
Complex & Intelligent Systems
https://doi.org/10.1007/s40747-019-00120-8

ORIG INAL ART ICLE

Extentions of neutrosophic cubic sets via complex fuzzy sets with
application

Muhammad Gulistan1 · Salma Khan1

Received: 21 May 2019 / Accepted: 26 August 2019
© The Author(s) 2019

Abstract
In this paper, we propose that the complex neutrosophic cubic set (internal and external) show, which is a blend of complex
fuzzy sets, neutrosophic sets, and cubic sets. We characterize a few set theoretic activities of internal complex neutrosophic
sets, for example, union, intersection and complement, and a while later the operational principles. A few ideas identified with
the structure of this model are clarified. We present some accumulation administrators and talk about some basic leadership
issue with genuine model.
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Introduction

Introduction consists of three subsections as by:

Fuzzy sets and its different versions

In 1965 Zadeh [1] first introduced the fuzzy set (FS) the-
ory. After that [2,3] Atanassov proposed the intuitionstic
fuzzy set (IFS). Atanassov included a non-participation
work in intuitionistic fuzzy set to diminish the weak-
ness in which the fuzzy set has just enrollment work.
Smarandache [4] in 1999 define the theme of ņeutrosophic
sets (NS). In ņeutrosophic sets (NS), Smarandache added
indeterminacy-membership function, i.e. NS is composed of
(truth truth(l11), indeterminacy in det er min acy(l11) and
falsity-membership False(l11). Moreover, the ņeutrosophic
sets (NS) are the combination of fuzzy sets (FSs) and
intuitionstic fuzzy set (IFSs). The idea of single valued
ņeutrosophic sets is given by Wang et al. [6]. Yet, in
many real-life problems, the degrees of truth, falsehood,
and indeterminacy of a certain statement may be suitably
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presented by interval forms, instead of real numbers [7].
Multi-criteria basic leadership strategy which depends on
a cross-entropy with interim ņeutrosophic sets talked about
by Tian et al. [8]. Furthermore, Jun et al. [9] proposed the
concept of ņeutrosophic cubic set (NCS) by adding (truth
truth(l11), indeterminacy in det er min acy(l11) and falsity-
membership False(l11) and neutrosophic set and (truth
truth(l11), indeterminacy in det er min acy(l11) and falsity-
membership False(l11) and neutrosophic set. Neutrosophic
cubic sets (NCSs) which are the generalized form of fuzzy
sets, cubic sets and ņeutrosophic sets. Different researchers
used the fuzzy sets and extended version such as neutro-
sophic set, single-valued neutrosophic sets neutrosophic soft
sets and neutrosophic refined sets in decision making prob-
lems with the help of aggregation operators for detail see
[10–15].

Complex fuzzy sets and its different versions

Buckly [16] for the first time gave the concept of fuzzy com-
plex numbers, see also [17–19]. In 2002 the Ramot et al.
[20] generalized the concept of fuzzy set and introduced the
notions of complex fuzzy set. In contrast, Ramot et al. [21]
displayed an imaginative idea that is entirely unexpected
from different analysts, in which the researcher expanded
the scope of participation capacity to the unit circle in the
complex plane, different from the idea of other researchers.
Moreover to leads a unique collaboration, or dependency,
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between rules, which is improved by the use of vector aggre-
gation in the inference stage of complex fuzzy logic sets.
These problems may be very hard or difficult to solve using
old techniques of fuzzy logic. There are numerous special-
ists which have dealt with complex fuzzy set, for example,
Nguyen et al. [22] and Zhang et al. [23]. Abd Uazeez et al.
[24], added the non-membership term to the idea of complex
fuzzy set which is known as complex intuitionistic fuzzy sets,
the range of values are extended to the unit circle in complex
plan for both membership and non-membership functions
instead of [0, 1]. The concept of complex intuitionistic fuzzy
set introduced by Salleh [25,26], which are the generalized
form of complex fuzzy set. By the use of complex fuzzy
sets different developing systems utilized by neutrosophic
sets in present time for better designing and modeling real-
life problems. To overcome the information of periodicity
and uncertainty at the same time which is related to ‘com-
plex’ functionality. Naveed at al. [27] examined the uses of
complex intuitionistic fuzzy charts in cell organize supplier
organizations. Additionally observe the possibility of com-
plex intuitionistic fuzzy charts by Naveed and Akram [28].

In recent times, Ali and Smarandache [29] introduced
complex neutrosophic set, which complex neutrosophic set
is a neutrosophic set whose complex-valued truth member-
ship function, complex-valued indeterminacy membership
function, and complex-valued falsehood membership func-
tions are the combination of real-valued truth amplitude
term in association with phase term, real-valued indetermi-
nate amplitude term with phase term, and real-valued false
amplitude term with phase term, respectively. The complex
ņeutrosophic set is a general structure of the various existing
models, see [30,31].

Our approach

In this paper, beingmotivated from the idea of complex fuzzy
sets which sums up the fuzzy sets, we propose the com-
plex ņeutrosophic cubic sets (internal and external), which
is a mix of complex fuzzy sets, neutrosophic sets and cubic
sets. We characterize a few set theoretic activities of com-
plex ņeutrosophic cubic sets (CNSs), for example, union,
intersection and complement, and later the distinctive opera-
tional laws. Likewise disclosed a few ideas identifiedwith the
structure of this model. We present some collection admin-
istrators and talk about some basic leadership issues with
genuine precedent.

Preliminaries

In this segment we gathered a portion of the helping material
from the current writing.

Definition 1 [4,5] Let L be a non-empty set. A neutrsophic
set in L is a structure of the form �1 := {l11; �1truth(l11),
�1I n det er (l11),�1False(l11)|l11 ∈ L}, is described by truth,
I n det ermacy and False, where �1truth,�1I n det er ,

�1False : L → ]
0−, 1+[

.

