
Interval-Valued Neutrosophic Bonferroni Mean Operators 

and the Application in the Selection of Renewable Energy 

Pu Ji1, Peng-fei Cheng2, Hong-yu Zhang3*, and Jian-qiang Wang4 

1 School of Business, Central South University, Changsha 410083, China. E-mail: jipu90@csu.edu.cn 
2 School of Business, Hunan University of Science and Technology, Xiangtan 411201, China. E-mail: 

1180033@hnust.edu.cn 

3 School of Business, Central South University, Changsha 410083, China. E-mail: hyzhang@csu.edu.cn 
4 School of Business, Central South University, Changsha 410083, China. E-mail: jqwang@csu.edu.cn 

Corresponding author’s email3*: hyzhang@csu.edu.cn 

ABSTRACT 

Renewable energy selection, which is a multi-criteria decision-making (MCDM) problem, is crucial for 

the sustainable development of economy. Criteria are interdependent in the selection problem of 

renewable energy. Moreover, fuzzy and uncertain information exist during the selection processes, and 

information can be comprehensively reflected by interval-valued neutrosophic sets. This chapter aims to 

construct selection approaches for renewable energy considering the interrelationships among criteria. 

To do that, Bonferroni mean (BM) and geometric BM (GBM) are employed. Firstly, the interval-valued 

neutrosophic BM (IVNBM) and the interval-valued neutrosophic GBM (IVNGBM) are propsoed as 

extensions of BM and GBM, respectively. Then, to take into consideration the relative importance of each 

element, the interval-valued neutrosophic weighted BM (IVNWBM) and the interval-valued neutrosophic 

weighted GBM (IVNWGBM) are further defined. Subsequently, the novel MCDM approaches for the 

selection of renewable energy, which are in view of the interrelationships among elements, are explored 

based on the IVNWBM and IVNWGBM operator. Furthermore, the applicability of the proposed 

approaches is demonstrated by a numerical example about the selection of renewable energy. In addition, 

the influence of the parameters is investigated and discussed. Finally, a comparative analysis composed 

of two cases verifies the feasibility of the proposed MCDM approaches. 

KEYWORDS: multi-criteria decision-making; interval-valued neutrosophic set; weighted 

Bonferroni mean; weighted geometric Bonferroni mean; renewable energy selection 

1. INTRODUCTION
Renewable energy has been replacing traditional non-renewable energy owing to the limitation of the 

latter and environmental protection. Renewable energy is energy that can be circularly regenerated in 

nature. It mainly includes solar energy, wind energy, biomass energy, tidal energy and ocean thermal 

energy, just name a few. Many researchers have been studying the selection problem of renewable energy 

(Mardani, Jusoh, Zavadskas, Cavallaro, & Khalifah, 2015; Troldborg, Heslop, & Hough, 2014). Some of 

them pointed out that the selection of renewable energy is a multi-criteria decision-making (MCDM) 

problem (Cristóbal, 2011; Yazdani-Chamzini, Fouladgar, Zavadskas, & Moini, 2013). Experts assess 

renewable energy with regard to several criteria including power of energy, investment ratio and emissions 

of carbon dioxide (CO2) avoided per year and so forth. The most proper renewable energy can be selected 

on the basis of the assessment information provided by experts. Because it becomes difficult for decision-

makers to identify an optimal alternative that maximizes all decision criteria, a multi-objective approach is 

required to examine tradeoffs considering each criterion. Kaya and Kahraman (Kaya & Kahraman, 2010) 

proposed a modified fuzzy VIKOR methodology to make a multi-criteria selection among alternative 

renewable energy options and production sites for Istanbul area using an integrated VIKOR-AHP 

methodology. 
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Fuzziness and uncertainty may exist in the assessment information due to the complexity and limitation 

of human cognition and sometimes the criteria are interdependent. For example, an expert may be 

uncertain about the upper bound of the power of an individual renewable energy. However, fuzzy and 

uncertain information do not be fully utilized in extant approaches of the selection of renewable energy. 

Especially, the interrelationships among criteria are not considered in the extant approaches. Therefore, 

novel MCDM approaches are required. In this paper, we propose selection approaches for renewable 

energy considering the interrelationships among criteria. To do that, Bonferroni mean (BM) and geometric 

BM (GBM) are employed. To take into consideration the relative importance of each element, we further 

define the interval-valued neutrosophic weighted BM (IVNWBM) and the interval-valued neutrosophic 

weighted GBM (IVNWGBM). Subsequently, the novel MCDM approaches for the selection of renewable 

energy, which are in view of the interrelationships among elements, are explored based on the IVNWBM 

and IVNWGBM operator. 

The remainder of this paper is organized as follows. In Section 2, we review the applications of MCDM 

in renewable energy selection. What’s more, neutrosophic set (NS) and BM are reviewed in this section. In 

Section 3, the definition and some properties of IVNGBM and IVNWGBM are investigated, based on 

which, novel MCDM approaches for the selection of renewable energy with interval-valued neutrosophic 

numbers (IVNNs) are presented. In order to demonstrate the application and verify the feasibility of the 

proposed MCDM approaches, a numerical example and a comparative analysis are conducted and 

discussed in Section 4. In addition, it also discusses the influence of parameters in IVNGBM and 

IVNWGBM on the proposed MCDM approaches. Finally, Section 5 concludes this paper and suggests 

several directions for future research. 

2. LITERATURE REVIEW
Since FS was proposed by Zadeh (L. A. Zadeh, 1965) in 1965, it has become a vital tool to construct 

MCDM approaches (Aghdaie, Zolfani, & Zavadskas, 2013; Bellman & Zadeh, 1970; Yager, 1977). After 

that, many researchers have been devoting themselves to handling with the imprecise, incomplete and 

uncertain information and have put forward numerous extensions of FS (Cao, Zhou, & Wang, 2016; H.-g. 

Peng & Wang, 2016; Turksen, 1986; Lotfi Asker Zadeh, 1968). Particularly, Florentin Smarandache 

(Smarandache, 1998, 1999) introduced the neutrosophic logic and the NS. 

2.1 NEUTROSOPHIC SET (NS) 
NS makes use of the functions of truth, indeterminacy and falsity to depict the fuzzy information. And 

the values of these three functions lie in ]0 ,  1 [  , the non-standard unit interval (Rivieccio, 2008), which is 

the extension to the standard interval  0,  1  of IFS. The indeterminacy factor here is impervious to truth

and falsity values while the incorporated uncertainty in IFS rests with the degrees of belongingness and 

non-belongingness (Majumdar & Samanta, 2014). Nevertheless, it is difficult to apply NS in realistic 

problems. Hence, Wang et al. (H. B. Wang, Smarandache, Zhang, & Sunderraman, 2010) defined the 

single-valued neutrosophic set (SVNS) and Ye (Ye, 2014) put forward the notion of the simplified 

neutrosophic set (SNS), which are both instances of NS. In addition, manifold MCDM approaches have 

been developed under single-valued neutrosophic environments and simplified neutrosophic environments 

(Ji, Wang, & Zhang, 2016; Liu & Wang, 2014; J. J. Peng, Wang, Wang, Zhang, & Chen, 2016; J. J. Peng, 

Wang, Zhang, & Chen, 2014; Şahin & Liu, 2016; Wu, Wang, Peng, & Chen, 2016; Ye, 2013). 

