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ABSTRACT Neutrosophic HyperSoft Set (NHSS) is a new approach towards computational intelligence and
decision making under uncertainty. In this paper, we first consider distances for NHSS, and then propose
similarity measures for NHSS. We also consider aggregated operation for aggregating NHSS decision
matrix. TOPSIS (Technique for the order preference by similarity to ideal solution) is a strong approach
for multi-criteria decision making (MCDM) which has been studied under various extensions of fuzzy sets.
These approaches have drawbacks in depicting fuzzy decision-making information for handling MCDM
situations under NHSS environment. To efficiently and accurately express fuzzy attribute values provided by
decision-makers (DMs), we construct the TOPSIS based on the proposed distances and similarity measures
of NHSS, called NHSS-TOPSIS. The proposed NHSS-TOPSIS provides the weights of DMs by utilizing
similarity measures dependent on Hamming distance. We then aggregate the opinions of decision-makers
using the proposed aggregated operation. Utilizing the relative closeness coefficient, we select the most
ideal alternative in the proposed NHSS-TOPSIS procedures. To exhibit the relevance and adequacy of the
proposed NHSS-TOPSIS, we apply it in a medical diagnosis and an optimal selection for the sustainable
green security system. The proposed method reveals that the hypersoft set with the neutrosophic set theory
can be very helpful to construct a connection between alternatives and attributes. It demonstrates that the
proposed method is effective and useful in real applications.

INDEX TERMS Distance, similarity, aggregation operation, neutrosophic hypersoft set (NHSS), MCDM,
TOPSIS, NHSS-TOPSIS.

I. INTRODUCTION
Fuzzy set was first proposed by Zadeh [1] in 1965 as an
extension of crisp set in which it was widely used to handle
fuzziness that is different from randomness in probability.
Afterwards, various extensions of fuzzy set were proposed in
the literature, such as type-2 fuzzy set [2], intuitionistic fuzzy
set (IFS) [3], fuzzy multiset [4], hesitant fuzzy sets (HFS) [5],
and pythagorean fuzzy set (PFS) [6]. They had also applied
in multi-criteria decision making (MCDM), such as [7]–[10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

On the other hand, Molodtsov [11] in 1999 proposed soft
sets in first results, and then Maji et al. [12], [13] offered
a hypothetical analysis of soft sets and upper sets of soft
sets, equality of soft sets, and operation on soft sets, such
as union, intersection, AND, and OR operations between
different sets. Ali et al. [14] considered new operations in
soft set theory which covers restricted union, intersection, and
difference. Cagman and Egniloglu [15], [16] presented many
results on the soft set theory which strengthens itself a very
important measurement while looking after issues to make
various choices. From Molodtsov [11] to present various
useful applications identified with soft set theory have been

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 30803

https://orcid.org/0000-0002-4907-3548
https://orcid.org/0000-0002-0917-2277


M. Saqlain et al.: Distance and Similarity Measures for Neutrosophic HyperSoft Set (NHSS)

presented and related to numerous fields of science and data
innovation (see Refs. [12]–[17]).

Smarandache [18] in 2005 considered the idea of the Neu-
trosophic set which is a scientific gadget to solve issues
like uncertain, indeterminant, and opposite information. The
neutrosophic set shows truth membership value, indetermi-
nacy membership value, and falsity membership value. This
concept is important in so many applications because indeter-
minacy is checked extraordinarily and truth membership val-
ues, indeterminacy membership values, and falsity values are
independent. The concept of soft set was first highlighted by
Molodtsov [11] to handle issues of indefinite circumstances
in which it is a parameterized family of subsets of a universal
set. Soft sets are valuable in different ways like artificial
insight, game hypothesis, and fundamental decision-making
issues, it helps to determine different functions for various
parameters and benefit values against established parameters.
Over the last two years, the fundamentals of soft set theories
have been pondered over by various scholars. Afterward,
Maji [19] presented the Neutrosophic soft set shown by truth,
indeterminacy, and falsitymembership values which are inde-
pendent. The neutrosophic soft set can handle inadequate,
uncertain, and inconstant data while the intuitionistic fuzzy
soft set can only deal with partial data. Smarandache [20]
came up with a strategy to handle more uncertainty situations
to extend soft set to hypersoft set (HSS) by changing func-
tions into multi-decision functions. However, when attributes
are more than one and further diverge, HSS cannot help to
handle such type of issues. Thus, the neutrosophic hyper-
soft set (NHSS) was introduced with aggregate operators
and tangent similarity measure and applied in MCDM by
Saqlain et al. [21]–[23] and Zhou et al. [24].
In applications, distance and similarity measures are very

important for giving degrees of difference and similarity
between them. Various distance and similarity measures
about various extensions of fuzzy set, soft set, IFS, PFS,
HFS, and HSS had been studied and proposed in the literature
(see Refs. [25]–[28]). However, there is less distance and
similarity measures for NHSS. In this paper, we propose
several extended distance and similaritymeasures for NHSSs.
We consider a generalization of other distance measures,
such as Hamming distance, Euclidean distance and their
normalized types. We also give more aggregation operations
for NHSS. These should be useful in applications of multi-
criteria decision making (MCDM) under NHSS environment.
MCDM is a branch of operations research that explicitly eval-
uates multiple conflicting criteria in decision making. The
purpose of MCDM is to support decision-makers (DMs) fac-
ing problems in ranking feasible alternatives/objects. MCDM
is a typical matter for everyone. For instance, while purchas-
ing a product from the web, or picking an expert course in a
training center, we need to think about different traits.MCDM
is a procedure of finding an ideal alternative that has the very
best degree of fulfillment from a lot of options associatedwith
multiple clashing characteristics. Enormous procedures have
been created for modeling uncertainties in MCDM issues,

for example, PROMETHEE [29], TOPSIS (Technique for the
order preference by similarity to ideal solution) [25], [30],
[31], VIKOR [32], and many more.

In MCDM issues, assessment of attributes cannot be con-
stantly communicated with crisp numbers as a result of the
intricate nature of the attributes in real-life problems. Fuzzy
set has their roots in membership value or the value that mem-
bership carries. Fuzzy MCDM with imprecise information
can be used quite well by using the fuzzy set theory into the
field of decision making [33]. However, fuzzy set can just
concentrate on membership values, but it neglects to consider
non-membership values, and so Atanassov [3] presented IFS
under the enrollment of membership and non-membership
values. Sometimes, there exist indeterminacy levels of uncer-
tain boundaries in MCDM. In this way, IFS cannot deal with
vulnerabilities appropriately in MCDM issues in which the
issues include uncertain data as an autonomous part. On the
other hand, TOPSIS strategy proposed by Hwang and Yoon
[30] is one of the strategies providing appropriate solutions.
The main idea of TOPSIS is that the best alternative should
have the shortest distance from the positive ideal solution
(PIS) and the farthest distance from the negative ideal solution
(NIS) simultaneously. TOPSIS is very popular to deal with
MCDM. Behzadian et al. [31] presented a detailed survey of
TOPSIS applications in different fields.

Multi-attributive group decision-making problems consist
of several attributes and indeterminacy. We mentioned that
HSS cannot handle such type of issues. To deal with such
types of multi-attributes with indeterminacy, NHSS proposed
by Saqlain et al. [21] can be used because NHSS not only
deals vagueness and uncertainty, but also deal multi-attributes
with indeterminacy. In some real life problems, the selection
of optimal choice becomes difficult due the dependence of the
attributes and its further bifurcation. Fuzzy TOPSIS, neutro-
sophic TOPSIS and generalized fuzzy TOPSIS fails in such
situations. To overcome with these issues, NHSS-TOPSIS
has an ability to deal with such situations. We can fill the
research gap with NHSS and NHSS-TOPSIS. We mention
that NHSS is an extension of soft set that is a new topic.
Although Saqlain et al. [21]–[23] and Zhou et al. [24] had
studied and applied NHSS, they focus on generalization of
TOPSIS for NHSS using accuracy function, tangent simi-
larity, and aggregate operators. Up to now, no one consid-
ers distances for NHSS and similarity measures based on
distance for NHSS that can be a new tool to construct the
NHSS-TOPSIS method. Thus, the contributions of the paper
can be summarized as follows:

1. To propose distances for NHSS, and then give similar-
ity measures for NHSS.

2. To consider aggregated operation for aggregating
NHSS decision matrix.

3. To construct the NHSS-TOPSIS based on the proposed
distances and similarity measures of NHSS.

4. To exhibit the relevance and adequacy of the proposed
NHSS-TOPSIS and then apply it in a medical diagnosis
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TABLE 1. TOPSIS comparisons under different situations.

and an optimal selection for the sustainable green secu-
rity system.

To briefly present the comparison of the proposed method
with existing methods, such as [22] and [32], we consider a
simple case study on the selection of a Lecturer at University
level. The post form is looked as (Ph.D., 4-year experience,
4 Q1 publications). The HR department has four candidates
represented with C1, C2, C3 and C4 who have details as
follows:

C1=(Master, 10-years experience, 10 Q1 Publications)
C2=(Ph.D., 10-year experience, 3 Q1 Publications)
C3=(Ph.D., 7-years experience, 3 Q1 Publications)
C4=(Ph.D., 2-year experience, 1 Q1 Publication)

The selection panel (decision-makers) wants to select the
best candidate among above all with the help of existing
methods. Thus, for more accurate and precise results in the
selection of the candidate having variety of parameters which
are further bifurcated, there is a research gap. By applying the
existing methods [21], [32] and the proposed NHSS-TOPSIS,
different status are shown in Table 1. In the status of multi-
attributive further bifurcated problem without using accuracy
function, only the proposed NHSS-TOPSIS can handle it.

The remainder of the paper is organized as follows.
In Section II, we first review some basic definitions of neu-
trosophic soft set, hypersoft set, and neutrosophic hyper-
soft set with Neutrosophic hypersoft matrix. In Section III,
we propose extended distance and similarity measures for
NHSS. In Section IV, we construct the NHSS-TOPSIS for
MCDMusing our proposed distance and similarity measures.
In Section V, we apply them in Sustainable Security Sys-
tem using the proposed NHSS-TOPSIS algorithm to show
the effectiveness of the proposed strategy for the selection
of the best security systems installed in the shopping mall.
Finally, we make concluding remarks and future research in
Section VI.

II. PRELIMINARIES
This section consists of some basic definitions that will be
helpful in the rest of the article.
Definition 1 [19] (Neutrosophic Soft Set): Let U be the

universal set and E be the set of attributes concerning U. Let
P (U) be the set of neutrosophic values of U and ⊆ E. A pair
(0=, A) is called a neutrosophic soft set over U where 0= is a
mapping with 0= : A→ P (U).