Definition 2 [6] Let L be a universe of discourse, with
a general element in L denoted by l11. A single valued
ņeutrosophic set �1 in L is defined as follows:

�1 = {l11 : (�1truth(l11),�1I n det er (l11),�1F (l11))|l11 ∈ L} ,

where�1truth denote the truth,�1I n det er denote the indeter-
mancy and �1False denote the falsity-membership function.

For every l11 in L , we have �1truth(l11),�1I n det er (l11),
�1False(l11) ∈ [0, 1], and 0 ≤ �1truth(l11)+�1I n det er (l11)
+ �1False(l11) ≤ 3.

Definition 3 [6] Suppose l11 = (truth1, in det er1, f alse1)
and l22 = (truth2, in det er2, False2) are two SVNNs, then
their operational laws are defined as:

1. The compliment of l11 is l̄11 = (False1, 1 − in det er1,
truth1).

2. l11 ⊕ l22 = (
truth1 + truth2 − truth1truth2, in det

er1in det er2, False1False2
)
.

3. l11 ⊗ l22 =
⎛

⎝
truth1.truth2, in det er1 + in det er2

−in det er1in det er2,
False1 + False2 − False1False2

⎞

⎠ .

4. nl11 = (
1 − (1 − truth1)n , (in det er1)n , (False1)n

)
,

n > 0.
5. ln11 = ((truth1)n , 1 − (1 − in det er1)n , 1 − (1

− False1)n), n > 0.

Definition 4 [16] Let Ů �= � an NCS in L is defined
in the form of a pair � = (�1,�2), where �1 =
{(l11; �1Truth(l̄11),�1 Ĩ nd(l11)

,�1F̃al(l11)
) | l11 ∈ l11} is an

interval ņeutrosophic set in l11 and �2 = {(l11; �2truth(l11),

�2ı̂ nd(l11),�2False(l11)) | l11 ∈ l11)} is a ņeutrosophic set in
l11.

Definition 5 [30] A ċomplex ņeutrosophic set is defined
on a universe of discourse Ů , is described by a truth
membership (TruthS(l11)), an indeterminacy membership
(I n det erS(l11)), a falsity membership (FalseS(l11)), and
assigning a complex-valued grade of TruthS(l11), I n det
erS(l11) and FalseS(l11) in S for any l11 ∈ Ů . The val-
ues TruthS(l11), I n det erS(l11), FalseS(l11) and their sum
may all be with in the unit circle in the ċomplex plane, and
so it is of the following form:
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TruthS(l11) = ps(l11).e
iμs (l11),

I n det erS(l11) = qs(l11).e
iνs (l11),

FalseS(l11) = rs(l11).e
iωs (l11),

ps(l11), qs(l11),rs(l11) are respectively real values where
ps(l11), qs(l11),rs(l11) ∈ [0, 1], andμs(l11), νs(l11), ωs(l11)
∈ [0, 2π ], such that the following condition is satis-
fied: 0 ≤ ps(l11) + qs(l11) + rs(l11) ≤ 3. A complex
ņeutrosophic set S can be represented in set form as: S ={(

l11, TruthS(l11) = sTruth, I n det erS(l11)
= sIn det er , FalseS(l11) = sFalse

)
: l11 ∈ Ů

}

where TruthS : X → {sTruth : sTruth ∈ �3|sTruth | ≤ 1},
I n det erS : X → {sIn det er : sIn det er ∈ �3|sIn det er | ≤ 1},
FalseS : X → {sFalse : sFalse ∈ �3|sFalse| ≤ 1} and
0 ≤ |TruthS(l11) + In det erS(l11) + FalseS(l11)| ≤ 3.

Complex neutrosophic cubic sets (CNCSs)

In this segment we start the investigation of new kinds of
ņeutrosophic sets known as complex ņeutrosophic cubic sets
which is themix of complex sets and ņeutrosophic cubic sets.

Definition 6 A complex ņeutrosophic cubic set is defined on
a universe of discourse L is described by a truth membership
function

(
TruthZN (l11), truthZN (l11)

)
, an indeterminacy

membership function
(
I n det erZN (l11), in det erZN (l11)

)
, a

falsitymembership function
(
FalseZN (l11), f alseZN (l11)

)
,

and assigning a complex-valued grade of
(
TruthZN (l11),

truthZN (l11)
)
,
(
I n det erZN (l11), in det erZN (l11)

)
, and(

FalseZN (l11), f alseZN (l11)
)
, in ZN for any l11 ∈ Ů .

Thevalues
(
TruthZN (l11), truthZN (l11)

)
,
(
I n det erZN

(l11), in det erZN (l11)
)
,(

FalseZN (l11), f alseZN (l11)
)
and their sum may all be

with in the unit circle in the complex plane, and so it is of the
following form:

(
TruthZN (l11), truthZN (l11)

)

=
(
PZN (l11).e

jμ̃ZN (l11), pZN (l11).e
iμZN (l11)

)
,

(
I n det erZN (l11), in det erZN (l11)

)

=
(
QZN (l11).e

j ν̃ZN (l11), qZN (l11).e
iνZN (l11)

)
,

(
FalseZN (l11), f alseZN (l11)

)

=
(
RZN (l11).e

j ω̃ZN (l11), rZN (l11).e
iωZN (l11)

)
,

where

(
PZN (l11), pZN (l11)

)
,
(
QZN (l11), qZN (l11)

)
,

(
RZN (l11), rZN (l11)

)
,

are respectively real values and

(
PZN (l11), pZN (l11)

)
,
(
QZN (l11), qZN (l11)

)
,

(
RZN (l11), rZN (l11)

) ∈ [0, 1],

where

(
μ̃ZN (l11), μZN (l11)

)
,
(
ν̃ZN (l11), νZN (l11)

)
,

(
ω̃ZN (l11), ωZN (l11)

) ∈ [0, 2π ].