In the light of that it is more practicable to utilize interval numbers to describe the degrees of truth, 

falsity and indeterminacy about a certain statement in some circumstances rather than exact numbers, 

Wang et al. (H. B. Wang, Smarandache, Zhang, & Sunderraman, 2005) put forward the concept of the 

interval-valued neutrosophic set (IVNS) and presented the set-theoretic operators of IVNS. Other than NSs, 

the degrees of truth, indeterminacy and falsity of IVNSs are interval numbers. Up to now, plenty of 

MCDM approaches utilizing IVNS have been put forward (Chi & Liu, 2013; Şahin & Karabacak, 2015; Z. 

Tian, Zhang, Wang, Wang, & Chen, 2016; H. Zhang, Ji, Wang, & Chen, 2015; H. Zhang, Wang, & Chen, 

2016) and IVNSs have been applied in addressing practical problems (H. Ma, Hu, Li, & Zhang, 2016). 

Furthermore, studies about other extensions of NSs have been investigated (Z. P. Tian, Wang, Zhang, & 
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Wang, 2016; Hong Yu Zhang, Ji, Wang, & Chen, 2016), like multi-valued neutrosophic sets (Ji, Zhang, & 

Wang, 2016; J.-j. Peng, Wang, Wu, Wang, & Chen, 2015; J. Peng, Wang, & Yang, 2017), single valued 

trapezoidal neutrosophic sets (Liang, Wang, & Li, 2016), n-valued refined neutrosophic sets 
(Smarandache, 2013) and neutrosophic linguistic sets (Y. X. Ma, Wang, Wang, & Wu, 2016; Z. P. Tian, 

Wang, Wang, & Zhang, 2016a, 2016b; J. Q. Wang, Yang, & Li, 2016). 

The score function and accuracy function of IVNNs have been given as well as the comparative method 

of two IVNNs, which make it practical. 

Definition 1 (Şahin, 2014). Let      inf ,sup , inf ,sup , inf ,supA A A A A AA T T I I F F  be an IVNN, a score 

function L of A can be defined by 

 
2 inf sup 2inf 2sup inf sup

4

A A A A A AT T I I F F
L A

     
     (1) 

where    1,1L A   .

Definition 2 (Şahin, 2014). Let      inf ,sup , inf ,sup , inf ,supA A A A A AA T T I I F F  be an IVNN, an 

accuracy function N of A can be defined by 

     

   

1
inf sup inf 1 inf sup 1 sup

2

inf 1 inf sup 1 sup

A A A A A A

A A A A

N A T T I T I T

F I F I

        

      

,    (2) 

where    1,1N A   .

Definition 3 (Şahin, 2014). Suppose that      inf ,sup , inf ,sup , inf ,supA A A A A AA T T I I F F  and 

inf ,BB T     sup , inf ,sup , inf ,supB B B B BT I I F F  be two IVNNs. The comparative method of A and B 

can be defined as follows: 

(i). When    L A L B , A B ; and

(ii). When    L A L B  and    N A N B , A B .

Definition 4 (H. Y. Zhang, Wang, & Chen, 2014). Let      inf ,sup , inf ,sup , inf ,supA A A A A AA T T I I F F

and  inf ,sup ,B BB T T    inf ,sup , inf ,supB B B BI I F F  be any two IVNNs and 0  . The operations are 

defined as follows: 

(1)  inf inf inf inf ,sup sup sup sup ,A B A B A B A BA B T T T T T T T T       

   inf inf ,sup sup , inf inf ,sup sup ;A B A B A B A BI I I I F F F F     

(2)   inf inf ,sup sup , inf inf inf inf ,A B A B A B A BA B T T T T I I I I      

 sup sup sup sup , inf inf inf inf ,A B A B A B A BI I I I F F F F     

sup sup sup supA B A BF F F F   ; 

(3) 1 (1 inf ) ,1 (1 sup ) , (inf ) ,(sup ) , (inf ) ,(sup )A A A A A AA T T I I F F                     ; 

(4)            inf , sup , 1 1 inf ,1 1 sup , 1 1 inf ,1 1 supA A A A A AA T T I I F F
                   

     
; 

and 

(5)        inf ,sup , 1 sup ,1 inf , inf ,supA A A A A Aneg A F F I I T T   . 

2.2 Multi-criteria decision-making (MCDM) 
The applications of the extensions of FSs have attracted considerable researchers’ attention (Joshi & 

Kumar, 2012; J. J. Peng, Wang, Wang, Yang, & Chen, 2015; Shinoj & Sunil, 2012; J. Q. Wang, Han, & 

Zhang, 2014; J. Q. Wang, Wu, Wang, Zhang, & Chen, 2016; X.-Z. Wang et al., 2015), not excepting the 

researchers in energy. Wang et al. (B. Wang, Nistor, Murty, & Wei, 2014) using the TOPSIS (the 
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Technique for Order Preference by Similarity to Ideal Solution) approach, one of the branches of MCDM 

models, assessed the efficiency of hydropower generation in Canada. Khalili-Damghani et al. (Khalili-

Damghani, M., Santos-Arteaga, & Mohtasham, 2015) proposed a dynamic multi-stage approach to 

evaluate the efficiency of cotton production energy consumption by utilizing data envelopment analysis, a 

tool of MCDM. Additionally, critical reviews of MCDM approaches have been done to survey MCDM 

models, techniques and their empirical applications in various fields (Ananda & Herath, 2009; Govindan, 

Rajendran, Sarkis, & Murugesan, 2015; Ho, Xu, & Dey, 2010). 

As an important tool in constructing MCDM approaches, the aggregation operator captures widespread 

attention and some researches about the aggregation operator have been done under interval-valued 

neutrosophic environments. Zhang et al. (H. Y. Zhang et al., 2014) proposed the interval-valued 

neutrosophic weighted average (IVNWA) operator and the interval-valued neutrosophic weighted 

geometric average (IVNWG) operator. Based on these two aggregation operators, Ye (Ye, 2014) defined 

the ordered weighted average operator and the ordered weighted geometric averaging operator for IVNSs. 

All the aggregation operators mentioned above suppose that the elements integrated are mutually 

independent. In theory, the criteria in a MCDM problem should satisfy the requirement of independence. 

However, in some realistic MCDM problems like the selection of renewable energy, the criteria are 

correlative, in which the aggregation operators illustrated above become inapplicable. For instance, power, 

investment ratio, operation and maintenance cost and operating hours are four of the criteria in the 

selection of renewable energy and they are not independent. In the example, as known to all, investment 

ratio may be affected by power, and operation and maintenance cost may be bound up with operating 

hours. In order to overcome this deficiency and take into account the interrelationships among criteria, the 

Bonferroni mean (BM) is introduced. 

2.3 Bonferroni mean (BM) 
BM, firstly put forward by Bonferroni in Ref. (Bonferroni, 1950), has been extended to several kinds of 

FSs. For instance, Xu and Yager (Xu & Yager, 2011) defined the intuitionistic fuzzy BM (IFBM) and the 

intuitionistic fuzzy weighted BM (IFWBM) according to previous studies about BM and the weighted BM 

(WBM). Moreover, Xia et al. (Xia, Xu, & Zhu, 2012) investigated the generalized BM, which is proposed 

by Beliakov (Beliakov, James, Mordelová, Rückschlossová, & Yager, 2010), under intuitionistic fuzzy 

environments and developed the generalized WBM and the generalized intuitionistic fuzzy WBM. 

