PLM vocabulary. We used
Hugging Face implementation of FastTokenizers for each
pre-trained model.

All models were developed and trained on Google Colab using
GPU/TPU. For SVNS calculation we used scikit-learn’s'! imple-
mentation of k-means and cosine distance.

7. Results and analysis

The motive behind the proposed work was to introduce an
idea of quantification of sentiment into SVNS values instead of
directly predicting the class labels. We proposed a framework to
predict the output as a combination of all sentiments so that none
of the components i.e positive, negative, neutral is ignored. We
proposed to use intermediate layer activations from our neural
networks as feature vectors for SVNS calculation. It is evident
from the results given in Table 5 that intermediate layers suc-
cessfully capture the context. SVNS generated using intermediate
layers performed equally well and better in most metrics in
comparison to the final softmax layer of the neural network.
Our stacked ensemble outperformed all other models in all the
evaluation metrics. We have underlined the best scores among
different layers for each model.

Table 6 shows class-wise evaluation metrics for our best per-
forming model using stacked ensemble. Fig. 5 shows the confu-
sion matrix for predictions made using SVNS generated from the
BatchNorm layer of our stacked ensemble.

Fig. 6 depicts sentiment quantification of our proposed SVNS
values against the Softmax layer of the classification component.
We generated the plots using MPNet. Fig. 6(a) represents the
output of softmax from the feature classification layer. We can
see from the plot that the outputs are tightly packed. The emotion
corresponding to the correct label learns an extremely high prob-
ability of prediction completely ignoring the other sentiments.
We can even see a very sharp point of inflection between changes
in output labels. We also see a sharp triangle in the neutral
sentiment. It is because each side captures the transition from
neutral to either positive or negative sentiment and thus com-
pletely ignoring the third sentiment. Fig. 6(b) and (c) represent
the SVNS plots corresponding to BatchNorm and feature extrac-
tion output. It is evident from the plots that they capture the

7 https://keras.io.

8 https://numpy.org/.

9 https://pandas.pydata.org.
https://huggingface.co/transformers/.

1 https://scikit-learn.org/.

https://keras.io
https://numpy.org/
https://pandas.pydata.org
https://huggingface.co/transformers/
https://scikit-learn.org/

M. Sharma, I. Kandasamy and W.B. Vasantha

Knowledge-Based Systems 223 (2021) 107058

Table 4
Hyper-parameters for PLM.
Model Layers Hidden state dimension Number of attention heads Parameter size
BERT-base-uncased 12 768 12 110M
RoBERTa-base 12 768 12 125M
128 — Embedding size
ALBERT-large-v2 24 1024 — Hidden size 16 17M
MPNet 12 768 12 110M
Table 5

Results on the test set using intermediate layers and final layer (softmax) of feature classification component. In stacked ensemble, PLM ensemble represents the

concatenated features of all PLM’s we used in our experiments.

Model Layer F1 Recall Recall Accuracy
(weighted) (macro)
Softmax 0.674 0.675 0.682 0.675
BiLSTM (GloVe) SVNS (BatchNorm) 0.672 0.676 0.682 0.676
SVNS (GRU) 0.673 0.677 0.681 0.677
Softmax 0.703 0.678 0.709 0.678
BERT SVNS (BatchNorm) 0.707 0.700 0713 0.700
SVNS ([CLS]) 0.700 0.697 0.710 0.697
Softmax 0.706 0.680 0.715 0.680
RoBERTa SVNS (BatchNorm) 0.705 0.684 0.716 0.684
SVNS (<s>) 0.709 0.703 0.715 0.703
Softmax 0.701 0.680 0.717 0.680
ALBERT SVNS (BatchNorm) 0.700 0.692 0.713 0.692
SVNS ([CLS]) 0.661 0.679 0.681 0.678
Softmax 0.717 0.700 0.723 0.700
MPNet SVNS (BatchNorm) 0.716 0.706 0.718 0.706
SVNS (<s>) 0.717 0.702 0.720 0.702
Softmax 0.720 0.698 0.729 0.698
Stacked Ensemble SVNS (BatchNorm) 0.724 0.714 0.733 0.714
SVNS (PLM Ensemble) 0.721 0.716 0.726 0.716
Table 6
Metrics for each class using different layers of stacked ensemble.
Layer Label Precision Recall F1-Score 3500
Neutral 0.784 0.569 0.659 —
Softmax Positive 0.633 0.771 0.696 g
Negative 0.662 0847 0743 - 3000
=
Neutral 0.758 0.641 0.695
SVNS(BatchNorm) Positive 0.645 0.770 0.702 2500
Negative 0.707 0.788 0.745
Neutral 0.745 0.670 0.706 T
SVNS(PLM Ensemble) Positive 0.668 0.736 0.701 2 2000
Negative 0.709 0.773 0.740 o 2
Z2=
'_ "
€ -1500
transition between sentiments smoothly and better quantify the
combination of sentiments in the given space. SVNS BatchNorm 1000
values though comparatively better than neural networks but are
still slightly packed. It is the first layer to receive back-propagated
gradients from the final softmax layer leading to such behavior. 500

The output of the MPNet feature extraction component which is
further behind in our network experiences a shallow effect of
gradients from softmax and thus better learns the combination
of sentiments.