In set form the complex ņeutrosophic cubic set ZN can be
represented as

ZN

=
{(

l11, TruthZN (l11), I n det erZN (l11), FalseZN (l11),
truthZN (l11), in det erZN (l11), f alseZN (l11)

)
: l11 ∈ Ů

}

Example 1 A complex ņeutrosophic cubic set is defined on a
universe of discourse L , is described by a truth membership
function

(
[0.3, 0.4] e jπ [0.4,0.5],

(
0.5e jπ0.4

))
, an indetermi-

nacymembership function
(
[0.4, 0.5] e jπ [0.5,0.7],

(
0.6e jπ0.4

))
,

a falsity membership function
(
[0.4, 0.6] e jπ [0.4,0.7],(

0.6e jπ0.5
))
, and assigning a complex-valued grade of(

[0.3, 0.4] e jπ [0.4,0.5],
(
0.5e jπ0.4

))
,
(
[0.4, 0.5] e jπ [0.5,0.7],(

0.6e jπ0.4
))

, and
(
[0.4, 0.6] e jπ [0.4,0.7],

(
0.6e jπ0.5

))
, in

ZN for any l11 ∈ L. Then, the complex neutrosophic cubic
set ZN is given as follows:

ZN =
{((

[0.3, 0.4] e jπ [0.4,0.5],
(
0.5e jπ0.4

))
,
(
[0.4, 0.5] e jπ [0.5,0.7],

(
0.6e jπ0.4

))
,(

[0.4, 0.6] e jπ [0.4,0.7],
(
0.6e jπ0.5

))
)}
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Definition 7 A complex ņeutrosophic cubic set

ZN

=
{(

l11, TruthZN (l11), I n det erZN (l11), FalseZN (l11),
truthZN (l11), in det erZN (l11), f alseZN (l11)

)
: l11 ∈ Ů

}

in Ů is said to be
1. Truth-internal complex ņeutrosophic cubic set (TIC-

NCs) if the following is hold (∀l11 ∈ X)
(
Truth−

ZN (l11) ≤
truthZN (l11) ≤ Truth+

ZN (l11)
)
and (∀l11 ∈ circU )

(
μ−
ZN

(l11) ≤ μZN (l11) ≤ μ+
ZN (l11)

)
.

2. Indeterminacy-internal complex ņeutrosophic cubic set
(IICNCs) if the following is hold (∀l11 ∈ circU ) (I n det

er−
ZN (l11) ≤ in det erZN (l11) ≤ I n det er+

ZN (l11)
)
and (∀l11

∈ circU )
(
ν−
ZN (l11) ≤ νZN (l11) ≤ ν+

ZN (l11)
)

.

3. Falsity-internal complex ņeutrosophic cubic set (FIC-

NCs) if the following is hold (∀l11 ∈ circU )
(
False−

ZN (l11)

≤ f alseZN (l11) ≤ False+
ZN (l11)

)
and (∀l11 ∈ circU )

(
ω−
ZN (l11) ≤ ωZN (l11) ≤ ω+

ZN (l11)
)

.

If a complex ņeutrosophic cubic set (CNCs) satisfy 1, 2,
3, then it is said to be internal complex ņeutrosophic cubic
set (ICNCs).

Definition 8 A complex ņeutrosophic cubic set

ZN

=
{(

l11, TruthZN (l11), I n det erZN (l11), FalseZN (l11),
truthZN (l11), in det erZN (l11), f alseZN (l11)

)
: l11 ∈ Ů

}

in l11 is said to be
1. Truth-external complex ņeutrosophic cubic set (TEC-

NCs) if the following is hold (∀l11 ∈ circU )
(
truthZN (l11)

/∈
(
Truth−

ZN (l11), Truth
+
ZN (l11)

))
and (∀l11 ∈ circU )

(
μZN (l11) /∈

(
μ−
ZN (l11), μ

+
ZN (l11)

))
.

2. Indeterminacy-external complex ņeutrosophic cubic set
(IECNCs) if the following is hold (∀l11 ∈ circU ) (in det

erZN (l11) /∈
(
I n det er−

ZN (l11),I n det er
+
ZN (l11)

))
and (∀l11

∈ circU )
(
νZN (l11) /∈

(
ν−
ZN (l11), ν

+
ZN (l11)

))
.

3. Falsity-external complex ņeutrosophic cubic set (FEC-
NCs) if the following is hold (∀l11 ∈ X)

(
f alseZN (l11) /∈(

False−
ZN (l11), False

+
ZN (l11)

))
and (∀l11 ∈ X)

(
ωZN (l11)

/∈
(
ω−
ZN (l11), ω

+
ZN (l11)

))
.

If a complex ņeutrosophic cubic set (CNCs) satisfy 1, 2, 3
then it is said to be external complex ņeutrosophic cubic set
(ECNCs).

Definition 9 Let

�1

=
{(

l11, Truth�1 (l11), I n det er�1 (l11), False�1 (l11),
truth�1 (l11), in det er�1 (l11), f alse�1 (l11)

)
: l11 ∈ Ů

}

and

�2

=
{(

l11, Truth�1 (l11), I n det er�2 (l11), False�2 (l11),
truth�2 (l11), in det er�2 (l11), f alse�2 (l11)

)
: l11 ∈ Ů

}

be two complex ņeutrosophic cubic sets (CNCSs). We define
1. The complement of�1, denoted as�3(�1), is specified

by functions:

Truth�3(�1)(l11) = P�3(�1)(l11).e
jμ̃�3(�1)

(l11)

= R�1(l11).e
j
(
2π−μ̃�1 (l11)

)

I n det er�3(�1)(l11) = Q�3(�1)(l11).e
j ν̃�3(�1)

(l11)

= (
1 − Q�1(l11)

)
.e j

(
2π−ν̃�1 (l11)

)

False�3(�1)(l11) = R�3(�1)(l11).e
j ω̃�3(�1)

(l11)

= P�1(l11).e
j
(
2π−ω̃�1 (l11)

)

truth�3(�1)(l11) = p�3(�1)(l11).e
jμ�3(�1)

(l11)

= r�1(l11).e
j
(
2π−μ�1 (l11)

)

in det er�3(�1)(l11) = q�3(�1)(l11).e
jν�3(�1)