Furthermore, Zhou and He (Zhou & He, 2012) pointed out some drawbacks of WBM. To conquer these 

drawbacks, they proposed a novel WBM operator, which is called the normal WBM (NWBM). Based on 

BM, Xia et al. (Xia, Xu, & Zhu, 2013) defined geometric BM (GBM) and introduced the intuitionistic 

fuzzy GBM (IFGBM) and the weighted IFGBM (WIFGBM). And they also discussed some properties of 

IFGBM. On the basis of GBM in Ref. (Xia et al., 2013), Zhu et al. (Zhu & Xu, 2013) explored the GBM 

under hesitant fuzzy environments and put forward the hesitant fuzzy GBM (HFGBM) and the hesitant 

fuzzy Choquet GBM (HFCGBM). In addition, Liu and Wang (Liu & Wang, 2014) extended NWBM to 

aggregate single-valued neutrosophic numbers (SVNNs) and defined the single-valued neutrosophic BM 

(SVNBM) and the single-valued neutrosophic NWBM. Besides, many other extensions of BM have been 

developed (Z. P. Tian, Wang, Wang, & Chen, 2015; Z. P. Tian, Wang, Zhang, Chen, & Wang, 2015) and 

applied to tackle practical problems (Hong Yu Zhang, Ji, Wang, & Chen, 2017). 

IVNSs can more comprehensively express fuzzy and uncertain information during the processes of 

selecting renewable energy than other extensions of NSs like SVNSs. Moreover, criteria may be correlative 

in the selection problems of renewable energy. For solving such problems in selecting renewable energy, 

we intend to introduce BM. Nevertheless, to the best of our knowledge, BM has not been studied under 

interval-valued neutrosophic environments. To overcome this deficiency, in the first place, we propose the 

interval-valued neutrosophic BM (IVNBM) and the interval-valued neutrosophic GBM (IVNGBM). 

Considering that IVNBM and IVNGBM do not take into account the relative importance of each element, 

the interval-valued neutrosophic WBM (IVNWBM) and the interval-valued neutrosophic weighted GBM 

(IVNWGBM) are also put forward in this study. Additionally, novel MCDM approaches for the selection 

of renewable energy are constructed based on the proposed aggregation operators. 
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In this section, based on SVNBM in Ref. (Liu & Wang, 2014), the definition of IVNBM and IVNGBM

are put forward based on previous studies about IVIFBM and SVNBM. However, IVNBM and IVNGBM 

do not take into consideration the relative importance of each IVNN. IVNWBM and IVNWGBM are 

proposed in order to conquer this disadvantage. In addition, some properties of IVNBM and IVNGBM are 

investigated. Based on the proposed aggregation operators, novel MCDM approaches for the selection of 

renewable energy are constructed and the procedures are discussed in this section. 

3.1 IVNBM 

Definition 5. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of

IVNNs. IVNBM can be defined as: 

   

1

,

1 2
, 1

1
, , ,

( 1)

p q
n

p q p q

n i j
i j
i j

IVNBM x x x x x
n n






 
   
 
 

.      (3) 

Theorem 1. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of

IVNNs. The aggregated value by IVNBM in (3) is also an IVNN, and 

 

         

         

,

1 2

1 1

1 1

( 1) ( 1)

, 1 , 1

1

1 1

( 1) ( 1)

, 1 , 1

, , ,

1 1 , 1 1 ,

1 1 1 1 1 ,1 1 1 1 1

p q

n

p q p q
n np q p qn n n n

i j i j
i j i j
i j i j

p q
n np q p qn n n n

i j i j
i j i j
i j i j

IVNBM x x x

T T T T

I I I I

 

    

 
 



    

 
 

 
    
        
    
     

  
          
 
  

 

 

         

1

1

1 1

( 1) ( 1)

, 1 , 1

,

1 1 1 1 1 ,1 1 1 1 1 .

p q

p q p q
n np q p qn n n n

i j i j
i j i j
i j i j

F F F F



 

    

 
 

 
 

  
  

  


    
             
    
     

 

 (4) 

Proof. 

According to the operations (2) and (4) in Definition 4, we have      , , 1 1 ,
p p p

p

i i i ix T T I      
    

     1 1 , 1 1 ,1 1
p p p

i i iI F F         
    

,        , , 1 1 ,1 1 ,
p p p p

q

j j j j jx T T I I          
      

   1 1 ,1 1
p p

j jF F     
  

 and            , , 1 1 1 ,
p q p q p q

p q

i j i j i j i jx x T T T T I I             
    

           1 1 1 , 1 1 1 ,1 1 1
p q p q p q

i j i j i jI I F F F F               
    

. Let , , , ,ij ij ij ij ija T T I I          

   ,
qp

ij ij i i j jF F w x w x      ,     
1

,

1 2
, 1

1
( , , , )

( 1)

p q
n qpp q

n i i j j
i j
i j

IVNWBM x x x w x w x
n n






 
    
 
 

 

1

, 1

1

( 1)

p q
n

ij
i j
i j

n n







 
 
 
 

. According to the operational laws (1) and (3) in Definition 4,  
, 1

1

( 1)

n

ij
i j
i j

n n





 

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                       
1 1 1 1 1 1

1 1 1 1 1 1

, 1 , 1 , 1 , 1 , 1 , 1

1 1 ,1 1 , , , ,
n n n n n n

n n n n n n n n n n n n
ij ij ij ij ij ij

i j i j i j i j i j i j
i j i j i j i j i j i j

T T I I F F          
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Therefore,        
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Furthermore, the following inequalities are true: 
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which meets the requirements of an IVNN. 

Therefore, Theorem 1 holds. 

In the following part, we investigate some properties of IVNBM: 
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(4) (Monotonicity) Let , , , , ,
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,
i iy yF F  

   1,2, ,i n  be two collections of IVNNs. When
i ix yT T  , 

i ix yT T  , 
i ix yI I  , 

i ix yI I  , 

i ix yF F   and 
i ix yF F   for all i , 
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(6) (Boundedness) Let , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of IVNNs, and
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. We can obtain that  ,

1 2, , ,p q

nx IVNBM x x x x   . 

Proof. Since ix x , according to Equation (5) and Inequality (6), we have  ,

1 2, , ,p q

nIVNBM x x x 

 , , , ,p qIVNBM x x x x    . Likewise, we can obtain that  ,

1 2, , ,p q

nIVNBM x x x 

 , , , ,p qIVNBM x x x x    . Then,  ,

1 2, , ,p q

nx IVNBM x x x x   . 

In the following part, we discuss some special cases of IVNBM. 