Definition 2 [20] (HyperSoft Set): Let U be the universal
set and P (U) be the power set of U. Let l1, l2, l3 . . . ln, for
n ≥ 1, be n well-defined attributes, whose corresponding
attributive values are the sets L1,L2,L3 . . .Ln, respectively,
with Li

∩ Lj
= ∅, for i 6= j and i, j ∈ {1, 2, 3 . . . n}. A pair

(0=,L1
× L2

× L3 . . .Ln) is said to be hypersoft set over U
where 0= is a mapping with 0= : L1

×L2
×L3 . . .Ln

→ P (U).
Definition 3 [22] (Neutrosophic Hypersoft Set): Let U be

the universal set and P (U) be the power set of U. Consider
l1, l2, l3 . . . ln for n ≥ 1 as n well-defined attributes, whose
corresponding attributive values are the sets L1,L2,L3 . . .Ln,
respectively, with Li

∩ Lj
= ∅, for i 6= j and i, j ∈

{1, 2, 3 . . . n} and the relation L1
× L2

× L3 . . .Ln
= $

The pair (0=, $) is said to be Neutrosophic HyperSoft Set
(NHSS) over U where 0= is a mapping given by 0= : L1

×

L2
× L3 . . .Ln

→ P (U) with 0=
(
L1
× L2

× L3 . . .Ln)
=

{< x,T (0= ($)) , I (0= ($)) ,F (0= ($)) >, x ∈ U} where T is the
membership value of truthness I is the membership value of
indeterminacy and F is the membership value of falsity such
that T, I,F : U → [0, 1] and 0 ≤ T (0= ($)) + I (0= ($)) +
F (0= ($)) ≤ 3.
Definition 4 [34] (Neutrosophic hyperSoftMatrix, NHSM):

LetU = {u1, u2, . . . ua
} and P (U) be respectively the univer-

sal set and power set of the universal setU. Let L1,L2, . . .Lb
for b ≥ 1 be b welldefined attributes, whose correspond-
ing attributive values are respectively the sets La1,L

b
2, . . .L

z
b

with the relation La1 × Lb2 × . . .L
z
b where a, b, c, . . . z =

1, 2, . . . n. The NHSS (F,La1 × Lb2 × . . .L
z
b ) over U with

F : (La1 × Lb2 × . . .Lzb ) → P (U) can be represented
as F

(
La1 × Lb2 × . . .L

z
b

)
= {< u,T` (u) , I` (u) ,F` (u) >

, u ∈ U, ` ∈
(
La1 × . . .L

z
b

)
}. Let R` = (La1 × Lb2 ×

. . .Lzb ) be the relation with its characteristic function given
by XR` :

(
La1 × Lb2 × . . .L

z
b

)
→ P (U). Then, it is

defined as XR` = {< u,T` (u) , I` (u) ,F` (u) > u ∈ U ,
` ∈

(
La1 × Lb2 × . . .L

z
b

)}
and called neutrosophic hypersoft

matrix (NHSM). The tabular representation of R` is given in
Table 2.

If Aij = XR`

(
ui ,Lk

j

)
, where i = 1, 2, 3 . . . a, j =

1, 2, 3, . . . b, k = a, b, c, . . . z, then a matrix is defined as

[
Aij
]

a×b =


A11 A12 . . . A1b
A21 A22 . . . A2b
...

...
. . .

...

Aa1 Aa2 . . . Aab

 where Aij = (TLk
j
(ui ),

ILk
j
(ui ), FLk

j
(ui ), ui ∈ U, Lk

j ∈
(
La1 × Lb2 × . . .L

z
b

)
) =
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TABLE 2. The tabular representation of R`.

(
TAijk , I

A
ijk ,F

A
ijk

)
. Thus, we can represent an NHSS in term

of an NHSM. It means that they are interchangeable. Its
generalized form can be denoted by

[
Aij
]

a×b , as shown at the
bottom of the page.

III. PROPOSED DISTANCE AND SIMILARITY MEASURES
FOR NHSS
Definition 5 (Normalized Hamming Distance for NHSS):

Let A = Ai and B = Bi be the two NHSSs where Ai =(
TAi , I

A
i ,F

A
i
)
and Bi =

(
TBi , I

B
i ,F

B
i
)
for i = {1, 2, 3 . . . n}. A

normalized Hamming distance between A = Ai and B = Bi
is defined as

D (A,B) =
1
3n

∑n

i

(∣∣∣TAi − TBi
∣∣∣+ ∣∣∣IAi − IBi

∣∣∣+ ∣∣∣FAi − FBi
∣∣∣)
(1)

Example 6: Let A = {< m1, (samsung {0.7, 0.5, 0.6},
6GB {0.7, 0.2, 0.3} ,Dual {0.8, 0.2, 0.1}) >} and B = {<
m4, (samsung{0.8, 0.1, 0.2}, 6GB {0.6, 0.1, 0.2},
Dual {0.3, 0.6, 0.4}) >} be the two NHSSs. Then the normal-
ized Hamming distance is calculated as D (A,B)
=

1
3(3) (|0.7− 0.8| + |0.5− 0.1| + |0.6− 0.2|
+ |0.7− 0.6| + |0.2− 0.1| + |0.3− 0.2| + |0.8− 0.3|
+ |0.2− 0.6| + |0.1− 0.4|) = 0.267.
Proposition 7: Let A = Ai , B = Bi andC = Ci be the three

NHSSs where Ai =
(
TAi , I

A
i ,F

A
i
)
, Bi =

(
TBi , I

B
i ,F

B
i
)
and

Ci =
(
TCi , I

C
i ,F

C
i
)
for i = {1, 2, 3 . . . n} . Then it satisfies

the following axioms:

1. D (A,B) ≥ 0
2. D (A,B) = D (B,A)
3. D (A,B) = 0 iff A = B
4. D (A,B)+ D (B,C) ≥ D (A,C)
Definition 8 (Normalized Euclidean Distance for NHSS):

Let A = Ai and B = Bi be the two NHSSs where Ai =(
TAi , I

A
i ,F

A
i
)
and Bi =

(
TBi , I

B
i ,F

B
i
)
for i = {1, 2, 3 . . . n}. A

normalized Euclidean distance between A = Ai and B = Bi

is defined as

D (A,B)=

√√√√∑n
i

(∣∣TAi −TBi ∣∣2+∣∣IAi −IBi ∣∣2+∣∣FAi −FBi ∣∣2)
3n

(2)

Example 9: Let A = {< m1, (samsung {0.7, 0.5, 0.6},
6GB {0.7, 0.2, 0.3} ,Dual {0.8, 0.2, 0.1}) >} and B = {<
m4, (samsung{0.8, 0.1, 0.2}, 6GB {0.6, 0.1, 0.2},
Dual {0.3, 0.6, 0.4}) >} be the two NHSSs. Then the nor-
malized Euclidean distance is calculated with D (A,B) =
1

3(3)

(
|0.7− 0.8|2 + |0.5− 0.1|2 + |0.6− 0.2|2

+ |0.7− 0.6|2 + |0.2− 0.1|2 + |0.3− 0.2|2 + |0.8− 0.3|2

+ |0.2− 0.6|2 + |0.1− 0.4|2
)
and D (A,B) = 0.3091.

Definition 10 (Generalized Weighted Distance for NHSS):
Let A = Ai and B = Bi be the two NHSSs where Ai =(
TAi , I

A
i ,F

A
i
)
and Bi =

(
TBi , I

B
i ,F

B
i
)
for i = {1, 2, 3 . . . n} . A

generalized weighted distance between A = Ai and B = Bi
is given as, for λ > 0

Dλ (A,B) =
[
1
3n

∑n

i
wi

(∣∣∣TAi − TBi
∣∣∣λ + ∣∣∣IAi − IBi

∣∣∣λ
+

∣∣∣FAi − FBi
∣∣∣λ)] 1

λ

(3)

Definition 11 (Normalized Hamming Distance for NHSM):
Let A =

[
Aij
]
and B =

[
Bij
]
be the two NHSMs of order

a × b with Aij =
(
TAijk , I

A
ijk ,F

A
ijk

)
and Bij =

(
TBijk , I

B
ijk ,F

B
ijk

)
.

The normalized Hamming distance between A =
[
Aij
]
and

B =
[
Bij
]
is defined as

D (A,B) =
1
3ab

∑a

i

∑b

j

(∣∣∣TAijk − TBijk
∣∣∣+ ∣∣∣IAijk − IBijk

∣∣∣
+

∣∣∣FAijk − FBijk
∣∣∣) (4)

Example 12: Let A = {< m1, (samsung {0.7, 0.5, 0.6},
6GB {0.7, 0.2, 0.3} ,Dual {0.8, 0.2, 0.1}) >} and
B = {< m4, (samsung{0.8, 0.1, 0.2}, 6GB {0.6, 0.1, 0.2},
Dual {0.3, 0.6, 0.4}) >} be the two NHSSs. Then the nor-
malized Hamming distance is calculated as D (A,B) =

1
3(1)(3) (|0.7− 0.8| + |0.5− 0.1| + |0.6− 0.2| + |0.7− 0.6|
+ |0.2− 0.1| + |0.3− 0.2| + |0.8− 0.3| + |0.2− 0.6|
+ |0.1− 0.4|). D (A,B) = 0.2667.
Definition 13 (Normalized Euclidean Distance for

NHSM): Let A =
[
Aij
]
and B =

[
Bij
]
be the two NHSMs

of order a × b with Aij =
(
TAijk , I

A
ijk ,F

A
ijk

)
and Bij =(

TBijk , I
B
ijk ,F

B
ijk

)
. The normalized Euclidean distance between

[
Aij
]

a×b =


TLa1 (u1) , ILa1 (u1) ,FLa1 (u1) TLb2

(u1) , ILb2 (u1) ,FLb2
(u1) · · · TLzb (u1) , ILzb (u1) ,FLzb (u1)

TLa1 (u2) , ILa1 (u2) ,FLa1 (u2) TLb2
(u2) , ILb2 (u2) ,FLb2

(u2) · · · TLzb (u2) , ILzb (u2) ,FLzb (u2)
...

...
. . .

...

TLa1 (ua) , ILa1 (ua) ,FLa1 (ua) TLb2
(ua) , ILb2 (ua) ,FLb2

(ua) · · · TLzb (ua) , ILzb (ua) ,FLzb (ua)


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A =
[
Aij
]
and B =

[
Bij
]
is given as (5), shown at the bottom

of the page.
Example 14: Let A = {< m1, (samsung {0.7, 0.5, 0.6},

6GB {0.7, 0.2, 0.3} ,Dual {0.8, 0.2, 0.1}) >} and B = {<
m4, (samsung{0.8, 0.1, 0.2}, 6GB {0.6, 0.1, 0.2},
Dual {0.3, 0.6, 0.4}) >} be the two NHSSs. The normalized
Euclidean distance is calculated as D (A,B), shown at the
bottom of the page, and D (A,B) = 0.3091.
Definition 15 (GeneralizedWeighted Distance for NHSM):

Let A =
[
Aij
]
and B =

[
Bij
]
be the two NHSMs of order

a × b with Aij =
(
TAijk , I

A
ijk ,F

A
ijk

)
and Bij =

(
TBijk , I

B
ijk ,F

B
ijk

)
.