(l11)

= (
1 − q�1(l11)

)
.e j

(
2π−ν�1 (l11)

)

f alse�3(�1)(l11) = r�3(�1)(l11).e
jω�3(�1)

(l11)

= p�1(l11).e
j
(
2π−ω�1 (l11)

)

2. �1 ⊆ �2 if, (i) Truth�1(l11) ≤ Truth�2(l11) such that
P�1(l11) ≤ P�2(l11) and μ̃�1(l11) ≤ μ̃�2(l11),

(ii) I n det er�1(l11) ≥ I n det er�2(l11)
such that Q�1(l11) ≥ Q�2(l11) and ν̃�1(l11) ≥ ν̃�2(l11),
(iii) False�1(l11) ≥ False�2(l11)
such that R�1(l11) ≥ R�2(l11) and ω̃�1(l11) ≥ ω̃�2(l11),
(iv) T�1(l11) ≤ T�2(l11)
such that p�1(l11) ≤ p�2(l11) and μ�1(l11) ≤ μ�2(l11),
(v) in det er�1(l11) ≥ in det er�2(l11)
such that q�1(l11) ≥ q�2(l11) and ν�1(l11) ≥ ν�2(l11),
(vi) f alse�1(l11) ≥ f alse�2(l11)
such that r�1(l11) ≥ r�2(l11) and ω�1(l11) ≥ ω�2(l11).
3. The union (intersection) of�1 and�2, denoted as�1 ∪

(∩)�2 and the truth membership function
(
Truth�1∪(∩)�2

(l11) , truth�1∪(∩)�2 (l11)
)
, the indeterminacy membership

function
(
I n det er�1∪(∩)�2 (l11) , in det er�1∪(∩)�2 (l11)

)
and
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the falsity membership function
(
False�1∪(∩)�2 (l11) ,

f alse�1∪(∩)�2 (l11)
)
are defined as:

Truth�1∪(∩)�2 (l11)

= [
P�1(l11) ∨ (∧) P�2(l11)

]
.e j

(
μ̃�1 (l11)∨(∧)μ̃�2 (l11)

)

I n det er�1∪(∩)�2 (l11)

= [
Q�1(l11) ∨ (∧) Q�2(l11)

]
.e j

(
ν̃�1 (l11)∨(∧)ν̃�2 (l11)

)

False�1∪(∩)�2 (l11)

= [
R�1(l11) ∨ (∧) R�2(l11)

]
.e j

(
ω̃�1 (l11)∨(∧)ω̃�2 (l11)

)

truth�1∪(∩)�2 (l11)

= [
p�1(l11) ∨ (∧) p�2(l11)

]
.e j

(
μ�1 (l11)∨(∧)μ�2 (l11)

)

in det er�1∪(∩)�2 (l11)

= [
q�1(l11) ∨ (∧) q�2(l11)

]
.e j

(
ν�1 (l11)∨(∧)ν�2 (l11)

)

f alse�1∪(∩)�2 (l11)

= [
r�1(l11) ∨ (∧) r�2(l11)

]
.e j

(
ω�1 (l11)∨(∧)ω�2 (l11)

)

where ∨ = max and ∧ = min.

Definition 10 Let

�1

=
{(

l11, Truth�1 (l11), I n det er�1 (l11), False�1 (l11),
truth�1 (l11), in det er�1 (l11), f alse�1 (l11)

)
: l11 ∈ Ů

}

and

�2

=
{(

l11, Truth�1 (l11), I n det er�2 (l11), False�2 (l11),
T�2 (l11), in det er�2 (l11), f alse�2 (l11)

)
: l11 ∈ Ů

}

be two complex ņeutrosophic cubic sets (CNCSs) over Ů .
The union of �1 and �2 is denoted as follows: �1 ∪ �2 =

Truth�1∪�2(l11)

= [
inf Truth�1∪�2(l11), sup Truth�1∪�2(l11)

]

.e jπω̃�1∪�2 (l11)

I n det er�1∪�2(l11)

= [
inf ı̃�1∪�2(l11), sup ı̃�1∪�2(l11)

]

.e jπψ̃�1∪�2 (l11)

False�1∪�2(l11)

= [
inf False�1∪�2(l11), sup False�1∪�2(l11)

]

.e jπφ̃�1∪�2 (l11)

Truth�1∪�2(l11)

= [
inf t�1∪�2(l11), sup t�1∪�2(l11)

]

.e jπω�1∪�2 (l11)

in det er�1∪�2(l11)

= [
inf in det er�1∪�2(l11), sup in det er�1∪�2(l11)

]

.e jπψ�1∪�2 (l11)

f alse�1∪�2(l11)

= [
inf f alse�1∪�2(l11), sup f alse�1∪�2(l11)

]

.e jπφ�1∪�2 (l11)

where

inf Truth�1∪�2 (l11)

= ∨ (
inf Truth�1 (l11), inf Truth�2 (l11)

)
, sup Truth�1∪�2 (l11)

= ∨ (
sup Truth�1 (l11), sup Truth�2 (l11)

)

inf I n det er�1∪�2 (l11)

= ∧(
inf I n det er�1 (l11), inf I n det er�2 (l11)

)
, sup I n det er�1∪�2 (l11)

= ∧ (
sup I n det er�1 (l11), sup I n det er�2 (l11)

)

inf False�1∪�2 (l11)

= ∧ (
inf False�1 (l11), inf False�2 (l11)

)
, sup False�1∪�2 (l11)

= ∧ (
sup False�1 (l11), sup False�2 (l11)

)

inf truth�1∪�2 (l11)

= ∨ (
inf truth�1 (l11), inf truth�2 (l11)

)
, sup truth�1∪�2 (l11)

= ∨ (
sup truth�1 (l11), sup truth�2 (l11)

)

inf in det er�1∪�2 (l11)

= ∧ (
inf in det er�1 (l11), inf in det er�2 (l11)

)
, sup in det er�1∪�2 (l11)

= ∧ (
sup in det er�1 (l11), sup in det er�2 (l11)

)

inf f alse�1∪�2 (l11)

= ∧ (
inf f alse�1 (l11), inf f alse�2 (l11)

)
, sup f alse�1∪�2 (l11)

= ∧ (
sup f alse�1 (l11), sup f alse�2 (l11)

)

∀l11 ∈ Ů . The union of the phase terms remains the same.