1. When 0q  , from Equation (3) and (4), IVNBM reduces to the generalized interval-valued

neutrosophic average (GIVNA) operator as follows: 
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2. When 2p   and 0q  , IVNBM reduces to the interval-valued neutrosophic square average

(IVNSA) operator as follows: 
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3. When 1p   and 0q  , IVNBM reduces to the interval-valued neutrosophic average (IVNA)

operator as follows: 
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4. When 1p q  , IVNBM reduces to the interval-valued neutrosophic interrelated average (IVNIA)

operator as follows: 
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3.2 IVNWBM 

Definition 6. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs.  1 2, , ,
T

nw w w w  is the weight vector of ix   1,2, ,i n  where 0iw    1,2, ,i n  and 
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Theorem 2. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs.  1 2, , ,
T

nw w w w  is the weight vector of ix   1,2, ,i n  where 0iw    1,2, ,i n  and 

1
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ii
w


 . The aggregated value by IVNWBM in Equation (7) is also an IVNN, and 
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                           (8) 

Proof is given in appendix. 

3.3 IVNGBM 

Definition 7. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs. IVNGBM can be defined as: 
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Theorem 3. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs, then the aggregated value by IVNGBM in Equation (9) is also an IVNN, and 
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   (10) 

Proof is given in appendix. 

In the following part, we investigate some properties of IVNGBM: 

(1) When      1,1 , 0,0 , 0,0ix    1,2, ,i n ,        ,

1 2, , , 1,1 , 0,0 , 0,0p q

nIVNGBM x x x  . 

(2) When      0,0 , 1,1 , 1,1ix    1,2, ,i n ,        ,

1 2, , , 0,0 , 1,1 , 1,1p q

nIVNGBM x x x  . 

(3) (Idempotency) When all IVNNs ix   1,2, ,i n  are equal, i.e., ix x  for all i , 

 ,

1 2, , ,p q

nIVNGBM x x x x .              (11) 

Proof. Since ix x  for all i , we can obtain that 
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(4) (Monotonicity) Let , , , , ,
i i i i i ii x x x x x xx T T I I F F                   1,2, ,i n  and , , , ,
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i iy yF F  

    1,2, ,i n  be two collections of IVNNs. If 
i ix yT T  , 

i ix yT T  , 
i ix yI I  , 
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(5) (Commutativity) Let  1 2, , , nx x x  be any permutation of  1 2, , , nx x x , then 
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Proof. Since ix x , according to Equation (11) and inequality (12), we have 
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In the following part, we discuss some special cases of IVNGBM. 

1. When 0q  , from Equation (9) and (10), IVNGBM reduces to the generalized interval-valued

neutrosophic geometric average (GIVNGA) operator as follows: 
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2. When 2p   and 0q  , IVNBM reduces to the interval-valued neutrosophic square geometric

average (IVNSGA) operator as follows: 
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3. When 1p   and 0q  , IVNGBM reduces to the interval-valued neutrosophic geometric average

(IVNGA) operator as follows: 
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4. When 1p q  , IVNGBM reduces to the interval-valued neutrosophic interrelated square

geometric average (IVNISGA) operator as follows: 
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3.4 IVNWGBM 

Definition 8. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs.  1 2, , ,
T

nw w w w  is the weight vector of ix   1,2, ,i n  where 0iw    1,2, ,i n  and 

1
1

n

ii
w


 . IVNWGBM can be defined as: 

   
1

, ( 1)
1 2

, 1

1
, , , .ji

n
wwp q n n

n i j
i j
i j

IVNWGBM x x x px qx
p q






 
   
 
 

   (13) 

Theorem 4. Let p , 0q   and , , , , ,i i i i i i ix T T I I F F                  1,2, ,i n  be a collection of 

IVNNs.  1 2, , ,
T

nw w w w  is the weight vector of ix   1,2, ,i n  where 0iw    1,2, ,i n  and 

1
1

n

ii
w


 . The aggregated value by IVNWGBM in (13) is also an IVNN, and 
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  (14) 

Proof is given in appendix. 

3.5 PROCEDURES OF THE PROPOSED APPROACHES
Here we present our novel MCDM approaches for the selection of renewable energy based on the WBM 

(or the WGBM) for IVNNs. 

Assume there are m alternatives 1{ ,A A 2 ,A , }mA  and n criteria 1{ ,C C 2 ,C , }nC , whose 

subjective weight vector provided by the decision maker is 1 2( , , , )nw w w w , where 0jw 

( 1,2, ,j n ) and 
1

1
n

j

j

w


 . Let  ij m n
U a


  be the interval-valued neutrosophic decision matrix, where 

, ,
ij ij ijij a a aa T I F  is an evaluation value, denoted by IVNN, where inf ,sup

ij ij ija a aT T T 
 

 indicates the 

truth-membership function that the alternative iA  satisfies the criterion jC , inf ,sup
ij ij ija a aI I I 

 
 indicates 

the indeterminacy-membership function that the alternative iA  satisfies the criterion jC  and 

ijaF  inf ,sup
ij ija aF F 

 
 indicates the falsity-membership function that the alternative iA  satisfies the 

criterion jC . 

In the following part, the proposed MCDM approach to rank and select the most desirable alternative(s) 

is based upon IVNWBM (or IVNWGBM) and its procedures are as follows: 

Step 1: Normalize the decision matrix. 
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Criteria can be divided into two types: benefit criterion and cost criterion. The bigger the value of an 

alternative under a benefit criterion is, the better the attribute will be; conversely, the smaller the value of 

an alternative under a cost criterion is, the better the alternative is. 

To unify all criteria, the decision matrix needs to be normalized, and the normalized decision matrix 

 
n m

ijN b


  can be obtained by: 

 

if isa benefit criterion

if isa cost criterion

ij j

ij

ij j

a C
b

neg a C


 


.              (15) 

Step 2: Calculate the overall performance value ir   1,2, ,i m  of alternative iA . 

The overall performance value ir  can be computed by making use of IVNWBM or IVNWGBM. 

Step 3: Calculate the score value is  of the collective IVNN ir   1,2, ,i m .

According to the score function of IVNN defined in Definition 1, we can obtain the score value is  of 

each collective IVNN ir  utilizing Equation (1). 

Step 4: Calculate the accuracy value ia  of the collective IVNN ir   1,2, ,i m .

According to the score function of IVNN defined in Definition 2, we can get the accuracy value ia  of 

each collective IVNN ir  utilizing Equation (2). 

Step 5: Rank the alternatives according to the comparative method of IVNNs. 

According to the comparative method defined in Definition 3, we can derive the final ranking of 

alternatives. 

4. EXAMPLE AND COMPARATIVE ANALYSIS

4.1 NUMERICAL EXAMPLE 
In this subsection, a numerical example for the MCDM problem with IVNNs is used to demonstrate the 

applicability of the proposed decision-making approaches. 

The following example about the selection of renewable energy is adapted from Ref. (Yazdani-Chamzini 

et al., 2013). 

A government intends to select one kind of renewable energy to use for the sustainable development of 

local economy. After preliminary selection, there are three kinds of renewable energy: (1) solar energy 

( 1A ); (2) wind energy ( 2A ); (3) hydraulic energy ( 3A ). These three kinds of renewable energy are assessed 

by experts with respect to seven criteria: (1) power ( 1C ); (2) investment ratio ( 2C ); and (3) implementation 

period ( 3C ); (4) operating hours (C4); (5) useful life (C5); (6) operation and maintenance costs (C6); (7) 

emissions of CO2 avoided per year (C7). The criteria of C1, C4, C5 and C6 are benefit ones while the rest 

three criteria are cost ones. Moreover, these seven criteria are correlative. The weight vector of the criteria 

is calculated by Yazdani-Chamzini (Yazdani-Chamzini et al., 2013) as 

(0.319,0.09,0.026,0.116,0.134,0.042,0.273)w . In order to reflect the reality more accurately and obtain 

more fuzzy and uncertain information, we transform the evaluation values provided by experts into IVNNs, 

as shown in Table 1. 