Table 7 contains some examples and their corresponding sen-
timent values calculated using our model. In Table 7, we can
see that the neural network has learned to predict the correct
output however, it loses information about the other sentiments.
e.g., the positive predictions of our neural network assign similar
probabilities to the neutral and negative sentiment which, is in
complete contrast to real-world sentiments. On the other hand,
the SVNS values are better able to quantify the sentiments as
observed from the table. We can observe similar patterns for
other sentiment classes also.

10

Negative

Positive
Predicted label

Neutral

Negative

Fig. 5. Confusion matrix for predictions using SVNS (BatchNorm) from Stacked
Ensemble.

7.1. Error analysis

The following deals with analyzing the incorrect predictions
made by our model. We also try to analyze the possible reasons
for the wrong predictions and come up with the following broad
reasons:

M. Sharma, 1. Kandasamy and W.B. Vasantha Knowledge-Based Systems 223 (2021) 107058

,
0 4
oo SNAS

ob
(Y

01 e
05 oot

(a) Softmax

(b) Batchnorm

(c) PLM

Fig. 6. Probability of prediction for each sentiment using MPNet model (a) Final output of feature classification using softmax (b) SVNS Batch Normalization (c) SVNS
PLM ensemble (Concatenated features using BERT, ALBERT, RoBERTa, MPNet).

Table 7
Comparison of probabilities generated using softmax vs. SVNS (BatchNorm) generated from MPNet based model.
Tweet Layer Neutral Positive Negative | Original
Label
@Okupuna funny guy you. But I know you can Softmax 0.439 0.119 0.440 Negative
get a fake id; however, it will cost you a
lot more than that to fake a Voter SVNS 0.607 0.124 0.836
Registration card BatchNorm
@cools8n like I saw someone on FB share an Softmax 0.445 0.066 0.488 | Negative
article saying that instead of vaccines
people should just be exposed to the SVNS 0.512 0.144 0.970
disease to fight it BatchNorm
Um. For many of us, life-threatening. Save Softmax 0.463 0.072 0.463 Negative
#Medicare #Medicaid thou shalt not kill
https://t.co/tZoyQIXMSs SVNS 0.599 0.117 0.863
BatchNorm
When a legend speaks about another Legend Softmax 0.144 0750 0.106 Positive
Q #Gerrard #Messi #FCBLive
https://t.co/1DsWMB1Nuc BatchNorm 0.354 0.953 0.091
tremendous advances in artificial Softmax 0.106 0.785 0.108 Positive
intelligence are powering everything from
self-driving cars to apps that help SVNS 0.175 0.984 0.229
diagnose cancer BatchNorm
If I could be one male celebrity I would be Softmax 0.177 0.721 0.100 Positive
Zac Efron. The dude has his life together.
SVNS 0.260 Q=951 0.142
BatchNorm
New #Tesla video shows how robot #cars will | Softmax 0.507 0.418 0.073 Neutral
react when they're launched in 2017.
#BlackFriday https://t.co/o9v6GtPE6D SVNS 0.873 0.385 0.202
BatchNorm
NY’s largest Medicaid provider to pull out Softmax 0.750 0.101 0.147 Neutral
of LI https://t.co/8zoePxl1Dso
SVNS 0.912 0.079 0.625
BatchNorm
I need to make a t-shirt that says 'Let's Softmax 0.468 0.463 0.068 Neutral
discuss Westworld!' and wear it practically
daily. SVNS 0.794 0.450 0.167
BatchNorm

URL’s and links: Upon observation of the validation set, we
found out that certain tweets had URL's pointing to external
links containing information about the tweets. Our system had
removed URL’s. Moreover, information extraction from URL’s is
not easy and can make the model extremely complex.

Tweet: Undersecretary of Cement on the Mexican Border..BUILD
THE WALL.

https://t.co/wUuutXHPvf

Original Label: negative

Predicted Label: neutral

Common sense: Our model does not contain any means to learn
common sense reasoning about the general trends present in the
world. We as humans have access to an ever-updating knowledge
base from the news which we use to make decisions. The model
only has the training set which may sometimes not be enough to

for humans to get sarcasm. Some examples where our model
went wrong are:

Tweet: First Thanksgiving, Christmas, New Years, Valentines Day
and Birthday without my Dad

Original label: negative

Predicted label: positive

8. Discussions and comparisons

We further compare the results of our proposed SVNS model
to the first five teams from SemEval 2017 Task 4 (Subtask A). With
our results given in Table 8, we have highlighted the best scores
obtained by our proposed models along with the best score of the

learn such information.
Tweet: 67.4 kg gold missing from Delhi airport in 7 months -
https://t.co/0GU8Iq51BB via https://t.co/81C6isG73M
Original Label: negative
Predicted Label: neutral

Sarcasm Social media especially Twitter is full of sarcasm
based on current events. And sometimes it may be even difficult

competing teams.