The generalized weighted distance between A =
[
Aij
]
and

B =
[
Bij
]
is given as

Dλ (A,B)=
[

1
3ab

∑a

i

∑b

j
wi

(∣∣∣TAijk −TBijk ∣∣∣λ+∣∣∣IAijk −IBijk ∣∣∣λ
+

∣∣∣FAijk − FBijk
∣∣∣λ)] 1

λ

(6)

Definition 16 (Similarity Measure for NHSS): Let A = Ai
and B = Bi be the two NHSs where Ai =

(
TAi , I

A
i ,F

A
i
)

and Bi =
(
TBi , I

B
i ,F

B
i
)
for i = {1, 2, 3 . . . n}. A similarity

measure between A = Ai and B = Bi is defined as

S (A,B)=1−
1
3n

∑n

i

(∣∣∣TAi −TBi ∣∣∣+∣∣∣IAi −IBi ∣∣∣+∣∣∣FAi − FBi
∣∣∣)
(7)

Example 17: Let A = {< m1, (samsung {0.7, 0.5, 0.6},
6GB {0.7, 0.2, 0.3} ,Dual {0.8, 0.2, 0.1}) >} and B = {<
m4, (samsung{0.8, 0.1, 0.2}, 6GB {0.6, 0.1, 0.2},
Dual {0.3, 0.6, 0.4}) >} be the two NHSSs. Then the nor-
malized Hamming distance is given as S (A,B) = 1 −
1

3(3) (|0.7− 0.8| + |0.5− 0.1| + |0.6− 0.2| + |0.7− 0.6|
+ |0.2− 0.1| + |0.3− 0.2| + |0.8− 0.3| + |0.2− 0.6|
+ |0.1− 0.4|). D (A,B) = 0.7333.
Proposition 18: Let A = Ai , B = Bi and C = Cibe the

three NHSS’s where Ai =
(
TAi , I

A
i ,F

A
i
)
, Bi =

(
TBi , I

B
i ,F

B
i
)

and Ci =
(
TCi , I

C
i ,F

C
i
)
for i = {1, 2, 3 . . . n}. Then, it satis-

fies the following axioms:

1. 0 ≤ S (A,B) ≤ 1;
2. S (A,B) = 1 if and only if A = B;
3. S (A,B) = S (B,A);
4. If A ⊂ B ⊂ C, then S (A,C) ≤ S (A,B) and (A,C) ≤

S (B,C).

Definition 19 (Generalized Weighted Similarity Measure
for NHSS): Let A = Ai and B = Bi be the two NHSs
where Ai =

(
TAi , I

A
i ,F

A
i
)
and Bi =

(
TBi , I

B
i ,F

B
i
)
for i =

{1, 2, 3 . . . n} . A generalized weighted similarity measure
between A = Ai and B = Bi is given as

Sλ (A,B) = 1−
[
1
3n

∑n

i
wi

(∣∣∣TAi − TBi
∣∣∣λ + ∣∣∣IAi − IBi

∣∣∣λ
+

∣∣∣FAi − FBi
∣∣∣λ)] 1

λ

, where λ > 0. (8)

Definition 20 (Similarity Measure for NHSM): Let A =[
Aij
]
and B =

[
Bij
]
be the two NHSMs of order a × b,

where Aij =
(
TAijk , I

A
ijk ,F

A
ijk

)
and Bij =

(
TBijk , I

B
ijk ,F

B
ijk

)
. The

similarity between A =
[
Aij
]
and B =

[
Bij
]
is given as

S (A,B) = 1−
1
3ab

∑a

i

∑b

j

(∣∣∣TAijk − TBijk
∣∣∣+ ∣∣∣IAijk − IBijk

∣∣∣
+

∣∣∣FAijk − FBijk
∣∣∣). (9)

Example 21: Let A = {< m1, (samsung {0.7, 0.5, 0.6},
6GB {0.7, 0.2, 0.3} ,Dual {0.8, 0.2, 0.1}) >} and
B = {< m4, (samsung{0.8, 0.1, 0.2}, 6GB {0.6, 0.1, 0.2},
Dual {0.3, 0.6, 0.4}) >} be the two NHSSs. Then the nor-
malized Hamming distance is given as (A,B) = 1 −

1
3(1)(3) (|0.7− 0.8| + |0.5− 0.1| + |0.6− 0.2| + |0.7− 0.6|
+ |0.2− 0.1| + |0.3− 0.2| + |0.8− 0.3| + |0.2− 0.6|
+ |0.1− 0.4|). D (A,B) = 0.7333.
Definition 22 (Generalized Weighted Similarity Measure

for NHSM): Let A =
[
Aij
]
and B =

[
Bij
]
be the two

NHSM of order a × b, where Aij =
(
TAijk , I

A
ijk ,F

A
ijk

)
and

Bij =
(
TBijk , I

B
ijk ,F

B
ijk

)
. The generalized weighted similarity

between A =
[
Aij
]
and B =

[
Bij
]
is given as

Sλ (A,B) = 1−
[

1
3ab

∑a

i

∑b

j
wi

(∣∣∣TAijk − TBijk
∣∣∣λ

+

∣∣∣IAijk − IBijk
∣∣∣λ + ∣∣∣FAijk − FBijk

∣∣∣λ)] 1
λ

. (10)

IV. ON CONSTRUCTION OF NHSS-TOPSIS FOR MCDM
USING PROPOSED DISTANCE AND SIMILARITY
MEASURES
TOPSIS (Technique for Order Preference by Similarly
to Ideal Solution) is a suitable approach to deal with

D (A,B) =

√√√√√∑a
i
∑b

j

(∣∣∣TAijk − TBijk
∣∣∣2 + ∣∣∣IAijk − IBijk

∣∣∣2 + ∣∣∣FAijk − FBijk
∣∣∣2)

3ab
(5)

D (A,B) =

√√√√(
|0.7− 0.8|2 + |0.5− 0.1|2 + |0.6− 0.2|2 + |0.7− 0.6|2 + |0.2− 0.1|2 + |0.3− 0.2|2 + |0.8− 0.3|2 + |0.2− 0.6|2 + |0.1− 0.4|2

)
3(1)(3)

,
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multiattribute decision making problems. TOPSIS technique
consists of the following steps:

1. Compose a decision matrix.
2. Normalizing decision matrix.
3. Determine the weighted normalized decision matrix.
4. Calculate the positive and negative ideal solution.
5. Calculate the distance of each alternative to the positive

and negative ideal solution.
6. Calculate the relative closeness coefficients and

ranking.
Consider a multiattribute decision making problem based

on neutrosophic hypersoft sets (NHSSs) in which U =

{u1, u2, . . . ua
} be the set of alternatives and L1,L2, . . .Lb

be the sets of attributes and their corresponding attribu-
tive values are respectively the set La1,L

b
2, . . .L

z
b where

a, b, c, . . . z = 1, 2, . . . n. Let wj be the weight of attributes
Lzj , j = 1, 2 . . . b, where 0 ≤ w

j
≤ 1 and

∑b
j=1w

j
= 1

Suppose that D = (D1,D2, . . .Dt) be the set of t deci-
sion makers and 1x be the weight of t decision-makers
with 0 ≤ 1x

≤ 1 and
∑t

x=11
x
= 1 Let

[
Axij
]

a×b

be the decision matrix where Axij =
(
Txijk , I

x
ijk ,F

x
ijk

)
,

i = 1, 2, 3 . . . a, j = 1, 2, 3, . . . b, k = a, b, c, . . . z and
Txijk , I

x
ijk ,F

x
ijk ∈ [0, 1] , 0 ≤ Txijk +I

x
ijk +F

x
ijk ≤ 3 Utilizing the

following steps, the determination strategy for the selection of
alternatives can be obntained.
Step 1 (Determine the Weight of Decision Makers): Let[
Axij
]

a×b
be the decision matrix where it is given as shown

at the bottom of the page.
To find the ideal matrix we average all the individual decision
matrix Axij where x = 1, 2 . . . t with as shown at the bottom
of the page, where

A?ij =
(
T?
Lk

j
(ui ) , I?Lk

j
(ui ) ,F?Lk

j
(ui )

)
=

(
1−

t∏
x=1

(
1− Tx

Lk
j
(ui )

) 1
t

,

t∏
x=1

(
Ix
Lk

j
(ui )

) 1
t

,

t∏
x=1

(
Fx
Lk

j
(ui )

) 1
t
)

for i = 1, . . . a, j = 1, . . . b,

k = a, . . . z and a, . . . z = 1, 2, . . . n.

To determine the weights of the decision-makers, first
we find the similarity measure between each decision
matrix and the ideal matrix as S

(
Axij ,A

?
ij

)
= 1 −

1
3ab
∑a

i
∑b

j

(∣∣∣∣TxLk
j
(ui )− T?

Lk
j
(ui )

∣∣∣∣+ ∣∣∣∣IxLk
j
(ui )− I?

Lk
j
(ui )

∣∣∣∣
+

∣∣∣∣FxLk
j
(ui )− F?

Lk
j
(ui )

∣∣∣∣). We now calculate the weight

1x(x = 1, 2, . . . t) of t decision-makers using the above
equation 1x

= S
(
Axij ,A

∗
ij

)
, where 0 ≤ 1x

≤ 1 and∑t
x=11

x
= 1.

Step 2 (Aggregate NHSS Decision Matrices): By accumu-
lating all the individual decision matrices, we construct an
aggregated neutrosophic hypersoft decision matrix to obtain
a decision. An aggregated neutrosophic hypersoft decision
matrix is denoted by Aij and it is given as at the bottom of
the next page.
The elements of Aij in the matrix

[
Aij
]

a×b is cal-

culated as
[
Aij
]

a×b =

(
1−

∏t
x=1

(
1− Tx

Lk
j
(ui )

)1x

,

∏t
x=1

(
Ix
Lk

j
(ui )

)1x

,
∏t

x=1

(
Fx
Lk

j
(ui )

)1x)
, i = 1, 2, 3 . . . a,

j = 1, 2, 3, . . . b and x = 1, 2, . . . t .
Step 3 (Determine the Weight of Attributes): In the deci-

sion making procedure, decision-makers may perceive that
all attributes are not similarly significant. In this manner,
each decision maker may have their own opinion regard-
ing attribute weights. To acquire the gathering assessment
of the picked attributes, all the decision-makers opinions
for the importance of each attribute need to be aggre-
gated. For this purpose, weight wj of attributes Lzj , j =
1, 2 . . . b is calculated as wj

=
(
TLj , ILj ,FLj

)
=(

1−
∏t

x=1

(
1− TxLj

)1x

,
∏t

x=1

(
IxLj
)1x

,
∏t

x=1

(
FxLj
)1x)

.

Step 4 (Calculate Weighted Aggregated Decision Matrix):
After finding the weights of individual attributes, we use the
weights to each row of the aggregated decision matrix with[
Aωij
]

a×b
=

(
Tω
Lk

j
(ui ) , IωLk

j
(ui ) ,FωLk

j
(ui )

)
=

(
(TLk

j
(ui ) .TLj ),

(
ILk

j
(ui )+ ILj − ILk

j
(ui ) .ILj

)
,

[
Axij
]

a×b
=


TxLa1 (u1) , I

x
La1
(u1) ,FxLa1 (u1) TxLb2

(u1) , IxLb2
(u1) ,FxLb2

(u1) · · · TxLzb
(u1) , IxLzb

(u1) ,FxLzb
(u1)

TxLa1 (u2) , I
x
La1
(u2) ,FxLa1 (u2) TxLb2

(u2) , IxLb2
(u2) ,FxLb2

(u2) · · · TxLzb
(u2) , IxLzb

(u2) ,FxLzb
(u2)

...
...

. . .
...