Table1: The evaluation information 

A1 A2 A3 

C1 [0.7,0.8],[0.3,0.4],[0.4,0.5]   [0.7,0.9],[0.2,0.4],[0.4,0.6]   [0.7,0.9],[0.2,0.3],[0.4,0.5] 

C2 [0.2,0.3],[0.8,0.9],[0.6,0.7]   [0.2,0.3],[0.6,0.7],[0.6,0.7]   [0.3,0.6],[0.3,0.5],[0.8,0.9]   

C3 [0.3,0.4],[0.6,0.9],[0.7,0.8]   [0.3,0.4],[0.6,0.7],[0.5,0.6]   [0.4,0.5],[0.6,0.8],[0.7,0.9] 
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C4 [0.6,0.8],[0.1,0.2],[0.3,0.4]   [0.8,0.9],[0.1,0.3],[0.3,0.4]   [0.8,0.9],[0.3,0.4],[0.1,0.2] 

C5 [0.8,0.9],[0.1,0.2],[0.2,0.3]   [0.8,0.9],[0.3,0.5],[0.4,0.6]   [0.8,0.9],[0.4,0.5],[0.3,0.4] 

C6 [0.8,0.9],[0.5,0.6],[0.1,0.2]   [0.5,0.8],[0.1,0.2],[0.3,0.4]  [0.8,1],[0.1,0.3],[0.1,0.2] 

C7 [0.2,0.3],[0.8,0.9],[0.9,1]  [0.2,0.4],[0.5,0.7],[0.8,0.9]   [0.1,0.2],[0.7,0.9],[0.7,0.8] 

Assume 1p q  , we firstly utilize IVNWBM to solve the above MCDM problem about the selection 

of renewable energy, and the procedure is shown as follows: 

Step 1: Normalize the decision matrix. 

Since the criteria of C1, C4, C5 and C6 are benefit ones while the criteria C2, C3, and C7 are cost ones, the 

decision matrix can be normalized utilizing Equation (15), and the normalized decision information are 

shown in Table 2. 

Table2: Normalized evaluation information 

A1 A2 A3 

C1 [0.7,0.8],[0.3,0.4],[0.4,0.5] 
 

[0.7,0.9],[0.2,0.4],[0.4,0.6] 
 

[0.7,0.9],[0.2,0.3],[0.4,0.5] 

C2 [0.6,0.7],[0.1,0.2],[0.2,0.3] 
 

[0.6,0.7],[0.3,0.4],[0.2,0.3] 
 

[0.8,0.9],[0.5,0.7],[0.3,0.6] 

C3 [0.7,0.8],[0.1,0.4],[0.3,0.4] 
 

[0.5,0.6],[0.3,0.4],[0.3,0.4] 
 

[0.7,0.9],[0.2,0.4],[0.4,0.5] 

C4 [0.6,0.8],[0.1,0.2],[0.3,0.4] 
 

[0.8,0.9],[0.1,0.3],[0.3,0.4] 
 

[0.8,0.9],[0.3,0.4],[0.1,0.2] 
 

C5 [0.8,0.9],[0.1,0.2],[0.2,0.3] 
 

[0.8,0.9],[0.3,0.5],[0.4,0.6] 
 

[0.8,0.9],[0.4,0.5],[0.3,0.4] 
 

C6 [0.8,0.9],[0.5,0.6],[0.1,0.2] 
 

[0.5,0.8],[0.1,0.2],[0.3,0.4]  [0.8,1],[0.1,0.3],[0.1,0.2] 

C7 [0.9,1],[0.1,0.2],[0.2,0.3]  [0.8,0.9],[0.3,0.5],[0.2,0.4]  [0.7,0.8],[0.1,0.3],[0.1,0.2] 

Step 2: Calculate the collective overall value ir   1,2, ,i m  of alternative iA . 

Utilizing Equation (8), the collective matrix formed by the collective overall value ir  1,2, ,i m  is

     

     

     

0.1708,0.2791 , 0.7824,0.8406 , 0.8340,0.8723

0.1598,0.2327 , 0.8208,0.8873 , 0.8527,0.9028

0.1668,0.3710 , 0.8225,0.8801 , 0.8179,0.8682

C

 
 

  
 
 
 

. 

Step 3: Calculate the score value is  of the collective IVNN ir   1,2, ,i m .

Utilizing Equation (1), the score vector can be obtained as  0.6256, 0.6948, 0.6384s     .

Step 4: Calculate the accuracy value ia  of the collective IVNN ir   1,2, ,i m .

Utilizing Equation (2), the accuracy vector can be calculated as  0.0521, 0.0339,0.0114a    .

Step 5: Rank the alternatives according to the comparative method of IVNNs. 

Based on the above steps, the final order 1 3 2A A A  is obtained. Obviously, among the four 

alternatives, 1A  is the best one and 2A  is the worst one. 

Then, we utilize IVNWGBM to solve the above MCDM problem, and the ranking result is obtained: 

1 3 2A A A . It is evident that the best alternative is 1A  and the worst one is 2A . 

New Trends in Neutrosophic Theory and Applications. Volume II

27



4.2 The influence of parameters 
As discussed in Ref. (Zhu & Xu, 2013), the collective IVNN for a certain alternative with IVNWBM or 

IVNWGBM is monotonically increasing with increasing p (or q) and is symmetric about p q . In order to 

demonstrate the influence of the parameters p and q on the final ranking order of this numerical example, 

we calculate the ranking results of alternatives using different values of these two parameters. All referred 

values of p and q can be divided into three categories. In the first category, the value of p is smaller than 

that of q, the values of p and q are equal in the second category, whilst the value of p is bigger than that of 

q in the third category. The significant pairs of p and q and the respective final ranking results of two 

proposed approaches are shown in Table 3 and Table 4, respectively. When the difference between the 

values of p and q is big enough, the ranking result will stay stable. In Tables 1 and 2, we obtain the ranking 

results when the difference between the values of p and q varies to represent the influence of p and q. 