Our model has the best accuracy (0.716), F1 (0.724), and recall
(0.733) scores over all the other five models, as tabulated in Ta-
ble 2. Our proposed model using PLM architecture outperformed
the top-performing teams. SVNS predictions for most metrics
performed equally or better than individually trained models.
BiLSTM architecture also performed equivalent to top-performing

11

https://t.co/wUuutXHPvf
https://t.co/0GU8Iq51BB
https://t.co/8lC6isG73M

M. Sharma, I. Kandasamy and W.B. Vasantha

Table 8
Comparison of our best performing model (PLM Ensemble) with other models.
Rank no System Recall F1 Accuracy
1 DataStories 0.681 0.677 0.651
2 BB twtr 0.681 0.685 0.658
3 LIA 0.676 0.674 0.661
4 Senti17 0.674 0.665 0.652
5 NNEMBs 0.669 0.658 0.664
Final (softmax) 0.729 0.720 0.698
Proposed SVNS (BatchNorm) 0.733 0.724 0.714
SVNS (PLM Ensemble) 0.726 0.721 0.716
Table 9
Comparison with recent state-of-the-art models.
Model Recall
RoBERTa-Bs 0.720
TweetEval RoBERTa-RT 0.729
RoBERTa-TW 0.693
BerTweet 0.732
Stacked Ensemble (SVNS BatchNorm) 0.733

teams in some evaluation metrics. Although the goal of our sys-
tem was to develop a better quantification method for the com-
bination of emotions in sentiment analysis, our model must per-
form at par with the state-of-the-art systems. This would ensure
good prediction and a better and improved way for studying
sentiment analysis problems.

We also compare our model performance to the most re-
cent benchmarks on SemEval 17 Task 4 (Subtask A) dataset.
Comparison is shown in Table 9.

TweetEval [67] is a unified benchmark created for the com-
parative evaluation of various datasets available for Twitter. It
consists of SemEval 17 Task 4 (Subtask A) dataset as the bench-
mark for the task of sentiment analysis on Twitter. They used
three variants of RoBERTa: RoBERTa-Bs, the standard pre-trained
RoBERTa model, RoBERTa-RT, standard RoBERTa model retrained
on Twitter data, and RoBERTa-TW, trained from scratch on the
Twitter dataset. BerTweet proposed in [68] is the first large-scale
public dataset trained on 80 GB of data containing 850M tweets.
They used the BERT architecture and RoBERTa pre-training proce-
dure to achieve the state-of-the-art result on sentiment analysis
on Twitter. It is evident from Table 9 that our stacked ensemble
using neutrosophy performs better than all the recent state-of-
the-art systems. Our approach using SVNS provided a significant
performance gain without using any pre-training procedures and
helped achieve state-of-the-art performance.

The idea behind the proposed work was to make a modern
sentiment analysis system not only capable of predicting the
sentiments but also understanding each component of it. The
proposed method can be easily used for querying tweets with not
only one specific sentiment but with a varying combination of
sentiments varying from slightly positive, positively neutral, etc.
This can be very useful for social media campaigns and product
feedback analysis from social media. It can be considered as a
sentence-to-vector encoding process. The main idea is to combine
neutrosophy and deep learning for better quantification of natural
sentiment and be equally effective in prediction tasks.

None of the previous work has focused on using deep learning
with neutrosophic sets. Neutrosophy covers an important aspect
of membership functions using SVNS which can be used for better
understanding the task of sentiment analysis. Deep learning has
shown significant progress in understanding text. New advances
are made every year improving the efficiency of neural networks.
Thus, we aim to create a general framework for combining the
field of deep learning and neutrosophy which together may serve
as a powerful tool for sentiment analysis.

12

Knowledge-Based Systems 223 (2021) 107058

The indeterminacy membership is used to represent the de-
gree of uncertainty in the classification. The relationship among
these three memberships can be used to support the confidence
level in the classification. Hence, if the classification is involved in
the uncertain information then our approach is another technique
that can be chosen for the prediction.

8.1. Computational complexity

In [69], they introduced neutrosophic logic SVM (n-SVM),
which deals with image segmentation in multi-class problems
using the idea of neutrosophic sets. They used the one-against
the rest strategy which involved training m-classifiers which is
computationally expensive. The model we propose makes use
of a single neural network architecture for directly learning the
feature space for each positive, negative and neutral class.

In [18], they introduced N-ANN, in which ANN was employed
for calculating the positive and negative membership functions.
It involved training two separate classifiers one for each truth
and false membership function. Training similar neural networks
by taking complement can be expensive to train. On the other
hand, our model makes use of a single neural network to learn
the features used for learning the membership functions

Limitation of other papers for SVNS values: The N-ANN neural
network defined in [18] makes use of two ANN for learning the
truth and false membership function. But the indeterminacy func-
tion is learned as the difference between these two functions. This
makes the indeterminacy function directly dependent on truth
and false functions. In our proposed model the neural network in-
dependently learns features for each membership function which
are used to obtain the cluster centers for SVNS calculation. Thus
each membership function proposed by us has a range (0,1) and
is independent of each other.

9. Conclusions

A neutrosophic approach for deep learning models, which
uses state-of-the-art techniques, was proposed in this paper. It
is a unique and novel contribution to neutrosophy and deep
learning. We have modeled the neutrosophic approach to six
models: BiLSTM using GloVe, BERT, ALBERT, RoBERTa, MPNet,
and stacked ensemble. The experimental analysis was on SemEval
2017 Task 4 (Subtask A) dataset. We generated SVNS values from
two different layers of our DNN models and used the SVNS values
to quantify and predict the sentiment. The proposed stacked
ensemble model has performed better among all six models that
we have proposed. It is also better than the top five teams that
took part in the competition and the most recent state-of-the-art
models. Natural language is a conglomerate of sentiments, and
it is understood differently by each individual. Thus, combining
neutrosophy, which captures this uncertainty, with state-of-the-
art deep learning techniques can be used to understand and
quantify this uncertainty.