TxLa1 (ua) , IxLa1 (ua) ,FxLa1 (ua) TxLb2
(ua) , IxLb2

(ua) ,FxLb2
(ua) · · · TxLzb

(ua) , IxLzb
(ua) ,FxLza (ua)



[
A?‘ij

]
a×b
=


T?La1 (u1) , I

?
La1
(u1) ,F?La1 (u1) T?Lb2

(u1) , I?Lb2
(u1) ,F?Lb2

(u1) · · · T?Lzb
(u1) , I?Lzb

(u1) ,F?Lzb
(u1)

T?La1 (u2) , I
?
La1
(u2) ,F?La1 (u2) T?Lb2

(u2) , I?Lb2
(u2) ,F?Lb2

(u2) · · · T?Lzb
(u2) , I?Lzb

(u2) ,F?Lzb
(u2)

...
...

. . .
...

T?La1 (ua) , I?La1 (ua) ,F?La1 (ua) T?Lb2
(ua) , I?Lb2

(ua) ,F?Lb2
(ua) · · · T?Lzb

(ua) , I?Lzb
(ua) ,F?Lzb

(ua)

,

30808 VOLUME 9, 2021



M. Saqlain et al.: Distance and Similarity Measures for Neutrosophic HyperSoft Set (NHSS)

(
FLk

j
(ui )+ FLj − FLk

j
(ui ) .FLj

))
. Then we get a weighted

aggregated decision matrix.
Step 5 (Determine the Ideal Solution): In real life we deal

with two types of attributes, one is benefit type attributes
and the other is cost type attributes In our MAGDM prob-
lem we also deal with these two types of attributes. Let
C1 be the benefit type attributes and C2 be the cost type
attributes. The neutrosophic hypersoft positive ideal solu-

tion is given as Aω
+

j =

(
Tω+
Lk

j
(ui ), Iω+Lk

j
(ui ),Fω+Lk

j
(ui )

)
=

i
max

{
Tω
Lk

j
(ui )

}
,

i
min

{
Iω
Lk

j
(ui )

}
,

i
min

{
Fω
Lk

j
(ui )

}
, j ∈ C1

i
min

{
Tω
Lk

j
(ui )

}
,

i
max

{
Iω
Lk

j
(ui )

}
,

i
max

{
Fω
Lk

j
(ui )

}
, j ∈ C2

.

Similarly, the neutrosophic hypersoft negative ideal solu-

tion is given as Aω
−

j =

(
Tω−
Lk

j

(
uj
)
, Iω−

Lk
j
(ui),Fω−Lk

j
(ui)

)
=

i
min

{
Tω
Lk

j
(ui)

}
,

i
max

{
Ik
Lj

ω
(ui)
}
,

i
max

{
Fk
Lj

ω
(ui)
}
, j∈C1

i
max

{
Tk
Lj

ω
(ui)
}
,

i
min

{
Ik
Lj

ω
(ui)
}
,

i
min

{
Fk
Lj

ω
(ui)
}
, j∈C2

.

Step 6 (Calculate the Distances): Now we should find
the normalized Hamming distance between the alterna-
tives and positive ideal solution with Di+

(
Aωij ,A

ω+

j

)
=

1
3b

b∑
j=1

(∣∣∣∣TωLk
j
(ui )− Tω+

Lk
j
(ui )

∣∣∣∣+ ∣∣∣∣IωLk
j
(ui )− Iω+

Lk
j
(ui )

∣∣∣∣
+

∣∣∣∣FωLk
j
(ui )− Fω+

Lk
j
(ui )

∣∣∣∣). Similarly, we find the normalized

Hamming distance between the alternatives and positive ideal

solution asDi−
(
Aωij ,A

ω−

j

)
=

1
3b
∑b

j=1{

∣∣∣∣TωLk
j
(ui )− Tω−

Lk
j
(ui )

∣∣∣∣
+

∣∣∣∣IωLk
j
(ui )− Iω−

Lk
j
(ui )

∣∣∣∣+ ∣∣∣∣FωLk
j
(ui )− Fω−

Lk
j
(ui )

∣∣∣∣}.
Step 7 (Calculate the Relative Closeness Coefficient): Rel-

ative closeness index is used to rank the alternatives and it is
calculated with, i = 1, . . . , a,

RCi
=

Di−
(
Aωij ,A

ω−

j

)
i

max
{
Di−

(
Aωij ,A

ω−

j

)} − Di+
(
Aωij ,A

ω+

j

)
i

min
{
Di+

(
Aωij ,A

ω+

j

)} .
(11)

The set of selected alternatives are ranked according to the
descending order of relative closeness index.

V. APPLICATION USING THE PROPOSED NHSS-TOPSIS
In this section, we apply the proposedNHSS-TOPSISmethod
to the two cases study. One is a medical diagnosis. Another is

to solve an optimal selection for the sustainable green security
system.
Example 23 (AMedical Diagnosis):Consider four patients

P = {℘1, ℘2, ℘3, ℘4} suffering from different diseases,
D =

{
d 1
= Covid− 19, d 2

= Typhoid, d 3
= Malaria

}
which are further bifurcated. Doctors (decision-makers)
(M1,M2,M3) want the proper medical diagnosis to know
which one is suffering from COVID-19. The tool of
NHSS-TOPSIS under similarity measures will be used
for analyzing patients. For this purpose, the set of the
symptoms of the COVID-19 is considered in the form
of NHSS. Consider, P = {℘1, ℘2, ℘3, ℘4}, D ={

d 1
= Covid− 19, d 2

= Typhoid, d 3
= Malaria

}
, and S =

{s1 = Sense of Taste, s2 = Temperature, s3 =

Chest Pain, s4 = flu} be the set of patients, dis-
ease, and symptoms respectively. The set of symp-
toms is further classified into further-bifurcated values
as; s1 = Sense of Taste = {No Taste, can Taste}
s2 = Temperature = {97.5◦F − 98.5◦F, 98.6◦F −
99.5◦F, 99.6◦F−101.5, 101.6◦F−102.5} s3 = Chest Pain =
{Short ness of breath, no pain, normal pain,Angina} s4 =

flu = {Sore Throat,Cough,Strep Throat} Now, let us define
the relation for the function; f : d 1

× d 2
× d 3

→ P(P) as,
f
(
d 1
× d 2

× d 3
)
= (B = shortness of breath ,

T = 101.3,S = Sore Throat, y = No taste) is the actual
sample of the patient for the disease confirmation. Three
patients {℘1, ℘2, ℘3} are selected based on sample. The
panel of three doctors (decision-maker)

{
M1,M2,M3

}
will

examine the sample and select the most relevant diseases.
These decision-makers give their valuable opinion in the
form of neutrosophic number based on their experience and
knowledge, and are presented in NHSM, separately, as shown
at the bottom of the page.
Step 1 (Determine the Weights of Decision Makers):

To determine the weights of the decision-makers, first,
we find the similarity measure between each decision
matrix

{
M1,M2,M3

}
and the ideal matrix S? using

S
(
Axij ,A

?
ij

)
= 1 − 1

3ab
∑a

i
∑b

j {

∣∣∣∣TxLk
j
(ui )− T?

Lk
j
(ui )

∣∣∣∣ +∣∣∣∣IxLk
j
(ui )− I?

Lk
j
(ui )

∣∣∣∣+ ∣∣∣∣FxLk
j
(ui )− F?

Lk
j
(ui )

∣∣∣∣}. So,
S (℘1, ℘∗) = 0.5641, S (℘1, ℘∗) = 0.1224, S (℘1, ℘∗) =

0.1046. Now we calculate the weight 1x for (x = 1, 2, 3)

of each decision-makers using 1x
=

S
(
Axij ,A

∗
ij

)
∑t

x=1 S
(
Axij ,A

∗
ij

) .
We have

11
=

0.5641
(0.5641+ 0.1224+ 0.1046)

= 0.7130

[
Aij
]

a×b =


TLa1 (u1) , ILa1 (u1) ,FLa1 (u1) TLb2

(u1) , ILb2 (u1) ,FLb2
(u1) · · · TLzb (u1) , ILzb (u1) ,FLzb (u1)

TLa1 (u2) , ILa1 (u2) ,FLa1 (u2) TLb2
(u2) , ILb2 (u2) ,FLb2

(u2) · · · TLzb (u2) , ILzb (u2) ,FLzb (u2)
...

...
. . .

...

TLa1 (ua) , ILa1 (ua) ,FLa1 (ua) TLb2
(ua) , ILb2 (ua) ,FLb2

(ua) s · · · TLzb (ua) , ILzb (ua) ,FLzb (ua)


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12
=

0.1224
(0.5641+ 0.1224+ 0.1046)

= 0.1547

13
=

0.1046
(0.5641+ 0.1224+ 0.1046)

= 0.1322

Step 2 (Aggregate Neutrosophic Hypersoft DecisionMatri-
ces):Nowwe construct an aggregated neutrosophic hypersoft
decision matrix NHSM, to obtain group decision. We obtain,
as shown at the bottom of the page.
Step 3 (Determine the Weight of Attributes): Weight wjof

attributes Lj, j = 1, 2 . . . b is calculated using wj
=(

TLj , ILj ,FLj
)
=

(
1−

t∏
x=1

(
1− TxLj

)1x

,
t∏

x=1

(
IxLj
)1x

,

t∏
x=1

(
FxLj
)1x)

. we get w1
= (0.7224, 0.6938, 0.2346),

w
2
= (0.6755, 0.1340, 0.1004),

w
3
= (0.2821, 0.1269, 0.0992)
Step 4 (Calculate the Weighted Aggregated Decision

Matrix): After finding the weights of attributes, we apply
these weights to each row of aggregated decisionmatrix using[
Aωij
]

a×b
=

(
Tω
Lk

j
(ui ) , IωLk

j
(ui ) ,FωLk

j
(ui )

)
=

(
(TLk

j
(ui ) .TLj ),

(
ILk

j
(ui )+ ILj − ILk

j
(ui ) .ILj

)
,(

FLk
j
(ui )+ FLj − FLk

j
(ui ) .FLj

))
. We get a weighted

aggregated decision matrix [Sω] as shown at the bottom of
the page.
Step 5 (Determine the Ideal Solution):Neutrosophic hyper-

soft positive ideal solution is calculated using Sω
+

=

[(B, (0.23, 0.53, 013)) (T, (0.95, 0.16, 0.62))
(S, (0.75, 0.85, 0.75)) (y, (0.42, 0.85, 0.13))]. Similarly, the
neutrosophic hypersoft negative ideal solution is given
as Sω

−

= [(B, (0.34, 0.52, 0.77)) (T, (0.23, 0.32, 0.21))
(S, (0.86, 0.23, 0.11)) (y, (0.12, 0.09, 0.03)).
Step 6 (Calculate the Distance Measure): Now we find

the normalized Hamming distance between the alterna-
tives and positive ideal solution using Di+

(
Aωij ,A

ω+

j

)
=

1
3b

b∑
j=1

(∣∣∣∣TωLk
j
(ui )− Tω+

Lk
j
(ui )

∣∣∣∣+ ∣∣∣∣IωLk
j
(ui )− Iω+

Lk
j
(ui )

∣∣∣∣
+

∣∣∣∣FωLk
j
(ui )− Fω+

Lk
j
(ui )

∣∣∣∣). We get D1+
(
Sω1 , S

ω+
)
= 0.342,

D2+
(
Sω2 , S

ω+
)
= 0.127,D3+

(
Sω3 , S

ω+
)
= 0.985.