Table3: Ranking results of the approach using IVNWBM with different p and q 

p, q Score value is Ranking result 

0.001p  , 1q   
1 0.5042s   , 2 0.6683s   , 3 0.5220s    1 3 2A A A

0.1p  , 1q   
1 0.5934s   , 2 0.6839s   , 3 0.6031s    1 3 2A A A

1p  , 2q   
1 0.5725s   , 2 0.6568s   , 3 0.5817s  

1 3 2A A A

1p  , 5q   
1 0.4235s   , 2 0.5546s   , 3 0.4203s    3 1 2A A A

1p  , 10q   
1 0.2920s   , 2 0.4662s   , 3 0.2914s    3 1 2A A A

0.1p  , 0.1q   1 0.6936s   , 2 0.7453s   , 3 0.7014s    1 3 2A A A

1p  , 1q   1 0.6256s   , 2 0.6948s   , 3 0.6384s    1 3 2A A A

4p  , 4q   1 0.4684s   , 2 0.5689s   , 3 0.4528s    3 1 2A A A

10p  , 10q   
1 0.3688s   , 2 0.5228s   , 3 0.3336s    3 1 2A A A

0.1p  , 0q   
1 0.4697s   , 2 0.7182s   , 3 0.5034s    1 3 2A A A

0.5p  , 0q   
1 0.4480s   , 2 0.6971s   , 3 0.4812s    1 3 2A A A

1p  , 0q   
1 0.4192s   , 2 0.6681s   , 3 0.4489s    1 3 2A A A

5p  , 0q   
1 0.2640s   , 2 0.5035s   , 3 0.2597s   3 1 2A A A

As displayed in Table 3, with changeable values of p and q, the ranking result of alternatives may be 

slightly different. Furthermore, all score values shown in Table 1 obtained by the proposed approach using 

IVNWBM are smaller than 0. In addition, two different ranking results exist when the value of p is smaller 

than that of q. 2A  is the worst alternative in both of these two different ranking results. The best alternative 

is 
1A  when the value of q is smaller than 2  while the best one is 

3A in the when the values of p and q are 

not smaller than 4 . Two different ranking results, which are same with the ranking results in the first 

category, exist in the second category. When the values of p and q are smaller than 1 , the best alternative is 

1A  and the worst one is 3A . In the third category, 1A  is the best alternative and 2A  is the worst one when 

the value of p is not bigger than 1 . There is another ranking result whose best alternative is 3A  and the 

worst one is 2A  in the third category. 
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Table4: Ranking results of the approach using the IVNWGBM with different p and q 

p, q Score value is Ranking result 

0.001p  , 1q   
1 0.6016s  , 2 0.5426s  , 3 0.5710s   1 3 2A A A

0.1p  , 1q   
1 0.6696s  , 2 0.6142s  , 3 0.6397s   1 3 2A A A

1p  , 2q   
1 0.9800s  , 2 0.9690s  , 3 0.9751s   1 3 2A A A

1p  , 6q   
1 0.9996s  , 2 0.9992s  , 3 0.9997s  , 3 1 2A A A

0.1p  , 0.1q   
1 0.3768s   , 2 0.4375s   , 3 0.4027s   1 3 2A A A

0.5p  , 0.5q   
1 0.6495s  , 2 0.5892s  , 3 0.6135s   1 3 2A A A

1p  , 1q   
1 0.9254s  , 2 0.8985s  , 3 0.9096s   1 3 2A A A

0.1p  , 0q   
1 0.6694s   , 2 0.7020s   , 3 0.6843s    1 3 2A A A

0.5p  , 0q   
1 0.1470s  , 2 0.0805s  , 3 0.1093s   1 3 2A A A

1p  , 0q   
1 0.5977s  , 2 0.5418s  , 3 0.5672s   1 3 2A A A

2p  , 0q   
1 0.8862s  , 2 0.8614s  , 3 0.8792s   1 3 2A A A

5p  , 0q   
1 0.9946s  , 2 0.9922s  , 3 0.9954s   3 1 2A A A

As noted in Table 4, like what’s shown in Table 1, when the values of p and q vary, there may be slight 

differences in the ranking results of alternatives. In addition, when the value of p equals to that of q, the 

ranking result are same. The best alternative is 1A  and the worst one is 2A . Two different ranking results 

exist in the first category. When the values of p and q are bigger than 6 , the best alternative is 3A  and the 

worst one is 2A . Another ranking result in the first category is same as the ranking result in the second 

category and that in the third category when the value of p is smaller than 2 . In the third category, there is 

another ranking result whose best alternative is 3A  and the worst one is 4A . 

Moreover, all score values presented in Table 4 obtained by the proposed approach using IVNWGBM 

are bigger than those in Table 1 when the values of p and q are constant. 

According to Tables 3 and 4, we can conclude that as the values of p and q change, the ranking results 

obtained by a certain approach may be different. The reason for this difference is discussed. The values of 

these two parameters, which are determined according to the subjective preference of decision maker, can 

reflect his risk preference. And it is obvious that the ranking result of alternatives may be distinct when the 

decision maker’s risk preference varies. Therefore, the difference mentioned above, which also exists in the 

extant studies about BM, is reasonable. In practical, if the values of p and q are known or can be obtained 

by regression analysis with decision maker’s available data, it is considerable to utilize the proposed 

approaches. Otherwise, the proposed approaches are not suitable since their ranking results may be 

inaccurate and volatile. 

4.3 COMPARATIVE ANALYSIS 
For the sake of validating the feasibility of the proposed decision-making approaches, a comparative 

study is conducted. The study includes two cases. The first case compares the proposed approaches with 

approaches proposed by Liu and Wang (Liu & Wang, 2014) and Şahin (Şahin, 2014) under single-valued 

neutrosophic environments. The second case compares the proposed approaches with two approaches 

proposed by Şahin (Şahin, 2014) and two approaches proposed by Zhang et al. (H. Y. Zhang et al., 2014) 

under interval-valued neutrosophic environments. Since the extant MCDM selection approaches (Cristóbal, 

2011; Yazdani-Chamzini et al., 2013) for renewable energy cannot deal with IVNNs, the proposed 

approaches are not compare with approaches in Ref. (Cristóbal, 2011; Yazdani-Chamzini et al., 2013). The 

detail of the study is described in the following of this subsection. 

Case 1: The comparative analysis under single-valued neutrosophic environments. 

This case is based upon the same numerical example of MCDM problem with SVNNs in Ref. (Şahin, 

2014). The ranking results of the proposed approaches are compared with that of the approaches in Refs. 
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(Liu & Wang, 2014; Şahin, 2014). The approaches in Ref. (Şahin, 2014) are constructed on the basis of the 

proposed single-valued neutrosophic weighted operators and score function. Two single-valued 

neutrosophic weighted operators are developed by Şahin (Şahin, 2014) including the single-valued 

neutrosophic weighted average (SVNWA) operator and the single-valued neutrosophic weighted geometric 

average (SVNWGA) operator. The approach in Ref. (Liu & Wang, 2014) utilizes the proposed single-

valued neutrosophic normalized WBM (SVNNWBM) operator and the score function to rank alternatives. 

The ranking results of the proposed approaches and the approaches in Refs. (Liu & Wang, 2014; Şahin, 

2014) are listed in Table 5. 

Table5: Ranking results under single-valued neutrosophic environments 

Approach 
The ranking 

result 

The best 

alternative(s) 

The worst 

alternative(s) 

Approach using SVNWA in 

Ref. (Şahin, 2014) 4 2 3 1A A A A 4A 1A

Approach using SVNWGA in 

Ref. (Şahin, 2014) 4 2 3 1A A A A 4A 1A

Approach using SVNNWBM 

in Ref. (Liu & Wang, 2014) 4 2 3 1A A A A 4A 1A

The proposed approach using 

IVNWBM 4 2 3 1A A A A 4A 1A

The proposed approach using 

IVNWGBM 2 3 4 1A A A A 2A 1A

From Table 5, same ranking result is obtained by the approaches proposed by Şahin (Şahin, 2014) and 

Liu and Wang (Liu & Wang, 2014) and the proposed approach using IVNWBM. The best alternative of 

these approaches is 4A  and the worst one is 1A . A different ranking result is obtained by the proposed 

approach using IVNWGBM. The best alternative of this proposed approach is 2A  and the worst one is 1A . 