Example 2 Let

�1 =
{((

[0.3, 0.4] e jπ [0.4,0.5],
(
0.5e jπ0.4

))
,
(
[0.3, 0.5] e jπ [0.5,0.7],

(
0.7e jπ0.4

))
,(

[0.4, 0.6] e jπ [0.4,0.7],
(
0.6e jπ0.5

))
)}
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and

�2 =
{((

[0.4, 0.5] e jπ [0.5,0.6],
(
0.7e jπ0.6

))
,
(
[0.4, 0.5] e jπ [0.4,0.7],

(
0.6e jπ0.5

))
,(

[0.3, 0.5] e jπ [0.3,0.6],
(
0.5e jπ0.4

))
)}

be two CNCSs, then their union is defined as

�1 ∪ �2 =
{((

[0.4, 0.5] e jπ [0.5,0.6],
(
0.7e jπ0.6

))
,
(
[0.4, 0.5] e jπ [0.5,0.7],

(
0.7e jπ0.5

))
,(

[0.4, 0.6] e jπ [0.4,0.7],
(
0.6e jπ0.5

))
)}

Definition 11 Let

�1

=
{(

l11, Truth�1 (l11), I n det er�1 (l11), False�1 (l11),
truth�1 (l11), in det er�1 (l11), f alse�1 (l11)

)
: l11 ∈ Ů

}

and

�2

=
{(

l11, Truth�2 (l11), I n det er�2 (l11), False�2 (l11),
truth�2 (l11), in det er�2 (l11), f alse�2 (l11)

)
: l11 ∈ Ů

}

be two complex ņeutrosophic cubic sets (CNCSs) over l11.
The intersection of �1 and �2 is denoted as �1 ∩ �2 =

Truth�1∩�2(l11)

= [
inf Truth�1∩�2(l11), sup Truth�1∩�2(l11)

]

.e jπω̃�1∩�2 (l11)

I n det er�1∩�2(l11)

= [
inf I n det er�1∩�2(l11), sup I n det er�1∩�2(l11)

]

.e jπψ̃�1∩�2 (l11)

False�1∩�2(l11)

= [
inf False�1∩�2(l11), sup False�1∩�2(l11)

]

.e jπφ̃�1∩�2 (l11)

truth�1∩�2(l11)

= [
inf truth�1∩�2(l11), sup truth�1∩�2(l11)

]

.e jπω�1∩�2 (l11)

in det er�1∩�2(l11)

= [
inf in det er�1∩�2(l11), sup in det er�1∩�2(l11)

]

.e jπψ�1∩�2 (l11)

f alse�1∩�2(l11)

= [
inf f alse�1∩�2(l11), sup f alse�1∩�2(l11)

]

.e jπφ�1∩�2 (l11)

where

inf Truth�1∩�2(l11)

= ∧ (
inf Truth�1(l11), inf Truth�2(l11)

)

, sup Truth�1∩�2(l11)

= ∧ (
sup Truth�1(l11), sup Truth�2(l11)

)

inf I n det er�1∩�2(l11)

= ∨ (
inf I n det er�1(l11), inf I n det er�2(l11)

)

, sup I n det er�1∩�2(l11)

= ∨ (
sup I n det er�1(l11), sup I n det er�2(l11)

)

inf False�1∩�2(l11)

= ∨ (
inf False�1(l11), inf False�2(l11)

)

, sup False�1∩�2(l11)

= ∨ (
sup False�1(l11), sup False�2(l11)

)

inf truth�1∩�2(l11)

= ∧ (
inf truth�1(l11), inf truth�2(l11)

)

, sup truth�1∩�2(l11)

= ∧ (
sup truth�1(l11), sup truth�2(l11)

)

inf in det er�1∩�2(l11)

= ∨ (
inf in det er�1(l11), inf in det er�2(l11)

)

, sup in det er�1∩�2(l11)

= ∨ (
sup in det er�1(l11), sup in det er�2(l11)

)

inf f alse�1∩�2(l11)

= ∨ (
inf f alse�1(l11), inf f alse�2(l11)

)

, sup f alse�1∩�2(l11)

= ∨ (
sup f alse�1(l11), sup f alse�2(l11)

)

∀l11 ∈ Ů . The intersection of the phase terms remains the
same.
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Example 3 Let

�1 =
{((

[0.3, 0.4] e jπ [0.4,0.5],
(
0.5e jπ0.4

))
,
(
[0.3, 0.5] e jπ [0.5,0.7],

(
0.7e jπ0.4

))
,(

[0.4, 0.6] e jπ [0.4,0.7],
(
0.6e jπ0.5

))
)}

and

�2 =
{((

[0.4, 0.5] e jπ [0.5,0.6],
(
0.7e jπ0.6

))
,
(
[0.4, 0.5] e jπ [0.4,0.7],

(
0.6e jπ0.5

))
,(

[0.3, 0.5] e jπ [0.3,0.6],
(
0.5e jπ0.4

))
)}

then

�1 ∩ �2 =
{((

[0.3, 0.4] e jπ [0.4,0.5],
(
0.5e jπ0.6

))
,
(
[0.3, 0.5] e jπ [0.4,0.7],

(
0.6e jπ0.4

))
,(

[0.3, 0.5] e jπ [0.3,0.6],
(
0.5e jπ0.4

))
)}

Proposition 1 Let

�1

=
{(

l11, Truth�1 (l11), I n det er�1 (l11), False�1 (l11),
truth�1 (l11), in det er�1 (l11), f alse�1 (l11)

)
: l11 ∈ Ů

}
,

�2

=
{(

l11, Truth�1 (l11), I n det er�2 (l11), False�2 (l11),
truth�2 (l11), in det er�2 (l11), f alse�2 (l11)