Similarly, we find the normalized hamming distance
between the alternatives and negative ideal solution using

Di−
(
Aωij ,A

ω−

j

)
=

1
3b

b∑
j=1

(∣∣∣∣TωLk
j
(ui )− Tω−

Lk
j
(ui )

∣∣∣∣
+

∣∣∣∣IωLk
j
(ui )− Iω−

Lk
j
(ui )

∣∣∣∣+ ∣∣∣∣FωLk
j
(ui )− Fω−

Lk
j
(ui )

∣∣∣∣). We get,

D1−
(
Sω1 , S

ω−
)
= 0.741, D2−

(
Sω2 , S

ω−
)
= 0.443,

D3−
(
Sω3 , S

ω−
)
= 0.332.

Step 7 (Calculate the Relative Closeness Coefficient):
Now we calculate the relative closeness index using R℘i =

Di−
(
Aωij ,A

ω−

j

)
i

max
{
Di−

(
Aωij ,A

ω−

j

)} − Di+
(
Aωij ,A

ω+

j

)
i

min
{
Di+

(
Aωij ,A

ω+

j

)} . We get

R℘1 =
0.741
0.741

−
0.342
0.005

= −67.40

R℘2 =
0.443
0.741

−
0.127
0.005

= −24.80

R℘3 =
0.332
0.741

−
0.985
0.005

= −196.5

By using the proposed NHSS-TOPSIS for neutrosophic
hypersoft sets, we can decide that which patient is suffer-
ing from the following disease by considering the values of
relative closeness coefficient in descending order. We rank
the selected alternatives as shown in Figure 1 according to
the descending order of relative closeness index as ℘2 >

℘1 > ℘3. This shows that ℘2 is the best alternative which is
sufferedwith COVID-19. The proposedNHSS-TOPSIS algo-
rithm is used under the NHSS environment for the ranking
of alternatives and the results are compared with some exist-
ing decision-making methods, such as Zhang and Xu [25],

[
M1

]
3×4
=

 (B (0.7, 0.4, 0.3)) (T (0.5, 0.3, 0.4)) (S (0.3, 0.2, 0.1)) (y (0.9, 0.1, 0.0))
(B (0.3, 0.1, 0.1)) (T (1.0, 0.2, 0.2)) (S (1.0, 0.3, 0.1)) (y (0.1, 0.2, 0.8))
(B (0.8, 0.7, 0.6)) (T (0.7, 0.5, 0.11)) (S (0.6, 0.3, 0.21)) (y (0.68, 0.31, 0.38))


[
M2

]
3×4
=

 (B (0.1, 0.5, 0.3)) (T (0.7, 0.5, 0.4)) (S (0.8, 0.3, 0.7)) (y (0.6, 0.4, 0.7))
(B (0.2, 0.4, 0.9)) (T (0.3, 0.210.0)) (S (1.0, 0.1, 0.9)) (y (0.4, 0.1, 0.6))
(B (0.6, 0.5, 0.9)) (T (0.4, 0.7, 0.91)) (S (0.3, 0.6, 0.41)) (y (0.34, 0.16, 0.19))


[
M3

]
3×4
=

 (B (0.8, 0.2, 0.1)) (T (0.8, 0.4, 0.2)) (S (0.9, 0.3, 0.5)) (y (1.0, 0.3, 0.1))
(B (0.2, 0.1, 0.3)) (T (3.0, 012, 0.12)) (S (0.13, 0.23, 0.41)) (y (0.51, 0.22, 0.1))
(B (0.9, 0.4, 0.2)) (T (0.8, 0.2, 0.71)) (S (0.6, 05., 0.23)) (y (0.8, 0.1, 0.3))



[℘]3×4=

(B (0.116, 0.341, 0.312)) (T (0.896.0.341, 0.334)) (S (0.234, 0.241, 0.210)) (y (0.352, 0.112, 0.007))
(B (0.621, 0.241, 0653)) (T (0.342, 0.121, 0.732)) (S (0.234, 0.466, 0.369)) (y (0.251, 0.144, 0.330))
(B (0.871, 0.636, 0.346)) (T (0.212, 0.1111, 0.203)) (S (0.223, 0.761, 0.474)) (y (0.467, 0.831, 0.120))


[
Sω
]
3×4=

(B (0.342, 0.121, 0.732)) (T (0.754, 0.466, 0.369)) (S (0.871, 0.636, 0.346)) (y (0.812, 0.1111, 0.203))
(B (0.467, 0.831, 0.120)) (T (0.6251, 0.144, 0.330)) (S (0.734, 0.466, 0.369)) (y (0.223, 0.761, 0.474))
(B (0.422, 0.974, 0.146)) (T (0.612, 0.171, 0.403)) (S (0.143, 0.861, 0.474)) (y (0.897, 0.831, 0.120))


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FIGURE 1. Relative closeness coefficient measurement and ranking of
alternatives.

TABLE 3. Comparison analysis of final ranking with existing methods.

Naeem et al. [35], Eraslan and Karaaslan [36], Garg and
Kumar [37] and Peng and Dai [38], as indicated in Table 3,
in which we give the ranking of the top three alternatives with
the optimal alternative from each method.
Example 24 (Application to the Sustainable Green Security

System): One of the most popular hubs in most of countries
is shopping malls where people in large number travel are
regular for various reasons. Shopping malls have numerous
shops, dining halls, public parking lots, bathrooms, cinemas
etc. These could be exposed by many illegal activities such
as robbery and other destructions without adequate safety
measures and guards. It is essential to ensure the protection
of the valuable items in the mall outlets as well as regular
visitors and staffs. There are several different types of security
systems that can provide the flow of peoples with security.
For this purpose, let S = {S1,S2,S3,S4,S5,S6,S7,S8} be
the set of different setups for security systems from different
companies that need to be installed in the respective shopping
mall.

The attributes for respective security systems are as fol-
lows: D1 = Digital Monitoring, D2 = Fire safety measures,
D3 = Healthcare safety, D4 = Mall events security.
These attributes are further characterized as

Da
1 = Digital Monitoring

=

{
Web services,Biometric, Smart cards,

Antivirus softwares

}
,

a = 1, 2, 3, 4.

Db
2 = Fire safety measures

= {Fire alarms, Smoke detectors,Emergency exits,

Water fire extinguishers}, b = 1, 2, 3, 4.

Dc
3 = Healthcare safety = {Ambulance service,

Paramedic staff ,First aid kits}, c = 1, 2, 3.

Dd
4 = Mallevent security{Extra camers,Walk through

gates,Bomb disposal teams} d = 1, 2, 3.

Assume that the relation for the function F : Da
1 ×

Db
2 × Dc

3 × Dd
4 → P(S) as F

(
Da
1 × Db

2 × Dc
3 × Dd

4

)
=(

D2
1,D

2
2,D

1
3,D

2
4

)
=(

Biometric (B) , Smoke detectors (SD) ,
Ambulance service (AS) ,Walk through gates (WTG)

)
is

the actual requirement of the shopping mall for the secu-
rity system. Four company security systems {S2,S4,S5,S6}
are selected based on assumed relation These are that
Biometric (B), Smoke detectors (SD), Ambul our decision-
makers

{
M1,M2,M3,M4

}
are intended to select the most

suitable security system for the respective shopping mall.
These decision-makers give their valuable opinion in the form
of NHSM separately, as shown at the bottom of the next page.
The importance of selected attributes by each decisionmaker
is given as shown at the bottom of the next page.
Step 1 (Determine the Weights of Decision Makers): To

find the ideal matrix we average all the individual decision
matrixM1,M2,M3,M4 using as shown at the bottom of the

next page, where A?ij =
(
T?
Lk

j
(ui ) , I?Lk

j
(ui ) ,F?Lk

j
(ui )

)
=

(
1−

t∏
x=1

(
1− Tx

Lk
j
(ui )

) 1
t

,
t∏

x=1

(
Ix
Lk

j
(ui )

) 1
t

,

t∏
x=1

(
Fx
Lk

j
(ui )

) 1
t
)
, for i = 1, 2, 3, 4, j = 1, 2, 3, 4, k =

a, b, c, d and a = 2, b = 2, c = 1, d = 2. By averaging all
decision matrices, we get as shown at the bottom of the next
page.
One calculation is provided for the convenience of the reader.
For i = 1, j = 1, k = a = 2, we have

S?11 =
(
T?L2

1
(℘1) , I?L2

1
(℘1) ,F?L2

1
(℘1)

)

=



(
1−

(
1− T1

L2
1
(℘1)

) 1
4
(
1− T2

L2
1
(℘1)

) 1
4

(
1− T3

L2
1
(℘1)

) 1
4
(
1− T4

L2
1
(℘1)

) 1
4
)
,(

I1L2
1
(℘1)

) 1
4
(
I2L2

1
(℘1)

) 1
4

(
I3L2

1
(℘1)

) 1
4
(
I4L2

1
(℘1)

) 1
4

,(
F1
L2
1
(℘1)

) 1
4
(
F2
L2
1
(℘1)

) 1
4

(
F3
L2
1
(℘1)

) 1
4
(
F4
L2
1
(℘1)

) 1
4



.
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Thus, we have

S?11=


(
1−(1−0.9)

1
4 (1−0.3)

1
4 (1−0.6)

1
4 (1−0.9)

1
4

)
,

(0.2)
1
4 (0.3)

1
4 (0.3)

1
4 (0.1)

1
4 ,

(0.1)
1
4 (0.7)

1
4 (0.4)

1
4 (0.1)

1
4

,

and then S?11 = (0.7700, 0.2060, 0.2300).
To determine the weights of the decision-makers, first we

find the similarity measure between each decision matrix
M1,M2,M3,M4 and the ideal matrix S? using S

(
Axij ,A

?
ij

)
=

1− 1
3ab
∑a

i
∑b

j {

∣∣∣∣TxLk
j
(ui )− T?

Lk
j
(ui )

∣∣∣∣+ ∣∣∣∣IxLk
j
(ui )− I?

Lk
j
(ui )

∣∣∣∣
+

∣∣∣∣FxLk
j
(ui )− F?

Lk
j
(ui )

∣∣∣∣}. So, S
(
S1, S?

)
= 0.8728,

S
(
S2, S?

)
= 0.9004, S

(
S3, S?

)
= 0.8690, S

(
S4, S?

)
=

0.8916. One calculation is provided for the convenience of
the reader. For i = 1, 2, 3, 4, when j = 1, then k = a = 2;
When j = 2, then k = b = 2; When j = 3, then k = c = 1;

When j = 4, then k = d = 2. We have S
(
S1, S?