In this case study, the ranking results of the approach using SVNWA in Ref. (Şahin, 2014), the approach 

in Ref. (Liu & Wang, 2014) and the proposed approach using IVNWBM are the same. And the same 

rankings of these three approaches illustrates that the proposed approach using IVNWBM can be 

effectively utilized to solve MCDM problems under single-valued neutrosophic environments. Different 

ranking results are obtained by the approach using SVNWGA in Ref. (Şahin, 2014) and the proposed 

approach using IVNWGBM. The reason is provided as follows. The proposed approach using IVNWGBM 

takes into account the interrelationships among criteria while the approach using SVNWGA in Ref. (Şahin, 

2014) assumes that the criteria are independent. It is rational that the ranking results of these two 

approaches are different. We also explain why the ranking results of two proposed approaches are 

different. The proposed approach utilizing IVNWBM obtains a pessimistic result, while the proposed 

approach using IVNWGBM calculates an optimistic one. Therefore, the ranking results of the two 

proposed approaches may be different. 

In general, the proposed approaches can be used to tackle MCDM problems with SVNSs while the 

extant SVNS approaches cannot address MCDM problems with IVNSs. From this perspective, the 

proposed approaches are flexible ones. 

Case 2: The comparative analysis with extant interval-valued neutrosophic MCDM approaches. 

This case is based upon the same numerical example of MCDM problem with IVNNs presented in Ref. 

(Şahin, 2014). The ranking results of the proposed approaches are compared with those of the MCDM 

approaches in Refs. (H. Y. Zhang et al., 2014) and (Şahin, 2014). Two approaches in Ref. (Şahin, 2014) 

make use of the IVNWA and IVNWG operators respectively to obtain the integrated value of each 

alternative considering all criteria. Two approaches proposed by Zhang et al. (H. Y. Zhang et al., 2014) 

utilize the novel IVNWA and IVNWG operators which are developed based on improved operations for 
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IVNSs. Additionally, the score value and the accuracy value are calculated to get the ranking list of 

alternatives. The ranking results of the proposed approaches and the approaches in Refs. (Şahin, 2014; H. 

Y. Zhang et al., 2014) are listed in Table 6. 

Table6: Ranking results under interval-valued neutrosophic environments 

Approach 
The ranking 

result 

The best 

alternative(s) 

The worst 

alternative(s) 

Approach using IVNWA in 

Ref. (Şahin, 2014) 
4 1 2 3A A A A

4A 3A

Approach using IVNWG in 

Ref. (Şahin, 2014) 
1 4 2 3A A A A

1A 3A

Approach using IVNWA in 

Ref. (H. Y. Zhang et al., 2014) 
4 1 2 3A A A A

4A 3A

Approach using IVNWG in 

Ref. (H. Y. Zhang et al., 2014) 
1 4 2 3A A A A

1A 3A

The proposed approach using 

IVNWBM 
4 1 3 2A A A A

4A 2A

The proposed approach using 

IVNWGBM 
1 3 4 2A A A A

1A 2A

As shown in Table 6, the best alternative of the proposed approach using IVNWGBM and approach 

using IVNWG in Refs. (Şahin, 2014; H. Y. Zhang et al., 2014) is 1A  while that of the other three 

approaches is 4A . Moreover, two proposed approaches get the same worst alternative which is different 

from that obtained by the four approaches in Refs. (Şahin, 2014; H. Y. Zhang et al., 2014). The worst 

alternative in the proposed approaches is 2A  while that of the four approaches in Refs. (Şahin, 2014; H. Y. 

Zhang et al., 2014) is 3A . 

The reasons why inconsistencies exist in Table 6 are provided. Firstly, the operations and comparative 

method in approaches in Ref. (H. Y. Zhang et al., 2014) overcome the deficiencies of those in approaches 

proposed by Şahin (Şahin, 2014). The ranking results of approaches in Refs. (Şahin, 2014; H. Y. Zhang et 

al., 2014) may be different when using same aggregation operator. From Table 6, the ranking results 

obtained by the approaches in Refs. (Şahin, 2014; H. Y. Zhang et al., 2014) are same when using same 

aggregation operator. The reason is that the differences between approaches in Refs. (Şahin, 2014; H. Y. 

Zhang et al., 2014) with same aggregation operator do not influence the ranking result in this study. 

Nevertheless, different ranking results may be obtained by the approaches in Refs. (Şahin, 2014; H. Y. 

Zhang et al., 2014) using same aggregation operator when the decision matrix changes. Secondly, the 

approaches in Ref. (Şahin, 2014) assume that criteria are independent while the proposed approaches take 

into account the interrelationships among criteria. What’s more, the operations and comparative method 

utilized in the proposed approaches are different from those in the approaches in Ref. (Şahin, 2014). 

Therefore, it is reasonable that different ranking results can be obtained by the ranking results of the 

proposed approaches and the approaches in Ref. (Şahin, 2014). Thirdly, the two proposed approaches 

investigate the interrelationships among criteria while the two approaches in Ref. (H. Y. Zhang et al., 2014) 

assume criteria independent. However, criteria are usually correlative in practical MCDM problems like 

the selection of renewable energy. Thus, the ranking results obtained by the proposed approaches are in 

accord with decision makers’ preferences than those obtained by the two approaches in Ref. (H. Y. Zhang 

et al., 2014). Fourthly, similar to what’s presented in Case 1, IVNWBM can be thought as a more 

pessimistic operator while IVNWGBM can be thought as a more optimistic one. Thus, difference may exist 

in the ranking results of the two proposed approaches. In addition, it is not necessary to say which 

proposed approach is the best. Utilizing which approach to obtain the ranking result relies on the 
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preference of decision maker, for instance, if a decision maker has a pessimistic nature, it may be more 

appropriate to utilize the proposed approach utilizing IVNWBM. 

Generally speaking, the proposed approaches can be used to solve MCDM problems under single-valued 

neutrosophic environments and interval-valued neutrosophic environments. In addition, the proposed 

approaches take into consideration the interrelationships among criteria, which make them more suitable in 

dealing with practical MCDM problems under interval-valued neutrosophic environments than the extant 

approaches. 

5. CONCLUSION AND FUTURE RESEARCH
In practice, the fuzziness and uncertainty often exist in the decision information provided by decision 

makers when selecting renewable energy, and IVNSs can depict the information. Moreover, the criteria 

may be interdependent in the problems of selecting renewable energy. BM is a valid tool to consider the 

interrelationships among criteria. Therefore, in this study, we extended BM and GBM to interval-valued 

neutrosophic environments, and defined IVNBM and IVNGBM. Some properties of these two operators 

were discussed. As IVNBM and IVNGBM do not take the relative importance of each integrated element 

into account, IVNWBM and IVNWGBM were proposed in this study. As well, two approaches applying 

IVNWBM and IVNWGBM respectively were presented to solve selection problems of renewable energy 

under interval-value neutrosophic environments. In addition, a numerical example about the selection of 

renewable energy is used to demonstrate the application of the proposed approaches. And the influence of 

parameters on final rankings is discussed. Subsequently, we verify the feasibility of the proposed 

approaches by comparing with other existing MCDM approaches. 