)
: l11 ∈ Ů

}
,

�3

=
{(

l11, Truth�3 (l11), I n det er�3 (l11), False�3 (l11),
truth�3 (l11), in det er�3 (l11), f alsel22 (l11)

)
: l11 ∈ Ů

}

be three complex ņeutrosophic cubic sets over Ů . Then

1. �1 ∪ �2 = �2 ∪ �1,

2. �1 ∩ �2 = �2 ∩ �1,

3. �1 ∪ �1 = �1,

4. �1 ∩ �1 = �1,

5. �1 ∪ (�2 ∪ �3) = (�1 ∪ �2) ∪ �3,

6. �1 ∩ (�2 ∩ �3) = (�1 ∩ �2) ∩ �3,

7. �1 ∪ (�2 ∩ �3) = (�1 ∪ �2) ∩ (�1 ∪ �3) .

8. �1 ∩ (�2 ∪ �3) = (�1 ∩ �2) ∪ (�1 ∩ �3) ,

9. �1 ∪ (�1 ∩ �2) = �1,

10. �1 ∩ (�1 ∪ �2) = �1,

11. (�1 ∪ �2)
C = �C

1 ∩ �C

2 ,

12. (�1 ∩ �2)
C = �C

1 ∪ �C

2 ,

13.
(
�C

1

)C

= �1.

Proof All these statements can be easily proved. ��

Operational rules of complex neutrosophic
cubic sets

In this section we define some basic operational rules
which are helpful in the manipulations between the complex
ņeutrosophic cubic sets.

Definition 12 Let

�1

=
{(

l11, Truth�1 (l11), I n det er�1 (l11), False�1 (l11),
truth�1 (l11), in det er�1 (l11), f alse�1 (l11)

)
: l11 ∈ Ů

}
,

�2

=
{(

l11, Truth�1 (l11), I n det er�2 (l11), False�2 (l11),
truth�2 (l11), in det er�2 (l11), f alse�2 (l11)

)
: l11 ∈ Ů

}
,

be two complex ņeutrosophic cubic sets over Ů which are
defined by

(
Truth�1(l11), truth�1(l11)

)

= (
Truth�1(l11), truth�1(l11)

)

.
(
e jπω̃�1 (l11), e jπω�1 (l11)

)
,

(
I n det er�1(l11), in det er�1(l11)

)

= (
I n det er�1(l11), in det er�1(l11)

)

.
(
e jπψ̃�1 (l11), e jπψ�1 (l11)

)
,

(
False�1(l11), f alse�1(l11)

)

= (
False�1(l11), f alse�1(l11)

)

.
(
e jπφ̃�1 (l11), e jπφ�1 (l11)

)

and

(
Truth�2(l11), truth�2(l11)

)

= (
Truth�2(l11), truth�2(l11)

)

.
(
e jπω̃�2 (l11), e jπω�2 (l11)

)
,
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(
I n det er�2(l11), in det er�2(l11)

)

= (
I n det er�2(l11), in det er�2(l11)

)

.
(
e jπψ̃�2 (l11), e jπψ�2 (l11)

)
,

(
False�2(l11), f alse�2(l11)

)

= (
False�2(l11), f alse�2(l11)

)

.
(
e jπφ̃�2 (l11), e jπφ�2 (l11)

)
.

respectively. Then, the operational rules of complex ņeutro-
sophic cubic sets (CNCSs) are defined as follows:

1. The product of �1 and �2, is denoted as �1 × �2, is:

(
Truth�1∗�2(l11), truth�1∗�2(l11)

)

=
((

Truth�1(l11), Truth�2(l11)
)
,(

t�1(l11), t�2(l11)
)

)

.

(
e jπω̃�1∗�2 (l11),

e jπω�1∗�2 (l11)

)

(
I n det er�1∗�2(l11), in det er�1∗�2(l11)

)

=
((

I n det er�1(l11), I n det er�2(l11)
)
,(

in det er�1(l11), in det er�2(l11)
)

)

.

(
e jπψ̃�1∗�2 (l11),

e jπψ�1∗�2 (l11)

)

(
False�1∗�2(l11), f alse�1∗�2(l11)

)

=
((

False�1(l11), False�2(l11)
)
,(

f alse�1(l11), f alse�2(l11)
)

)

.

(
e jπφ̃�1∗�2 (l11),

e jπφ�1∗�2 (l11)

)

The product of the phase term is defined as follows:

(
ω̃�1×�2(l11), ω�1×�2(l11)

)

=
((

ω̃�1(l11)ω̃�2(l11), ω̃�1×�2(l11)
)
,(

ω�1(l11)ω�2(l11), ω�1×�2(l11)
)

)

= (
ω̃�1(l11)ω̃�2(l11), ω�1(l11)ω�2(l11)

)

(
ψ̃�1×�2(l11), ψ�1×�2(l11)

)

=
((

ψ̃�1(l11)ψ̃�2(l11), ψ̃�1×�2(l11)
)

,
(
ψ�1(l11)ψ�2(l11), ψ�1×�2(l11)

)

)

=
(
ψ̃�1(l11)ψ̃�2(l11), ψ�1(l11)ψ�2(l11)

)

(
φ̃�1×�2(l11), φ�1×�2(l11)

)

=
((

φ̃�1(l11)φ̃�2(l11), φ̃�1×�2(l11)
)

,
(
φ�1(l11)ω�2(l11), φ�1×�2(l11)

)

)

=
(
φ̃�1(l11)φ̃�2(l11), φ�1(l11)φ�2(l11)

)