CRediT authorship contribution statement

Mayukh Sharma: Conceptualization, Methodology, Software,
Visualization, Data curation, Investigation. Ilanthenral Kan-
dasamy: Methodology, Writing - original draft, Investigation.
W.B. Vasantha: Supervision, Conceptualization, Writing -
review & editing.

Declaration of competing interest
The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

M. Sharma, I. Kandasamy and W.B. Vasantha

Availability of data and material (data transparency)

The data is from SemEval 2017 Task 4(Subtask A). The data is
available at Rosenthal et al. (2017).

Funding

This research received no funding.

Code availability

The code is available on GitHub!2,

References

(1]

[2

3

14

5

[6]

17

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

E. Cambria, Affective computing and sentiment analysis, IEEE Intell. Syst.
31 (2) (2016) 102-107, http://dx.doi.org/10.1109/MIS.2016.31.

S. Rosenthal, N. Farra, P. Nakov, SemEval-2017 task 4: Sentiment analysis
in Twitter, in: Proceedings of the 11th International Workshop on Seman-
tic Evaluation (SemEVal-2017), Association for Computational Linguistics,
Vancouver, Canada, 2017, pp. 502-518, http://dx.doi.org/10.18653/v1/S17-
2088, URL https://www.aclweb.org/anthology/S17-2088.

D. Chen, C.D. Manning, A fast and accurate dependency parser using neural
networks, in: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), 2014, pp. 740-750.

D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly
learning to align and translate, in: Y. Bengio, Y. LeCun (Eds.), 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015, URL http:
//arxiv.org/abs/1409.0473.

W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, A survey of deep
neural network architectures and their applications, Neurocomputing 234
(2017) 11-26, http://dx.doi.org/10.1016/j.neucom.2016.12.038, URL https:
//www.sciencedirect.com/science/article/pii/S0925231216315533.

M.E. Basiri, S. Nemati, M. Abdar, E. Cambria, U.R. Acharya, ABCDM: An
attention-based bidirectional CNN-RNN deep model for sentiment anal-
ysis, Future Gener. Comput. Syst. 115 (2021) 279-294, http://dx.doi.org/
10.1016/j.future.2020.08.005, URL https://www.sciencedirect.com/science/
article/pii/S0167739X20309195.

S. Sun, C. Luo, J. Chen, A review of natural language processing techniques
for opinion mining systems, Inf. Fusion 36 (2017) 10-25.

L.M. Rojas-Barahona, Deep learning for sentiment analysis, Lang. Linguist.
Compass 10 (12) (2016) 701-719.

F. Smarandache, Neutrosophy, Infinite Study, 2000.

H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single valued
neutrosophic sets, Review 16 (1) (2010) 10-14.

S. Broumi, M. Talea, A. Bakali, F. Smarandache, Single valued neutrosophic
graphs, J. New Theory 10 (2016) 86-101.

F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutroso-
phy, Neutrosophic Set, Probability, and Statistics, American Research Press,
Rehoboth, 2000, URL https://arxiv.org/pdf/math/0101228.

I. Kandasamy, W. Vasantha, N. Mathur, M. Bisht, F. Smarandache, Senti-
ment analysis of the# MeToo movement using neutrosophy: Application
of single-valued neutrosophic sets, in: Optimization Theory Based on
Neutrosophic and Plithogenic Sets, Academic Press, 2020, pp. 117-135.

I. Kandasamy, W.B. Vasantha,]. Obbineni, F. Smarandache, Sentiment
analysis of tweets using refined neutrosophic sets, Comput. Ind. (2019)
Accepted.

A. Elhassouny, S. Idbrahim, F. Smarandache, Machine learning in neutro-
sophic environment: A survey, in: Neutrosophic Sets and Systems, Vol. 28,
2019, pp. 58-68.

P. Kraipeerapun, C.C. Fung, Comparing performance of interval neutro-
sophic sets and neural networks with support vector machines for binary
classification problems, in: 2008 2nd IEEE International Conference on
Digital Ecosystems and Technologies, 2008, pp. 34-37.

A. Vaswani, N. Shazeer, N. Parmar,]. Uszkoreit, L. Jones, ANN. Gomez,
L.u. Kaiser, I. Polosukhin, Attention is all you need, in: I. Guyon, U.V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett
(Eds.), Advances in Neural Information Processing Systems, Vol. 30, Curran
Associates, Inc., 2017, URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

12 https://github.com/04mayukh/Comparison-of-Neutrosophic- Approach-to-
various-Deep- Learning-Models- for- Sentiment- Analysis

[18]

Knowledge-Based Systems 223 (2021) 107058

P. Kraipeerapun, C.C. Fung, KW. Wong, Multiclass classification using
neural networks and interval neutrosophic sets, in: Proceedings of the
5th WSEAS International Conference on Computational Intelligence, Man-
Machine Systems and Cybernetics, in: CIMMACS'06, World Scientific and
Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA,
2006, pp. 123-128.