)
=

1− 1
3(4)(4) ((|0.90− 0.77|+|0.20− 0.206|+|0.10− 0.23|)+

(|0.8− 0.8318| + |0.3− 0.1861| + |0.2− 0.1189|)
+ (|0.6− 0.7172| + |0.1− 0.1732| + |0.3− 0.2213|)
+ (|0.90− .8373| + |0.10− .1316| + |0.10− 0.23|)
+ (|0.3− 0.7264| + |0.3− 0.206| + |0.7− 0.3253|)
+ (|0.60− 0.8| + |0.20− 0.1861| + |0.6− 0.1861|)
+ (|0.8− 0.8318| + |0.1− 0.1189| + |0.2− 0.1682|)
+ (|0.9− 0.8066| + |0.1− 0.1316| + |0.1− 0.1934|)
+ (|0.6− 0.6131| + |0.4− 0.2632| + |0.2− 0.1861|)
+ (|0.8− 0.8318| + |0.3− 0.1732| + || 0.1− 0.1414)
+ (|0.80− 0.8811| + |0.20− 0.1189| + |0.10− 0.1|)
+ (|0.80− 0.7551| + |0.1− 0.1316| + |0.1− 0.206|)
+ (|0.7− 0.4336| + |0.1− 0.3834| + |0.3− 0.2213|)
+ (|0.20− 0.7172| + |0.60− 0.3568| + |0.8− 0.2|)
+ (|0.6− 0.3494| + |0.3− 0.3568| + |0.4− 0.4757|)
+ (|0.90− 0.8| + |0.10− 0.1732| + |0.2− 0.2378|)) Thus,
we obtain S

(
S1, S?

)
= 0.8728.

[
M1
]
4×4
=


(B, (0.9, 0.2, 0.1)) (SD, (0.3, 0.3, 0.7)) (AS, (0.6, 0.4, 0.2)) (WTG, (0.7, 0.1, 0.3))
(B, (0.8, 0.3, 0.2)) (SD, (0.6, 0.2, 0.6)) (AS, (0.8, 0.3, 0.1)) (WTG, (0.2, 0.6, 0.8))
(B, (0.6, 0.1, 0.3)) (SD, (0.8, 0.1, 0.2)) (AS, (0.8, 0.2, 0.1)) (WTG, (0.6, 0.3, 0.4))
(B, (0.9, 0.1, 0.1)) (SD, (0.9, 0.1, 0.1)) (AS, (0.8, 0.1, 0.1)) (WTG, (0.9, 0.1, 0.2))


[
M2
]
4×4
=


(B, (0.3, 0.3, 0.7)) (SD, (0.9, 0.2, 0.1)) (AS, (0.6, 0.1, 0.3)) (WTG, (0.3, 0.6, 0.2))
(B, (0.8, 0.2, 0.1)) (SD, (0.8, 0.3, 0.2)) (AS, (0.9, 0.1, 0.1)) (WTG, (0.8, 0.3, 0.1))
(B, (0.6, 0.3, 0.4)) (SD, (0.8, 0.1, 0.2)) (AS, (0.9, 0.1, 0.1)) (WTG, (0.2, 0.3, 0.8))
(B, (0.9, 0.1, 0.2)) (SD, (0.8, 0.1, 0.1)) (AS, (0.7, 0.1, 0.3)) (WTG, (0.6, 0.3, 0.4))


[
M3
]
4×4
=


(B, (0.6, 0.3, 0.4)) (SD, (0.2, 0.3, 0.8)) (AS, (0.3, 0.6, 0.2)) (WTG, (0.3, 0.6, 0.2))
(B, (0.9, 0.1, 0.1)) (SD, (0.9, 0.1, 0.1)) (AS, (0.9, 0.1, 0.1)) (WTG, (0.8, 0.3, 0.1))
(B, (0.8, 0.3, 0.2)) (SD, (0.9, 0.2, 0.1)) (AS, (0.9, 0.1, 0.1)) (WTG, (0.2, 0.3, 0.8))
(B, (0.3, 0.3, 0.7)) (SD, (0.9, 0.1, 0.2)) (AS, (0.7, 0.1, 0.3)) (WTG, (0.6, 0.3, 0.4))


[
M4
]
4×4
=


(B, (0.9, 0.1, 0.1)) (SD, (0.9, 0.1, 0.2)) (AS, (0.8, 0.2, 0.1)) (WTG, (0.3, 0.6, 0.2))
(B, (0.8, 0.2, 0.1)) (SD, (0.8, 0.2, 0.1)) (AS, (0.6, 0.3, 0.4)) (WTG, (0.8, 0.3, 0.2))
(B, (0.8, 0.1, 0.1)) (SD, (0.8, 0.1, 0.2)) (AS, (0.9, 0.1, 0.1)) (WTG, (0.3, 0.6, 0.2))
(B, (0.9, 0.1, 0.2)) (SD, (0.3, 0.3, 0.7)) (AS, (0.8, 0.3, 0.2)) (WTG, (0.9, 0.1, 0.1))



M1
−→ (B, (0.9, 0.2, 0.1)) (SD, (0.7, 0.2, 0.2)) (AS, (0.8, 0.1, 0.1)) (WTG, (0.6, 0.3, 0.5))

M2
−→ (B, (0.8, 0.1, 0.1)) (SD, (0.6, 0.3, 0.4)) (AS, (0.5, 0.2, 0.4)) (WTG, (0.7, 0.2, 0.2))

M3
−→ (B, (0.5, 0.2, 0.4)) (SD, (0.8, 0.1, 0.1)) (AS, (0.9, 0.1, 0.1)) (WTG, (0.9, 0.1, 0.2))

M4
−→ (B, (0.9, 0.1, 0.1)) (SD, (0.9, 0.2, 0.1)) (AS, (0.9, 0.2, 0.1)) (WTG, (0.7, 0.1, 0.3))

[
A?‘ij

]
a×b
=


T?La1 (u1) , I

?
La1
(u1) ,F?La1 (u1) T?Lb2

(u1) , I?Lb2
(u1) ,F?Lb2

(u1) · · · T?Lzb
(u1) , I?Lzb

(u1) ,F?Lzb
(u1)

T?La1 (u2) , I
?
La1
(u2) ,F?La1 (u2) T?Lb2

(u2) , I?Lb2
(u2) ,F?Lb2

(u2) · · · T?Lzb
(u2) , I?Lzb

(u2) ,F?Lzb
(u2)

...
...

. . .
...

T?La1 (ua) , I?La1 (ua) ,F?La1 (ua) T?Lb2
(ua) , I?Lb2

(ua) ,F?Lb2
(ua) · · · T?Lzb

(ua) , I?Lzb
(ua) ,F?Lzb

(ui )


[
S?
]
=

 (B, (0.7700, 0.2060, 0.2300)) (SD, (0.7264, 0.2060, 0.3253)) (AS, (0.6131, 0.2632, 0.1861)) (WTG, (0.4336, 0.3834, 0.2213))
(B, (0.8318, 0.1861, 0.1189)) (SD, (0.800, 0.1861, 0.1861)) (AS, (0.8318, 0.1732, 0.1414)) (WTG, (0.7172, 0.3568, 0.200))
(B, (0.7172, 0.1732, 0.2213)) (SD, (0.8318, 0.1189, 0.1682)) (AS, (0.8811, 0.1189, 0.100)) (WTG, (0.3494, 0.3568, 0.4757))
(B, (0.8373, 0.1316, 0.2300)) (SD, (0.8066, 0.1316, 0.1934)) (AS, (0.7551, 0.1316, 0.2060)) (WTG, (0.800, 0.1732, 0.2378))


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Now we calculate the weight 1x for (x = 1, 2, 3, 4) of

each decision-makers using 1x
=

S
(
Axij ,A

∗
ij

)
∑t

x=1 S
(
Axij ,A

∗
ij

) . We have

11
=

0.8728
(0.8728+ 0.9004+ 0.8690+ 0.8916

= 0.2470

12
=

0.9004
(0.8728+ 0.9004+ 0.8690+ 0.8916)

= 0.2548

13
=

0.8690
(0.8728+ 0.9004+ 0.8690+ 0.8916)

= 0.2459

14
=

0.8916
(0.8728+ 0.9004+ 0.8690+ 0.8916)

= 0.2532

Step 2 (Aggregate Neutrosophic Hypersoft DecisionMatri-
ces):Nowwe construct an aggregated neutrosophic hypersoft
decision matrix to obtain one group decision. An aggre-
gated neutrosophic hypersoft decision matrix is denoted
as Aij and it is given as shown at the bottom of the
page.
The elements of Aij in the matrix

[
Aij
]

a×b is calculated as[
Aij
]

a×b=

(
1−

t∏
x=1

(
1−Tx

Lk
j
(ui )

)1x

,
t∏

x=1

(
Ix
Lk

j
(ui )

)1x

,

t∏
x=1

(
Fx
Lk

j
(ui )

)1x)
.

After calculations, the aggregated neutrosophic hypersoft
decision matrices is as shown at the bottom of the page.

One calculation is provided for the convenience of the
reader. For i = 1, j = 1, k = a = 2, S11 =
(
1− (1− 0.9)0.2470 (1− 0.3)0.2548 (1− 0.6)0.2459

(1− 0.9)0.2523
)
,

(0.2)0.2470 (0.3)0.2548 (0.3)0.2459 (0.1)0.2523 ,
(0.1)0.2470 (0.7)0.2548 (0.4)0.2459 (0.1)0.2523

.

We obtain that S11 = (0.7691, 0.2057, 0.2309).

Step 3 (Determine the Weight of Attributes): Weight
w
j of attributes Lj, j = 1, 2 . . . b is calculated using

w
j
=
(
TLj , ILj ,FLj

)
=

(
1−

t∏
x=1

(
1− TxLj

)1x

,
t∏

x=1

(
IxLj
)1x

,

t∏
x=1

(
FxLj
)1x)

. To calculate the weight of attributes, we use

the importance of selected attributes by each decisionmaker
as shown at the bottom of the page.

Using this importance of attributes, we get w1
=

(0.8228, 0.1407, 0.1406), w2
= (0.7785, 0.1870, 0.1424),

w
3
= (0.8212, 0.1421, 0.1424), w4

= (0.7542, 0.1565,
0.2778).One calculation is provided for the reader. For j = 1,

w
1
=


(
1−(1−0.9)0.2470 (1−0.8)0.2548 (1−0.5)0.2459

(1−0.9)0.2523
)
,

(0.2)0.2470 (0.1)0.2548 (0.2)0.2459 (0.1)0.2523 ,
(0.1)0.2470 (0.1)0.2548 (0.4)0.2459 (0.1)0.2523

,

and then, w1
= (0.8228, 0.1407, 0.1406)

Step 4 (Calculate the Weighted Aggregated Decision
Matrix): After finding the weights of attributes, we apply
these weights to each row of aggregated decision matrix

using
[
Aωij
]

a×b
=

(
Tω
Lk

j
(ui ) , IωLk

j
(ui ) ,FωLk

j
(ui )

)
=(

(TLk
j
(ui ) .TLj ),

(
ILk

j
(ui )+ ILj − ILk

j
(ui ) .ILj

)
,(

FLk
j
(ui )+ FLj − FLk

j
(ui ) .FLj

))
. We get a weighted

aggregated decision matrix [Sω] as shown at the top of the
page.
One calculation is provided for the convenience of the

reader. For i = 1, j = 1, k = a = 2, we have Sω11 =

(((0.7691) (0.8228)) , ((0.2057+ 0.1407− (0.2057) ())) ,
0.1407 ((0.2309+ 0.1406− (0.2309) (0.1406)))).
We obtain Sω11 = (0.6328,0.3175,0.3390 ).
Step 5 (Determine the Ideal Solution): Since we are

dealing with benefits type (C1) attributes so Neutrosophic

[
Aij
]

a×b =


TLa1 (u1) , ILa1 (u1) ,FLa1 (u1) TLb2

(u1) , ILb2 (u1) ,FLb2
(u1) · · · TLzb (u1) , ILzb (u1) ,FLzb (u1)

TLa1 (u2) , ILa1 (u2) ,FLa1 (u2) TLb2
(u2) , ILb2 (u2) ,FLb2

(u2) · · · TLzb (u2) , ILzb (u2) ,FLzb (u2)
...