Example 4 Let

�1 =
{((

[0.3, 0.4] e jπ [0.4,0.5],
(
0.5e jπ0.4

))
,
(
[0.3, 0.5] e jπ [0.5,0.7],

(
0.7e jπ0.4

))
,(

[0.4, 0.6] e jπ [0.4,0.7],
(
0.6e jπ0.5

))
)}

and

�2 =
{((

[0.4, 0.5] e jπ [0.5,0.6],
(
0.7e jπ0.6

))
,
(
[0.4, 0.5] e jπ [0.4,0.7],

(
0.6e jπ0.5

))
,(

[0.3, 0.5] e jπ [0.3,0.6],
(
0.5e jπ0.4

))
)}

then

�1 × �2 =
{((

[0.3, 0.4] e jπ [0.4,0.5],
(
0.5e jπ0.6

))
,
(
[0.3, 0.5] e jπ [0.4,0.7],

(
0.6e jπ0.4

))
,(

[0.3, 0.5] e jπ [0.3,0.6],
(
0.5e jπ0.4

))
)}

2. The addition of �1 and �2, is denoted as �1 + �2, is:

(
Truth�1+�2(l11), Truth�1+�2(l11)

)

=

⎛

⎜
⎜
⎝

Truth�1(l11) + Truth�2(l11)
−Truth�1(l11)Truth�2(l11),
truth�1(l11) + truth�2(l11)
−truth�1(l11)truth�2(l11)

⎞

⎟
⎟
⎠

.

(
e jπω̃�1+�2 (l11),

e jπω�1+�2 (l11)

)
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(
I n det er�1+�2(l11), in det er�1+�2(l11)

)

=

⎛

⎜⎜
⎝

I n det er�1(l11) + I n det er�2(l11)
−I n det er�1(l11)I n det er�2(l11),
in det er�1(l11) + in det er�2(l11)
−in det er�1(l11)in det er�2(l11)

⎞

⎟⎟
⎠.

(
e jπψ̃�1+�2 (l11),

e jπψ�1+�2 (l11)

)

(
False�1+�2(l11), f alse�1+�2(l11)

)

=

⎛

⎜
⎜
⎝

False�1(l11) + False�2(l11)
−False�1(l11)False�2(l11),
f alse�1(l11) + f alse�2(l11)
− f alse�1(l11) f alse�2(l11)

⎞

⎟
⎟
⎠ .

(
e jπφ̃�1+�2 (l11),

e jπφ�1+�2 (l11)

)

The addition of the phase term is defined as follows:

(
ω̃�1+�2(l11), ω�1+�2(l11)

)

=
((

ω̃�1(l11) + ω̃�2(l11), ω̃�1+�2(l11)
)
,(

ω�1(l11) + ω�2(l11), ω�1+�2(l11)
)

)

= (
ω̃�1(l11) + ω̃�2(l11), ω�1(l11) + ω�2(l11)

)

(
ψ̃�1+�2(l11), ψ�1+�2(l11)

)

=
((

ψ̃�1(l11) + ψ̃�2(l11), ψ̃�1+�2(l11)
)

,
(
ψ�1(l11) + ψ�2(l11), ψ�1+�2(l11)

)

)

=
(
ψ̃�1(l11) + ψ̃�2(l11), ψ�1(l11) + ψ�2(l11)

)

(
φ̃�1+�2(l11), φ�1+�2(l11)

)

=
((

φ̃�1(l11) + φ̃�2(l11), φ̃�1+�2(l11)
)

,
(
φ�1(l11) + ω�2(l11), φ�1+�2(l11)

)

)

=
(
φ̃�1(l11) + φ̃�2(l11), φ�1(l11) + φ�2(l11)

)

Example 5 Let

�1 =
{((

[0.3, 0.4] e jπ [0.4,0.5],
(
0.5e jπ0.4

))
,
(
[0.3, 0.5] e jπ [0.5,0.7],

(
0.7e jπ0.4

))
,(

[0.4, 0.6] e jπ [0.4,0.7],
(
0.6e jπ0.5

))
)}

and

�2 =
{((

[0.4, 0.5] e jπ [0.5,0.6],
(
0.7e jπ0.6

))
,
(
[0.4, 0.5] e jπ [0.5,0.7],

(
0.6e jπ0.5

))
,(

[0.3, 0.5] e jπ [0.3,0.6],
(
0.5e jπ0.4

))
)}

then

�1 + �2 =
{((

[0.58, 0.7] e jπ [0.7,0.8],
(
0.85e jπ0.8

))
,
(
[0.58, 0.75] e jπ [0.7,0.91],

(
0.88e jπ0.7

))
,(

[0.58, 0.8] e jπ [0.58,0.88],
(
0.8e jπ0.7

))
)}

Multi-criteria group decision-makingmodel
in complex neutrosophic cubic set

In this area we will acquaint the methodology with different
characteristic collective choice making with the assistance
of the complex ņeutrosophic cubic set (CNCSs). We apply
complex ņeutrosophic cubic set administrator to manage
the characteristic basic leadership issue under the com-
plex neutrosophic cubic set situations then we represent our
methodology with a model.

Application inmultiple attribute group decision
making problem

In a problem of multiple attribute group decision making,
Suppose U = {U1,U2, . . . ,Um} is a set of alternatives.
A j = {A1, A2, . . . , An} is a set of attributes and ŵ =(
ŵ1, ŵ2, . . . , ŵn

)
is the weighted vector of the criteria,

where, ŵiε [0, 1] and
∑

ŵi = 1. The evaluation value of
an attribute A j ( j = 1, 2, . . . , n) with respect to an alterna-
tives Ui (i = 1, 2, . . . ,m) is express by a CNCS

Si jk

=
{(

l11, TruthSi jk (l11), I n det erSi jk (l11), FalseSi jk (l11),

truthSi jk (l11), in det erSi jk (l11), f alseSi jk (l11)

)

: l11 ∈ L

}

( j = 1, 2, . . . , n; i = 1, 2, . . . ,m; k = 1, 2, . . . , h) ,

so, the decision matrix is obtained: D = (
Si j

)
m×n .