[19] J. Ye, Single valued neutrosophic cross-entropy for multicriteria decision

making problems, Appl. Math. Model. 38 (3) (2014) 1170-1175, http:
//dx.doi.org/10.1016/j.apm.2013.07.020.

[20]]. Ye, Improved cosine similarity measures of simplified neutrosophic sets

for medical diagnoses, Artif. Intell. Med. 63 (3) (2015) 171-179.

[21]]. Ye, Single valued neutrosophic cross-entropy for multicriteria decision

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

making problems, Appl. Math. Model. 38 (3) (2014) 1170-1175.

P. Liu, F. Teng, Multiple attribute decision making method based on normal
neutrosophic generalized weighted power averaging operator, Int. J. Mach.
Learn. Cybern. 9 (2) 281-293. http://dx.doi.org/10.1007/s13042-015-0385-

V.
F. Smarandache, N-valued refined neutrosophic logic and its applications
to physics, Prog. Phys. 4 (2013) 143.

I. Kandasamy, Double-valued neutrosophic sets, their minimum spanning
trees, and clustering algorithm,]. Intell. Syst. 27 (2) (2018) 163-182,
http://dx.doi.org/10.1515/jisys-2016-0088.

I. Kandasamy, Smarandache, Multicriteria decision making using double re-
fined indeterminacy neutrosophic cross entropy and indeterminacy based
cross entropy, Appl. Mech. Mater. 859 (2016) 129-143, http://dx.doi.org/
10.4028/www.scientific.net/AMM.859.129.

I. Kandasamy, F. Smarandache, Triple refined indeterminate neutrosophic
sets for personality classification, in: Computational Intelligence (SSCI),
2016 IEEE Symposium Series on, IEEE, 2016, pp. 1-8, http://dx.doi.org/
10.1109/SSC1.2016.7850153.

W. Vasantha, I. Kandasamy, F. Smarandache, V. Devvrat, S. Ghildiyal, Study
of imaginative play in children using single-valued refined neutrosophic
sets, Symmetry 12 (3) (2020) 402.

I. Kandasamy, W.B.V. Kandasamy, J.M. Obbineni, F. Smarandache, Indeter-
minate likert scale: feedback based on neutrosophy, its distance measures
and clustering algorithm, Soft Comput. 24 (10) (2020) 7459-7468, http:
//dx.doi.org/10.1007/s00500-019-04372-x.

K. Mishra, I. Kandasamy, V. Kandasamy WB, F. Smarandache, A novel
framework using neutrosophy for integrated speech and text sentiment
analysis, Symmetry 12 (10) (2020) 1715.

F. Smarandache, M. Colhon, $. Vlddutescu, X. Negrea, Word-level
neutrosophic sentiment similarity, Appl. Soft Comput. 80 (2019) 167-176.
A. Jain, B.P. Nandi, C. Gupta, D.K. Tayal, Senti-NSetPSO: large-sized
document-level sentiment analysis using Neutrosophic Set and particle
swarm optimization, Soft Comput. 24 (1) (2020) 3-15.

T. Mikolov, 1. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed represen-
tations of words and phrases and their compositionality, in: Neural and
Information Processing System (NIPS), 2013.

[33] J. Pennington, R. Socher, C. Manning, Glove: Global vectors for word rep-

[34]

[35]

[36]

[37]

[38]

[39]

resentation, in: Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Association for Computational
Linguistics, Doha, Qatar, 2014, pp. 1532-1543, http://dx.doi.org/10.3115/
v1/D14-1162, URL https://www.aclweb.org/anthology/D14-1162.

T. Mikolov, K. Chen, G. Corrado,]. Dean, Efficient estimation of word
representations in vector space, 2013, URL arXiv:1301.3781.

T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, A. Joulin, Advances
in pre-training distributed word representations, in: Proceedings of the
International Conference on Language Resources and Evaluation (LREC
2018), 2018.

C. Baziotis, N. Pelekis, C. Doulkeridis, Datastories at SemEval-2017 task 4:
Deep LSTM with attention for message-level and topic-based sentiment
analysis, in: Proceedings of the 11th International Workshop on Seman-
tic Evaluation (SemEVal-2017), Association for Computational Linguistics,
Vancouver, Canada, 2017, pp. 747-754, http://dx.doi.org/10.18653/v1/S17-
2126, URL https://www.aclweb.org/anthology/S17-2126.

S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput.
9 (8) (1997) 1735-1780, http://dx.doi.org/10.1162/neco0.1997.9.8.1735.

K. Cho, B. van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, Y. Bengio, Learning phrase representations using RNN
encoder-decoder for statistical machine translation, in: Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), Association for Computational Linguistics, Doha, Qatar, 2014,
pp. 1724-1734, http://dx.doi.org/10.3115/v1/D14-1179, URL https://www.
aclweb.org/anthology/D14-1179.

Y. Bengio, P.Y. Simard, P. Frasconi, Learning long-term dependencies with
gradient descent is difficult, IEEE Trans. Neural Netw. 5 2 (1994) 157-166.