...
. . .

...

TLa1 (ua) , ILa1 (ua) ,FLa1 (ua) TLb2
(ua) , ILb2 (ua) ,FLb2

(ua) · · · TLzb (ua) , ILzb (ub) ,FLzb (ua)



[S] =

 (B, (0.7691, 0.2057, 0.2309)) (SD, (0.7303, 0.2051, 0.3212)) (AS, (0.6146, 0.2606, 0.1862)) (WTG, (0.4322, 0.3854, 0.2211))
(B, (0.8313, 0.1864, 0.1187)) (SD, (0.7998, 0.1870, 0.1857)) (AS, (0.8316, 0.1731, 0.1419)) (WTG, (0.7183, 0.3560, 0.1991))
(B, (0.7168, 0.1733, 0.2215)) (SD, (0.8318, 0.1186, 0.1687)) (AS, (0.8813, 0.1187, 0.100)) (WTG, (0.3482, 0.3573, 0.4752))
(B, (0.8386, 0.1310, 0.2293)) (SD, (0.8051, 0.1319, 0.1937)) (AS, (0.7550, 0.1319, 0.2065)) (WTG, (0.7998, 0.1733, 0.2376))



M1
−→ (B, (0.9, 0.2, 0.1)) (SD, (0.7, 0.2, 0.2)) (AS, (0.8, 0.1, 0.1)) (WTG, (0.6, 0.3, 0.5))

M2
−→ (B, (0.8, 0.1, 0.1)) (SD, (0.6, 0.3, 0.4)) (AS, (0.5, 0.2, 0.4)) (WTG, (0.7, 0.2, 0.2))

M3
−→ (B, (0.5, 0.2, 0.4)) (SD, (0.8, 0.1, 0.1)) (AS, (0.9, 0.1, 0.1)) (WTG, (0.9, 0.1, 0.2))

M4
−→ (B, (0.9, 0.1, 0.1)) (SD, (0.9, 0.2, 0.1)) (AS, (0.9, 0.2, 0.1)) (WTG, (0.7, 0.1, 0.3))
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[
Sω
]
=

 (B, (0.6328, 0.3175, 0.3390)) (SD, (0.5685, 0.3537, 0.4179)) (AS, (0.5047, 0.3657, 0.3021)) (WTG, (0.326, 0.4816, 0.4375))
(B, (0.6840, 0.3009, 0.2426)) (SD, (0.6226, 0.3390, 0.3017)) (AS, (0.6829, 0.2906, 0.2641)) (WTG, (0.5417, 0.4568, 0.4216))
(B, (0.5898, 0.2896, 0.331)) (SD, (0.6476, 0.2834, 0.2871)) (AS, (0.7237, 0.2439, 0.2282)) (WTG, (0.2626, 0.4579, 0.621))
(B, (0.69, 0.2533, 0.3377)) (SD, (0.6268, 0.2942, 0.3085)) (AS, (0.62, 0.2551, 0.3195)) (WTG, (0.6032, 0.3027, 0.4494))



hypersoft positive ideal solution is calculated using Sω
+

=

[(B, (0.69, 0.2533, 0.2426)) (SD, (0.6476, 0.2834, 0.2871))
(AS, (0.7237, 0.3439, 0.2282))
(WTG, (0.6032, 0.3027, 0.4216))] One calculation is pro-
vided for the convenience of the reader. For i =

1, 2, 3, 4, j = 1, k = a = 2 we have Sω
+

1 =

max{0.6328, 0.6840, 0.5898, 0.69}, min{0.3175, 0.3009,
0.2896, 0.2533}, min{0.3390, 0.2426, 0.331, 0.3377}. Thus,
we obtain Sω

+

1 = (B, (0.69, 0.2533, 0.2426)) Similarly, the
neutrosophic hypersoft negative ideal solution is given as
Sω
−

= [(B, (0.5898, 0.3175, 0.3390))
(SD, (0.5685, 0.3537, 0.4179)). One calculation is pro-
vided for the convenience of the reader. For i =

1, 2, 3, 4, j = 1, k = a = 2 we have Sω
+

1 =

min{0.6328, 0.6840, 0.5898, 0.69},
max {0.3175, 0.3009, 0.2896, 0.2533},
max{0.3390, 0.2426, 0.331, 0.3377}.
Sω
−

1 = (B, (0.5898, 0.3175, 0.3390)).
Step 6 (Calculate the Distance Measure): Now we find

the normalized hamming distance between the alterna-
tives and positive ideal solution using Di+

(
Aωij ,A

ω+

j

)
=

1
3b

b∑
j=1

(∣∣∣∣TωLk
j
(ui )− Tω+

Lk
j
(ui )

∣∣∣∣+ ∣∣∣∣IωLk
j
(ui )− Iω+

Lk
j
(ui )

∣∣∣∣
+

∣∣∣∣FωLk
j
(ui )− Fω+

Lk
j
(ui )

∣∣∣∣). We get D1+
(
Sω1 , S

ω+
)
=

0.1154,D2+
(
Sω2 , S

ω+
)
= 0.0407,D3+

(
Sω3 , S

ω+
)
=

0.0767,D4+
(
Sω4 , S

ω+
)
= 0.0318.

One calculation is provided for the convenience of
the reader. For i = 1, we obtain D1+

(
Sω1 , S

ω+
)
=

1
12 ((|0.6328−0.69|+|0.69−0.2533|+|0.3390−0.2426|)
+ (|0.5685−0.6476|+|0.3537−0.2834|
+ |0.4179−0.2871|)+ (|0.5047−0.7237|
+ |0.3657−0.2439|+|0.3021−0.2282|)
+ (|0.326−0.6032|+|0.4816−0.3027|
+ |0.4375−0.4216|)). D1+

(
Sω1 , S

ω+
)
= 0.1154.

Similarly, we will find the normalized hamming distance
between the alternatives and negative ideal solution using

Di−
(
Aωij ,A

ω−

j

)
=

1
3b

b∑
j=1

(∣∣∣∣TωLk
j
(ui )− Tω−

Lk
j
(ui )

∣∣∣∣
+

∣∣∣∣IωLk
j
(ui )− Iω−

Lk
j
(ui )

∣∣∣∣+ ∣∣∣∣FωLk
j
(ui )− Fω−

Lk
j
(ui )

∣∣∣∣). We get,

D1−
(
Sω1 , S

ω−
)
= 0.0131, D2−

(
Sω2 , S

ω−
)
= 0.1111,

D3−
(
Sω3 , S

ω−
)
= 0.0753, D4−

(
Sω4 , S

ω−
)
= 0.0943.

One calculation is provided for the convenience of the
reader, for i = 1, D1−

(
Sω1 , S

ω−
)
=

1
12 {(|0.6328− 0.5898|

+ |0.3175− 0.3175| + |0.3390− 0.3390|)

FIGURE 2. Relative closeness coefficient measurement and ranking of
alternatives.

+(|0.5685− 0.5685| + |0.3537− 0.3537|
+ |0.4179− 0.4179|)+ (|0.5047− 0.5047|
+ |0.3657− 0.3657| + |0.3021− 0.3195|)
+(|0.326−0.2626|+|0.4816− 0.4816|+|0.4375−0.621|)}
Step 7 (Calculate the Relative Closeness Coefficient):Now

we will calculate the relative closeness index using RCi
=

Di−
(
Aωij ,A

ω−

j

)
i

max
{
Di−

(
Aωij ,A

ω−

j

)} − Di+
(
Aωij ,A

ω+

j

)
i

min
{
Di+

(
Aωij ,A

ω+

j

)} . We get

RC1
=

0.0131
0.1111

−
0.1154
0.0318

= −3.5110

RC2
=

0.1111
0.1111

−
0.0407
0.0318

= −1.18

RC3
=

0.0753
0.1111

−
0.0767
0.0318

= −1.7342

RC4
=

0.0943
0.1111

−
0.0318
0.0318

= −0.1512

Since we know that the 4-companies selected security
system set is {S2,S4,S5,S6} for i = 1, 2, 3, 4 respectively,
we rank the selected alternatives as shown in Figure 2 accord-
ing to the descending order of relative closeness index
as S6 > S4 > S5 > S2 This shows that S6
is the best alternative for the security system. The pro-
posed NHSS-TOPSIS algorithm is used under the NHSS
environment for the ranking of alternatives with a good
result.

VI. CONCLUSION
Neutrosophic hypersoft set (NHSS) an extension of soft set is
a new topic NHSS can be a strongmathematical model to deal
with incomplete, indeterminate uncertain and vague informa-
tion. Generally, NHSS is more efficient to deal with uncertain
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and vague information than fuzzy sets and intuitionistic fuzzy
sets. However, no one had considered distances and similarity
for NHSS In this paper, we first propose distance and simi-
larity measures for NHSS. By using the proposed distance
and similarity measures, we make an extension of TOPSIS
technique to the NHSSTOPSIS for MCDM. The Hamming
distance measure is used to calculate the distance of alterna-
tives from the positive ideal and negative ideal. We then rank
the alternatives based on the relative closeness index. At last,
we solve illustrative cases of a medical diagnosis problem
and security system selection to confirm the reliability and
adequacy of the proposed NHSS-TOPSIS technique. The
proposed NHSS-TOPSIS has gigantic chances for MCDM
issues in different fields such as supplier determination, man-
ufacturing frameworks, and numerous other regions of man-
agement frameworks. In expansions, the proposed method-
ology can be amplified in several directions to include an
extensive range of decision-making issues in different neutro-
sophic hypersoft situations. On the other hand, measuring the
uncertainty/fuzziness of NHSS is an important step in NHSS
applied systems. Since entropy is an important measure of
uncertainty/fuzziness in our future works, we will define
some entropies for NHSS. We will also give axioms for these
entropy measures and then give their applications

ACKNOWLEDGMENT
The authors would like to thank the anonymous referees for
their helpful comments in improving the presentation of this
article.

REFERENCES
[1] L. A. Zadeh, ‘‘Fuzzy sets,’’ Inf. Control, vol. 8, no. 3, pp. 338–353,

Jun. 1965.
[2] J. M. Mendel and R. I. B. John, ‘‘Type-2 fuzzy sets made simple,’’ IEEE

Trans. Fuzzy Syst., vol. 10, no. 2, pp. 117–127, Apr. 2002.
[3] K. T. Atanassov, ‘‘Intuitionistic fuzzy sets,’’ Fuzzy Sets Syst., vol. 20,

pp. 87–96, Aug. 1986.
[4] S. Miyamoto, ‘‘Remarks on basics of fuzzy sets and fuzzy multisets,’’

Fuzzy Sets Syst., vol. 156, no. 3, pp. 427–431, Dec. 2005.
[5] V. Torra, ‘‘Hesitant fuzzy sets,’’ Int. J. Intell. Syst., vol. 25, no. 6,

pp. 529–539, 2010.
[6] R. R. Yager and A. M. Abbasov, ‘‘Pythagorean membership grades, com-

plex numbers, and decision making,’’ Int. J. Intell. Syst., vol. 28, no. 5,
pp. 436–452, May 2013.