The step of the decision making based on complex
ņeutrosophic cubic sets is proposed as follows:

Step 1, 2 :Using the operational rules of the complex neu-
trosophic cubic sets (CNCSs), the average suitability rating
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Si j =
⎛

⎝

(
TruthSi j (l11), I n det erSi j (l11), FalseSi j (l11)

)
,

(
truthSi j (l11), in det erSi j (l11), f alseSi j (l11)

)

⎞

⎠

can be evaluated as:

Si j = 1

h
⊗ (

Si j ⊕ Si j ⊕ ... ⊕ Si jk ⊕ ... ⊕ Si jh
)

where

TruthSi j

=
[

∧
(
1

h

h∑

k=1

TruthSi jk , 1

)

,∧
(
1

h

h∑

k=1

truthSi jk , 1

)]

e
jπ

[
1
h

h∑

k=1
wk (l11)

]

I n det erSi j

=
[

∧
(
1

h

h∑

k=1

I n det erSi jk , 1

)

,∧
(
1

h

h∑

k=1

in det erSi jk , 1

)]

e
jπ

[
1
h

h∑

k=1

k (l11)

]

FalseSi j

=
[

∧
(
1

h

h∑

k=1

FalseSi jk , 1

)

,∧
(
1

h

h∑

k=1

f alseSi jk , 1

)]

e
jπ

[
1
h

h∑

k=1
�k (l11)

]

Step 3: To aggregate the weighted rating of alternatives
according to the following formula,

V0 = 1

p

h∑

p=1

si j × w, 0 = 1, p = 1, . . . , h

Step 4: To rank the alternatives (Fig. 1)
Numerical example

Step 1: An investment company intends to choose one
product to invest his/her money from three candidates
(U1−U3). Three criteria A1 = price, A2 = quality and A3

= model have been evaluated. They are shown as follows:

F 

Decision making analysis 

Step 1 

Step 3 

Step 4 

Step 5 

To formulate the decision matrix 

To calculate the average suitability rate of 
alternatives 

To aggregate the weighted rating of 
alternatives 

To rank the alternatives 

End 

Step 2 

Fig. 1 A flow chart of CNCSs based on MADM problem
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Step 2: To calculate the average suitability rate of each
alternatives using 5.1

U1

=

⎛

⎜
⎜
⎝

⎛

⎝
[0.2435, 0.3984] e jπ[0.2175,0.44418],

[0.35, 0.49] e jπ[0.2160,0.4214],
[0.2004, 0.4680] e jπ[0.3235,0.5098]

⎞

⎠ ,

(
0.6334e jπ(0.3327), 0.6333e jπ(0.333), 0.433e jπ(0.366)

)

⎞

⎟
⎟
⎠

U2

=

⎛

⎜
⎜
⎝

⎛

⎝
[0.2160, 0.4234] e jπ[0.2170,0.3519],
[0.3235, 0.5307] e jπ[0.2977,0.4451],
[0.16216, 0.25003] e jπ[0.352,0.5488]

⎞

⎠ ,

(
0.6667e jπ(0.3664), 0.566e jπ(0.4), 0.399e jπ(0.399)

)

⎞

⎟
⎟
⎠

U3

=

⎛

⎜
⎜
⎝

⎛

⎝
[0.2440, 0.769] e jπ[0.0958,0.3497],
[0.3483, 0.5099] e jπ[0.271,0.4680],
[0.25003, 0.3064] e jπ[0.3483,0.46735]

⎞

⎠ ,

(
0.499e jπ(0.3667), 0.5667e jπ(0.3997), 0.5996e jπ(0.4663)

)

⎞

⎟
⎟
⎠

Step 3: To aggregate the weighted rating of alternatives using
the 5.1 where w = (0.5, 0.3, 0.2)

U1

=

⎛

⎜⎜
⎝

⎛

⎝
[0.1218, 0.1992] e jπ[0.1088,0.2209],
[0.175, 0.245] e jπ[0.108,0.2107],
[0.1002, 0.234] e jπ[0.1618,0.2549]

⎞

⎠ ,

(
0.3167e jπ(0.1664), 0.3167e jπ(0.1665), 0.2165e jπ(0.183)

)

⎞

⎟⎟
⎠

U2

=

⎛

⎜⎜
⎝

⎛

⎝
[0.0648, 0.1270] e jπ[0.0651,0.1056],
[0.0971, 0.1592] e jπ[0.0893,0.1335],
[0.04865, 0.07501] e jπ[0.1056,0.1646]

⎞

⎠ ,

(
0.2000e jπ(0.1099), 0.1698e jπ(0.12), 0.1197e jπ(0.1197)

)

⎞

⎟⎟
⎠

U3

=

⎛

⎜⎜
⎝

⎛

⎝
[0.0488, 0.1538] e jπ[0.0192,0.0699],
[0.0697, 0.1019] e jπ[0.0542,0.0936],
[0.05001, 0.0613] e jπ[0.0697,0.1135]

⎞

⎠ ,

(
0.0998e jπ(0.07334), 0.1133e jπ(0.0799), 0.1199e jπ(0.0933)

)

⎞

⎟⎟
⎠

Step 4: To find out the rank of the alternatives

Amplitude term Phase term
U1 0.5945 −0.4057π
U2 0.6353 −0.3223π
U3 0.6533 −0.2419π

U3 � U2 � U1

0.5945, 31%

0.6353, 34%

0.6533, 35%

Score values

A1 A2 A3

Step 5: end.

Comparison and conclusions

This paper sums up the possibility of ņeutrosophic cubic
sets given by Jun et al. [9]. The possibility of complex
ņeutrosophic cubic sets gives us a wide range for reality,
uncertain and deception capacities where one can talk about
more parameters. We propose the complex ņeutrosophic
cubic sets (internal and external) show, which is a mix of
complex fluffy sets, ņeutrosophic sets and cubic sets. Addi-
tionally we talked about various properties. Toward the end,
with the assistance of the complex ņeutrosophic cubic set
(CNCSs) we build up a way to deal with different charac-
teristic cooperative choice making. In future our proposed
structure might be use in numerous ways, for example, mas-
ter frameworks, flag handling and in logarithmic structures.

Open Access This article is distributed under the terms of the Creative
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