[40] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep

bidirectional transformers for language understanding, in: Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long

http://dx.doi.org/10.1109/MIS.2016.31
http://dx.doi.org/10.18653/v1/S17-2088
http://dx.doi.org/10.18653/v1/S17-2088
http://dx.doi.org/10.18653/v1/S17-2088
https://www.aclweb.org/anthology/S17-2088
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://dx.doi.org/10.1016/j.neucom.2016.12.038
https://www.sciencedirect.com/science/article/pii/S0925231216315533
https://www.sciencedirect.com/science/article/pii/S0925231216315533
https://www.sciencedirect.com/science/article/pii/S0925231216315533
http://dx.doi.org/10.1016/j.future.2020.08.005
http://dx.doi.org/10.1016/j.future.2020.08.005
http://dx.doi.org/10.1016/j.future.2020.08.005
https://www.sciencedirect.com/science/article/pii/S0167739X20309195
https://www.sciencedirect.com/science/article/pii/S0167739X20309195
https://www.sciencedirect.com/science/article/pii/S0167739X20309195
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb7
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb7
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb7
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb8
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb8
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb8
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb9
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb10
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb10
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb10
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb11
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb11
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb11
https://arxiv.org/pdf/math/0101228
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb13
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb14
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb15
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb15
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb15
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb15
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb15
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb16
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb16
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb16
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb16
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb16
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb16
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb16
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://github.com/04mayukh/Comparison-of-Neutrosophic-Approach-to-various-Deep-Learning-Models-for-Sentiment-Analysis
https://github.com/04mayukh/Comparison-of-Neutrosophic-Approach-to-various-Deep-Learning-Models-for-Sentiment-Analysis
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb18
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb18
http://dx.doi.org/10.1016/j.apm.2013.07.020
http://dx.doi.org/10.1016/j.apm.2013.07.020
http://dx.doi.org/10.1016/j.apm.2013.07.020
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb20
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb20
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb20
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb21
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb21
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb21
http://dx.doi.org/10.1007/s13042-015-0385-y
http://dx.doi.org/10.1007/s13042-015-0385-y
http://dx.doi.org/10.1007/s13042-015-0385-y
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb23
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb23
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb23
http://dx.doi.org/10.1515/jisys-2016-0088
http://dx.doi.org/10.4028/www.scientific.net/AMM.859.129
http://dx.doi.org/10.4028/www.scientific.net/AMM.859.129
http://dx.doi.org/10.4028/www.scientific.net/AMM.859.129
http://dx.doi.org/10.1109/SSCI.2016.7850153
http://dx.doi.org/10.1109/SSCI.2016.7850153
http://dx.doi.org/10.1109/SSCI.2016.7850153
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb27
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb27
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb27
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb27
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb27
http://dx.doi.org/10.1007/s00500-019-04372-x
http://dx.doi.org/10.1007/s00500-019-04372-x
http://dx.doi.org/10.1007/s00500-019-04372-x
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb29
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb29
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb29
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb29
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb29
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb30
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb30
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb30
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb31
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb31
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb31
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb31
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb31
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb32
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb32
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb32
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb32
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb32
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/1301.3781
http://dx.doi.org/10.18653/v1/S17-2126
http://dx.doi.org/10.18653/v1/S17-2126
http://dx.doi.org/10.18653/v1/S17-2126
https://www.aclweb.org/anthology/S17-2126
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.3115/v1/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb39
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb39
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb39

M. Sharma, I. Kandasamy and W.B. Vasantha

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

and Short Papers), Association for Computational Linguistics, Minneapolis,
Minnesota, 2019, pp. 4171-4186, http://dx.doi.org/10.18653/v1/N19-1423,
URL https://www.aclweb.org/anthology/N19-1423.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L.
Zettlemoyer, V. Stoyanov, RoBERTa: A robustly optimized BERT pretraining
approach, 2019, URL arXiv:1907.11692.

Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, R. Soricut, ALBERT:
A lite BERT for self-supervised learning of language representations, in:
International Conference on Learning Representations, 2020, URL https:
//openreview.net/forum?id=H1eA7AEtvS.

K. Song, X. Tan, T. Qin, J. Lu, T.-Y. Liu, MPNet: Masked and per-
muted pre-training for language understanding, in: H. Larochelle, M.
Ranzato, R. Hadsell, M.F. Balcan, H. Lin (Eds.), Advances in Neu-
ral Information Processing Systems, Vol. 33, Curran Associates, Inc.,
2020, pp. 16857-16867, URL https://proceedings.neurips.cc/paper/2020/
file/c3a690be93aa602ee2dcOccab5b7b67e-Paper.pdf.

S. loffe, C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, in: F. Bach, D. Blei (Eds.),
Proceedings of the 32nd International Conference on Machine Learning,
in: Proceedings of Machine Learning Research, vol. 37, PMLR, Lille, France,
2015, pp. 448-456, URL http://proceedings.mlr.press/v37/ioffe15.html.
L.A. Gatys, A.S. Ecker, M. Bethge, Image style transfer using convolutional
neural networks, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 2414-2423.

E. Cambria, Y. Li, F.Z. Xing, S. Poria, K. Kwok, SenticNet 6: Ensemble
application of symbolic and subsymbolic Al for sentiment analysis, in:
Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, in: CIKM °'20, Association for Computing
Machinery, New York, NY, USA, 2020, pp. 105-114, http://dx.doi.org/10.
1145/3340531.3412003.

Y. Wu, M. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey,]. Klingner, A. Shah, M. Johnson, X. Liu, L.
Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil,
W. Wang, C. Young, J. Smith,]. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M.
Hughes, J. Dean, Google’s neural machine translation system: Bridging the
gap between human and machine translation, 2016, CoRR abs/1609.08144.
arXiv:1609.08144. URL http://arxiv.org/abs/1609.08144.