[7] C. M. Hwang and M. S. Yang, ‘‘Belief and plausibility functions on
intuitionistic fuzzy sets,’’ Int. J. Intell. Syst., vol. 31, no. 6, pp. 556–568,
2016.

[8] H. Gao, G. Wei, and Y. Huang, ‘‘Dual hesitant bipolar fuzzy Hamacher
prioritized aggregation operators in multiple attribute decision making,’’
IEEE Access, vol. 6, pp. 11508–11522, 2018.

[9] Z. Liu, H. Xu, X. Zhao, P. Liu, and J. Li, ‘‘Multi-attribute group decision
making based on intuitionistic uncertain linguistic Hamy mean operators
with linguistic scale functions and its application to health-care waste
treatment technology selection,’’ IEEE Access, vol. 7, pp. 20–46, 2019.

[10] L. Wang, H. Garg, and N. Li, ‘‘Pythagorean fuzzy interactive Hamacher
power aggregation opera-tors for assessment of express service quality
with entropy weight,’’ Soft Comput., vol. 25, pp. 973–993, Jul. 2020,
doi: 10.1007/s00500-020-05193-z.

[11] D. Molodtsov, ‘‘Soft set theory—First results,’’ Comput. Math. Appl.,
vol. 37, nos. 4–5, pp. 19–31, Feb. 1999.

[12] P. K. Maji, A. R. Roy, and R. Biswas, ‘‘An application of soft sets in
a decision making problem,’’ Comput. Math. Appl., vol. 44, nos. 8–9,
pp. 1077–1083, 2002.

[13] P. K. Maji, A. R. Roy, and R. Biswas, ‘‘Soft set theory,’’ Comput. Math.
Appl., vol. 45, pp. 555–562, Feb./Mar. 2003.

[14] M. I. Ali, F. Feng, X. Liu, and W. K. Min, ‘‘On some new operations in
soft set theory,’’ Comput. Math. Appl., vol. 57, pp. 1547–1553, May 2009.

[15] N. Çagman and S. Enginoglu, ‘‘Soft matrix theory and its decision mak-
ing,’’ Comput. Math. Appl., vol. 59, no. 10, pp. 3308–3314, May 2010.

[16] N. Cagman and S. Enginoglu, ‘‘Soft set theory and uni–int decision mak-
ing,’’ Eur. J. Oper. Res., vol. 207, pp. 848–855, Dec. 2010.

[17] B. K. Tripathy and K. R. Arun, ‘‘A new approach to soft sets, soft multisets
and their properties,’’ Int. J. Reasoning-Based Intell. Syst., vol. 7, nos. 3–4,
pp. 244–253, 2015.

[18] F. Smarandache, ‘‘Neutrosophic set-a generalization of the intuitionistic
fuzzy set,’’ Int. J. Pure Appl. Math., vol. 24, no. 3, pp. 287–297, 2005.

[19] P. K.Maji, ‘‘Neutrosophic soft set,’’Ann. FuzzyMath. Inform., vol. 5, no. 1,
pp. 157–168, Jan. 2013.

[20] F. Smarandache, ‘‘Extension of soft set to hypersoft set, and then to
plithogenic hypersoft set,’’ Neutrosophic Sets Syst., vol. 22, pp. 168–170,
2018.

[21] M. Saqlain,M. Saeed,M. R. Ahmad, and F. Smarandache, ‘‘Generalization
of TOPSIS for neutrosophic hypersoft set using accuracy function and its
application,’’ Neutrosophic Sets Syst., vol. 27, pp. 131–137, 2019.

[22] M. Saqlain, S. Moin, M. N. Jafar, M. Saeed, and F. Smarandache, ‘‘Aggre-
gate operators of neutrosophic hypersoft set,’’ Neutrosophic Sets Syst.,
vol. 32, pp. 294–306, 2020.

[23] M. Saqlain, S. Moin, N. Jafar, M. Saeed, and S. Broumi, ‘‘Single and
multi-valued neutrosophic hypersoft set and tangent similarity measure
of single valued neutrosophic hypersoft sets,’’ Neutrosophic Sets Syst.,
vol. 32, pp. 317–329, 2020.

[24] L.-P. Zhou, J.-Y. Dong, and S.-P. Wan, ‘‘Two new approaches for multi-
attribute group decision-making with interval-valued neutrosophic frank
aggregation operators and incomplete weights,’’ IEEE Access, vol. 7,
pp. 102727–102750, 2019.

[25] X. Zhang and Z. Xu, ‘‘Extension of TOPSIS to multiple criteria decision
making with pythagorean fuzzy sets,’’ Int. J. Intell. Syst., vol. 29, no. 12,
pp. 1061–1078, Dec. 2014.

[26] C.-M. Hwang, M.-S. Yang, and W.-L. Hung, ‘‘New similarity measures of
intuitionistic fuzzy sets based on the Jaccard index with its application to
clustering,’’ Int. J. Intell. Syst., vol. 33, no. 8, pp. 1672–1688, Aug. 2018.

[27] V. Uluçay, I. Deli, and M. Sahin, ‘‘Similarity measures of bipolar neu-
trosophic sets and their application to multiple criteria decision making,’’
Neural Comput. Appl., vol. 29, no. 3, pp. 739–748, Feb. 2018.

[28] M.-S. Yang and Z. Hussain, ‘‘Distance and similarity measures of hes-
itant fuzzy sets based on Hausdorff metric with applications to multi-
criteria decision making and clustering,’’ Soft Comput., vol. 23, no. 14,
pp. 5835–5848, Jul. 2019.

[29] J. P. Brans, P. Vincke, and B. Mareschal, ‘‘How to select and how to rank
projects: The PROMETHEE method,’’ Eur. J. Oper. Res., vol. 24, no. 2,
pp. 228–238, Feb. 1986.

[30] C. L. Hwang and K. Yoon, Multiple Attribute Decision Making, Methods
and Applications. New York, NY, USA: Springer, 1981.

[31] M. Behzadian, S. K. Otaghsara, M. Yazdani, and J. Ignatius, ‘‘A state-of
the-art survey of TOPSIS applications,’’ Expert Syst. Appl., vol. 39, no. 17,
pp. 13051–13069, Dec. 2012.

[32] S. Opricovic and G.-H. Tzeng, ‘‘Compromise solution by MCDM meth-
ods: A comparative analysis of VIKOR and TOPSIS,’’ Eur. J. Oper. Res.,
vol. 156, no. 2, pp. 445–455, Jul. 2004.

[33] C. Kahraman, S. C. Onar, and B. Oztaysi, ‘‘Fuzzy multicriteria decision-
making: A literature review,’’ Int. J. Comput. Intell. Syst., vol. 8, no. 4,
pp. 637–666, 2015.

[34] M. Saqlain, M. Saeed, M. R. Zulqarnain, and M. Sana, ‘‘Neutrosophic
hyper soft matrix theory: Its definition, operators and application in
decision-making of personnel selection problem,’’ in Neutrosophic Opera-
tional Research, vol. 1. Springer, 2021, doi: 10.1007/978-3-030-57197-9.

[35] K. Naeem, M. Riaz, and D. Afzal, ‘‘Pythagorean m-polar fuzzy sets and
TOPSIS method for the selection of advertisement mode,’’ J. Intell. Fuzzy
Syst., vol. 37, no. 6, pp. 8441–8458, Dec. 2019.

[36] S. Eraslan and F. Karaasalan, ‘‘A group decision making method based on
TOPSIS under fuzzy soft environment,’’ J. New Theory, vol. 3, pp. 30–40,
2015.

[37] H. Garg and K. Kumar, ‘‘A novel exponential distance and its based TOP-
SIS method for interval-valued intuitionistic fuzzy sets using connection
number of SPA theory,’’ Artif. Intell. Rev., vol. 53, no. 1, pp. 595–624,
Jan. 2020.

VOLUME 9, 2021 30815

http://dx.doi.org/10.1007/s00500-020-05193-z
http://dx.doi.org/10.1007/978-3-030-57197-9


M. Saqlain et al.: Distance and Similarity Measures for Neutrosophic HyperSoft Set (NHSS)

[38] X. Peng and J. Dai, ‘‘Approaches to single-valued neutrosophic MADM
based on MABAC, TOPSIS and new similarity measure with score func-
tion,’’ Neural Comput. Appl., vol. 29, no. 10, pp. 939–954, May 2018.

MUHAMMAD SAQLAIN received the M.Phil.
degree in mathematics from Lahore Garrison
University, Lahore, Pakistan, and the M.Sc.
degree from the University of Sargodha, Pakistan.
He is currently pursuing the Ph.D. degree with
the School of Mathematics, Northwest Univer-
sity, Xi’an, China. He is also a Lecturer with
the Department of Mathematics, Lahore Garri-
son University. He has published more than 25
research articles in different well-known journals,

including SCI, SCIE, and ESCI. His research interests include soft set,
neutrosophic soft set, neutrosophic hypersoft set (NHSS), and fuzzy logic
controllers. He is an Editor of the Book Theory and Application of Hypersoft
Set and a Section Editor of the Journal Neutrosophic Sets and Systems.

MUHAMMAD RIAZ received theM.Sc., M.Phil.,
and Ph.D. degrees in mathematics from the
Department of Mathematics, University of the
Punjab, Lahore, Pakistan. He is currently an
Assistant Professor with the Department of
Mathematics, University of the Punjab. His
research interests include puremathematics, topol-
ogy, algebra, fuzzy mathematics, soft set theory,
rough set theory, neutrosophic sets, and linear
diophantine fuzzy sets. He is an Editorial Board

Member of Journal of New theory, Journal of Advanced Studies in Topology,
DecisionMaking: Applications inManagement and Engineering (DMAME),
Journal of Artificial Intelligence and Systems, and International Journal of
Social Science, Innovation and Educational Technologies.

MUHAMMAD ADEEL SALEEM is a currently
a Research Student with the Department of
Mathematics, Lahore Garrison University, Lahore,
Pakistan. His research interests include theory and
applications of fuzzy sets, soft sets, and neutro-
sophic hypersoft set.

MIIN-SHEN YANG received the B.S. degree in
mathematics from Chung Yuan Christian Univer-
sity, Taiwan, in 1977, the M.S. degree in applied
mathematics from National Chiao-Tung Univer-
sity, Hsinchu, Taiwan, in 1980, and the Ph.D.
degree in statistics from the University of South
Carolina, Columbia, USA, in 1989. In 1989,
he joined the faculty of the Department of Mathe-
matics, ChungYuanChristian University (CYCU),
as an Associate Professor, where he has been a

Professor, since 1994. From 1997 to 1998, he was a Visiting Professor with
the Department of Industrial Engineering, University ofWashington, Seattle,
USA. From 2001 to 2005, he was the Chairman of the Department of Applied
Mathematics, CYCU. Since 2012, he has been a Distinguished Professor of
the Department of Applied Mathematics, the Director of Chaplain’s Office,
and is currently the Dean of the College of Science, CYCU. His research
interests include applications of statistics, fuzzy clustering, soft computing,
pattern recognition, and machine learning. He was an Associate Editor of the
IEEE TRANSACTIONS ON FUZZY SYSTEMS from 2005 to 2011, and the Applied
Computational Intelligence and Soft Computing, an Editorial BoardMember
of Computer Science and Engineering section in the journal Electronics
(MDPI).

30816 VOLUME 9, 2021