The contributions of this paper are concluded as follows: firstly, this paper established novel approaches 

for the selection of renewable energy. Secondly, BM and GBM were extended into interval-valued 

neutrosophic environments. This theoretical extension can provide support for future other application 

researches. Thirdly, the proposed approaches reduce the loss of information during the processes of 

selecting renewable energy by utilizing IVNSs to deal with fuzzy and uncertain information. Fourthly, the 

proposed approaches take into consideration of the interrelationships among criteria, and the ranking 

results obtained by the proposed approaches are closer to decision makers’ preferences than extant 

approaches. The feasibility and effectiveness have been proved by the comparative analysis. 

Two promising directions are provided for future research. First, it is significant to apply IVNWBM and 

the IVMWGBM to solve problems in various other fields, such as purchasing decision-making, commodity 

recommendation and medical diagnosis. Second, the priority levels of criteria are different. It is worth of 

further study to construct a MCDM approach which considers the priority of criteria on the basis of this 

paper. 
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APPENDIX. PROOF OF THEOREMS 

Proof of Theorem 2. 

According to the operations (3) and (4) in Definition 4, we have    1 1 ,1 1 ,
i iw w

i i i iw x T T      
  

       , , ,
i i i iw w w w

i i i iI I F F      
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        

  jw

jF  

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i i i i

p p p p
w w w wp

i i i i i iw x T T I I      
           

   

     1 1 ,1 1
i i

p p
w w

i iF F  
    

 
and        q

1 1 , 1 1 ,
j j

q q
w w

j j j jw x T T  
     

 
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           1 1 ,1 1 , 1 1 ,1 1
j j j j

q q q q
w w w w

j j j jI I F F      
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                 1 1 1 1 , 1 1 1 1 , 1 1 1 ,
i j i j i j

p q p q p q
w w w w w w

i j i j i jT T T T I I       
              

  

                 1 1 1 , 1 1 1 ,1 1 1
i j i j i j

p q p q p q
w w w w w w

i j i j i jI I F F F F       
          

  
. Let 

ij     , , , , ,
qp
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. By the operational laws (1) and (3) in 
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  which meets the requirements of an IVNN. 

Hence, Theorem 2 is true. 

Proof of Theorem 3. 

According to the operations (1) and (3) in Definition 4, we have ipx 

   1 1 ,1 1 , ( ) ,( ) , ( ) ,( )
p p

p p p p

i i i i i iT T I I F F                   
and    1 1 ,1 1 ,

q q

j j jqx T T      
  

( ) ,( ) , ( ) ,( )q q q q

j j j jI I F F          , then        1 1 1 ,1 1 1 ,
p q p q

i j i j i jpx qx T T T T           
  

               , , , .
p q p q p q p q

i j i j i j i jI I I I F F F F          
      

 Let , , , , ,ij ij ij ij ij ij ijT T I I F F                 

               1 (1 ) (1 ) ,1 1 1 , , , ,
p q p q p q p q

p q

i j i j i j i j i j i jpx qx T T T T I I I I F F                    
        

   
p q

i jF F  


, then 

1 1

, ( 1) ( 1)

1 2
, 1 , 1

1 1
( , , , ) ( ) ( )

n n
p q n n n n

n i j ij
i j i j
i j i j

IVNGBM x x x px qx
p q p q

 

 
 

   
       
    
   

. 

According to the operation (4) in Definition 4,        
1 1 11

( 1) ( 1) ( 1)( 1) , , 1 1 ,n n n n n nn n
ij ij ij ijT T I     

  
    

  

     
1 1 1

( 1) ( 1) ( 1)1 1 , 1 1 ,1 1 .n n n n n n
ij ij ijI F F    

  
       

  
 And according to the operation (2) in Definition 4, 

           
1 1 1 1 11

( 1) ( 1) ( 1) ( 1) ( 1)( 1)

, 1 , 1 , 1 , 1 , 1 , 1

, , 1 1 ,1 1 , 1 1 ,
n n n n n n

n n n n n n n n n nn n
ij ij ij ij ij ij

i j i j i j i j i j i j
i j i j i j i j i j i j

T T I I F         

     
     

    
           
    
    

    

 
1

( 1)

, 1

1 1 .
n

n n
ij

i j
i j

F  





 



  According to the operation (4) in Definition 4,  
1

( 1)

, 1

1 n
n n

ij
i j
i j

p q
 




 


       

1 1 1 1

1 1 1 1

( 1) ( 1) ( 1) ( 1)

, 1 , 1 , 1 , 1

1 1 ,1 1 , 1 1 , 1 1 ,

p q p q p q p q
n n n n

n n n n n n n n
ij ij ij ij

i j i j i j i j
i j i j i j i j

T T I I

   

      

   
   

   
          
                 
          
             

   

Florentin Smarandache, Surapati Pramanik (Editors)

34



     

1 1 1

1 1 1

( 1) ( 1) ( 1)

, 1 , 1 , 1

1 1 , 1 1 1 1 1 (1 ) (1 ) ,

p q p q p q
n n n

p qn n n n n n
ij ij i j

i j i j i j
i j i j i j

F F T T

  

     

  
  

  
       
                
       
         

  

      

1 1

1
1

( 1)
( 1)

, 1 , 1

1 1 1 (1 ) (1 ) , 1 1 ,

p q p q
n n p q n np q n n

i j i j
i j i j
i j i j

T T I I

 

   

 
 

 
    
          
    
     

 

              

1 1 1

1 1 1

( 1) ( 1) ( 1)

, 1 , 1 , 1

1 1 , 1 1 , 1 1 .

p q p q p q
n n np q p q p qn n n n n n

i j i j i j
i j i j i j
i j i j i j

I I F F F F

  

       

  
  

  
       
            
       
         

  

Moreover, the following inequalities hold: 

    

1

1

( 1)

, 1

0 1 1 1 1 1 1

p q
n p q n n

i j
i j
i j

T T



 




 
       
 
 

 ,  

1

1

( 1)

, 1

0 1 1 1 (1 ) (1 ) 1

p q
n

p q n n
i j

i j
i j

T T



  




 
       
 
 

 , 

    

1

1

( 1)

, 1

0 1 1 1

p q
n p q n n

i j
i j
i j

I I



 




 
    
 
 

 ,     

1

1

( 1)

, 1

0 1 1 1

p q
n p q n n

i j
i j
i j

I I



 




 
    
 
 

 , 

    

1

1

( 1)

, 1

0 1 1 1

p q
n p q n n

i j
i j
i j

F F



 




 
    
 
 

  and     

1

1

( 1)

, 1

0 1 1 1

p q
n p q n n

i j
i j
i j

F F



 




 
    
 
 

 , which meets the 

requirements of an IVNN. 

Therefore, Theorem 3 holds. 

Proof of Theorem 4. 
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Additionally, the following inequalities are proved to be true: 
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, which meets the requirements of an IVNN. 

Hence, Theorem 4 is true. 
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