H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single Valued
Neutrosophic Sets, Infinite Study. URL https://books.google.co.in/books?id=
RFbVDwWAAQBA].

M. Cliche, BB_twtr at SemEval-2017 task 4: Twitter sentiment analysis
with CNNs and LSTMs, in: Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEVal-2017), Association for Computational
Linguistics, Vancouver, Canada, 2017, pp. 573-580, http://dx.doi.org/10.
18653/v1/S17-2094, URL https://www.aclweb.org/anthology/S17-2094.

Y. Kim, Convolutional neural networks for sentence classification, in:
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Association for Computational Linguistics,
Doha, Qatar, 2014, pp. 1746-1751, http://dx.doi.org/10.3115/v1/D14-1181,
URL https://www.aclweb.org/anthology/D14-1181.

P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with
subword information, Trans. Assoc. Comput. Linguist. 5 (2017) 135-146.
M. Rouvier, LIA at SemEval-2017 task 4: An ensemble of neural networks
for sentiment classification, in: Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEVal-2017), Association for Com-
putational Linguistics, Vancouver, Canada, 2017, pp. 760-765, http://
dx.doi.org/10.18653/v1/S17-2128, URL https://www.aclweb.org/anthology/
S17-2128.

H. Hamdan, Senti17 at SemEval-2017 task 4: Ten convolutional neu-
ral network voters for tweet polarity classification, in: Proceedings of
the 11th International Workshop on Semantic Evaluation (SemEVal-
2017), Association for Computational Linguistics, Vancouver, Canada, 2017,
pp. 700-703, http://dx.doi.org/10.18653/v1/S17-2116, URL https://www.
aclweb.org/anthology/S17-2116.

14

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Knowledge-Based Systems 223 (2021) 107058

Y. Yin, Y. Song, M. Zhang, NNEMBs at SemEval-2017 task 4: Neural
Twitter sentiment classification: a simple ensemble method with dif-
ferent embeddings, in: Proceedings of the 11th International Workshop
on Semantic Evaluation (SemEVal-2017), Association for Computational
Linguistics, Vancouver, Canada, 2017, pp. 621-625, http://dx.doi.org/10.
18653/v1/S17-2102, URL https://www.aclweb.org/anthology/S17-2102.

T. Lei, H. Joshi, R. Barzilay, T. Jaakkola, K. Tymoshenko, A. Moschitti,
L. Marquez, Semi-supervised question retrieval with gated convolutions,
in: Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Tech-
nologies, Association for Computational Linguistics, San Diego, California,
2016, pp. 1279-1289, http://dx.doi.org/10.18653/v1/N16-1153, URL https:
//www.aclweb.org/anthology/N16-1153.

G.D. Forney, The viterbi algorithm, Proc. IEEE 61 (3) (1973) 268-278,
http://dx.doi.org/10.1109/PROC.1973.9030.

R. Sennrich, B. Haddow, A. Birch, Neural machine translation of rare
words with subword units, in: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), Association for Computational Linguistics, Berlin, Germany, 2016,
pp. 1715-1725, http://dx.doi.org/10.18653/v1/P16- 1162, URL https://www.
aclweb.org/anthology/P16-1162.

M. Schuster, K. Nakajima, Japanese and Korean voice search, in: 2012
IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 2012, pp. 5149-5152, http://dx.doi.org/10.1109/ICASSP.2012.
6289079.

T. Kudo, J. Richardson, SentencePiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing, in:
Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, Association for Computational
Linguistics, Brussels, Belgium, 2018, pp. 66-71, http://dx.doi.org/10.18653/
v1/D18-2012, URL https://www.aclweb.org/anthology/D18-2012.

S. loffe, C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, 2015, URL arXiv:1502.03167.
C. Cortes, M. Mohri, A. Rostamizadeh, L2 regularization for learning kernels,
in: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, in: UAI '09, AUAI Press, Arlington, Virginia, USA, 2009, pp.
109-116.

L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123-140, http:
//dx.doi.org/10.1023/A:1018054314350.

Y. Freund, RE. Schapire, Experiments with a new boosting algorithm, in:
ICML, 1996, pp. 148-156.

J. Kittler, M. Hatef, RP.W. Duin,]. Matas, On combining classifiers, IEEE
Trans. Pattern Anal. Mach. Intell. 20 (3) (1998) 226-239, http://dx.doi.org/
10.1109/34.667881.

M.S. Akhtar, A. Ekbal, E. Cambria, How intense are you? Predicting in-
tensities of emotions and sentiments using stacked ensemble [application
notes], IEEE Comput. Intell. Mag. 15 (1) (2020) 64-75, http://dx.doi.org/10.
1109/MC1.2019.2954667.

D.P. Kingma,]. Ba, Adam: A method for stochastic optimization, in: Y.
Bengio, Y. LeCun (Eds.), 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015, URL http://arxiv.org/abs/1412.6980.

F. Barbieri, J. Camacho-Collados, L. Espinosa Anke, L. Neves, TweetEval:
Unified benchmark and comparative evaluation for tweet classification,
in: Findings of the Association for Computational Linguistics: EMNLP
2020, Association for Computational Linguistics, 2020, pp. 1644-1650,
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.148, Online. URL https:
//www.aclweb.org/anthology/2020.findings-emnlp.148.

D.Q. Nguyen, T. Vu, A. Tuan Nguyen, BERTweet: A pre-trained language
model for english tweets, in: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing: System Demonstra-
tions, Association for Computational Linguistics, 2020, pp. 9-14, http:
//dx.doi.org/10.18653/v1/2020.emnlp-demos.2, Online. URL https://www.
aclweb.org/anthology/2020.emnlp-demos.2.

W. Ju, H. Cheng, A novel neutrosophic logic svm (n-svm) and its application
to image categorization, New Math. Nat. Comput. 9 (01) (2013) 27-42.

http://dx.doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://proceedings.neurips.cc/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
http://proceedings.mlr.press/v37/ioffe15.html
http://dx.doi.org/10.1145/3340531.3412003
http://dx.doi.org/10.1145/3340531.3412003
http://dx.doi.org/10.1145/3340531.3412003
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/1609.08144
https://books.google.co.in/books?id=RFbVDwAAQBAJ
https://books.google.co.in/books?id=RFbVDwAAQBAJ
https://books.google.co.in/books?id=RFbVDwAAQBAJ
http://dx.doi.org/10.18653/v1/S17-2094
http://dx.doi.org/10.18653/v1/S17-2094
http://dx.doi.org/10.18653/v1/S17-2094
https://www.aclweb.org/anthology/S17-2094
http://dx.doi.org/10.3115/v1/D14-1181
https://www.aclweb.org/anthology/D14-1181
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb51
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb51
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb51
http://dx.doi.org/10.18653/v1/S17-2128
http://dx.doi.org/10.18653/v1/S17-2128
http://dx.doi.org/10.18653/v1/S17-2128
https://www.aclweb.org/anthology/S17-2128
https://www.aclweb.org/anthology/S17-2128
https://www.aclweb.org/anthology/S17-2128
http://dx.doi.org/10.18653/v1/S17-2116
https://www.aclweb.org/anthology/S17-2116
https://www.aclweb.org/anthology/S17-2116
https://www.aclweb.org/anthology/S17-2116
http://dx.doi.org/10.18653/v1/S17-2102
http://dx.doi.org/10.18653/v1/S17-2102
http://dx.doi.org/10.18653/v1/S17-2102
https://www.aclweb.org/anthology/S17-2102
http://dx.doi.org/10.18653/v1/N16-1153
https://www.aclweb.org/anthology/N16-1153
https://www.aclweb.org/anthology/N16-1153
https://www.aclweb.org/anthology/N16-1153
http://dx.doi.org/10.1109/PROC.1973.9030
http://dx.doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
http://dx.doi.org/10.1109/ICASSP.2012.6289079
http://dx.doi.org/10.1109/ICASSP.2012.6289079
http://dx.doi.org/10.1109/ICASSP.2012.6289079
http://dx.doi.org/10.18653/v1/D18-2012
http://dx.doi.org/10.18653/v1/D18-2012
http://dx.doi.org/10.18653/v1/D18-2012
https://www.aclweb.org/anthology/D18-2012
http://arxiv.org/abs/1502.03167
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb61
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb61
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb61
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb61
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb61
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb61
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb61
http://dx.doi.org/10.1023/A:1018054314350
http://dx.doi.org/10.1023/A:1018054314350
http://dx.doi.org/10.1023/A:1018054314350
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb63
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb63
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb63
http://dx.doi.org/10.1109/34.667881
http://dx.doi.org/10.1109/34.667881
http://dx.doi.org/10.1109/34.667881
http://dx.doi.org/10.1109/MCI.2019.2954667
http://dx.doi.org/10.1109/MCI.2019.2954667
http://dx.doi.org/10.1109/MCI.2019.2954667
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.148
https://www.aclweb.org/anthology/2020.findings-emnlp.148
https://www.aclweb.org/anthology/2020.findings-emnlp.148
https://www.aclweb.org/anthology/2020.findings-emnlp.148
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.2
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.2
http://dx.doi.org/10.18653/v1/2020.emnlp-demos.2
https://www.aclweb.org/anthology/2020.emnlp-demos.2
https://www.aclweb.org/anthology/2020.emnlp-demos.2
https://www.aclweb.org/anthology/2020.emnlp-demos.2
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb69
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb69
http://refhub.elsevier.com/S0950-7051(21)00321-X/sb69

	Comparison of neutrosophic approach to various deep learning models for sentiment analysis
	Introduction
	Why use neutrosophy with deep learning for sentiment analysis
	Basic concepts/overview
	Neutrosophy
	Pre-trained embeddings (transfer learning)
	LSTM and GRU
	Attention
	Scaled dot product attention
	Multi-head attention
	Transformers
	Pre-trained language models (PLM)
	Dropout
	Batch normalization
	Feature extraction from intermediate layers
	SVNS calculation

	Dataset description
	Model description
	Text preprocessing and cleaning
	Model architecture
	Text feature extraction
	Text feature classification

	Experimental setup
	Hyper-parameters:
	Training
	System setup

	Results and analysis
	Error analysis

	Discussions and comparisons
	Computational complexity

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Availability of data and material (data transparency)
	
	References

