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Abstract: In this article, we expand the Muirhead mean (MM) operator and dual Muirhead mean
(DMM) operator with single-valued neutrosophic 2-tuple linguistic numbers (SVN2TLNSs) to
propose the single-valued neutrosophic 2-tuple linguistic Muirhead mean (SVN2TLMM) operator,
the single-valued neutrosophic 2-tuple linguistic weighted Muirhead mean (SVN2TLWMM)
operator, the single-valued neutrosophic 2-tuple linguistic dual Muirhead mean (SVN2TLDMM)
operator, and the single-valued neutrosophic 2-tuple linguistic weighted dual Muirhead mean
(SVN2TLWDMM) operator. Multiple attribute decision making (MADM) methods are then
proposed using these operators. Finally, we utilize an applicable example for green supplier
selection in green supply chain management to prove the proposed methods.

Keywords: multiple attribute decision making (MADM); single-valued neutrosophic 2-tuple
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1. Introduction

In order to effectively depict the fuzziness and uncertainty information in real multiple
attribute decision making (MADM) problems, Smarandache [1,2] proposed the use of neutrosophic
sets (NSs), which have attracted the attention of many scholars. The main advantage of NSs is their
capacity to denote inconsistent and indeterminate information. An NS has more potential power
than any other fuzzy mathematical tool, such as the fuzzy set [3], the intuitionistic fuzzy set (IFS) [4],
and the interval-valued neutrosophic fuzzy set (IVIES) [5]. However, it is hard to use NSs to solve
practical MADM problems. Therefore, Wang et al. [6,7] proposed the use of a single-valued
neutrosophic set (SVNS) and an interval neutrosophic set (INS), which can include much more
information than fuzzy sets, IFSs, and IVIFSs. Ye [8] proposed the use of MADM with the correlation
coefficients of SVNSs. Broumi and Smarandache [9] investigated the correlation coefficients of
interval neutrosophic numbers (INNs). Biswas et al. [10] proposed the use of single-valued
neutrosophic number TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution)
models. Liu et al. [11] developed the generalized Hamacher operations for SVNSs. Sahin and Liu
[12] presented the maximizing deviation method using neutrosophic settings. Ye [13] defined some
similarity measures of INSs. Zhang et al. [14] defined some interval neutrosophic information
aggregating operators. Ye [15] proposed the use of a simplified neutrosophic set (SNS), which
included SVNSs and INSs. Many researchers have given their attention to SNSs. For example, Peng
et al. [16] presented some basic operational laws of simplified neutrosophic number (SNNs) and
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proposed the use of simplified neutrosophic aggregation operators. Additionally, Peng et al. [17]
studied an outranking method to handle simplified neutrosophic information, and then Zhang et al.
[18] presented an extended version of Peng’s method using an interval neutrosophic environment.
Liu and Liu [19] developed a generalized weighted power operator with SVNNSs. Deli and Subas
[20] discussed a method to rank SVNNSs. Peng et al. [21] proposed the use of multi-valued
neutrosophic sets and defined some power operators for multiple attribute group decision making
(MAGDM). Zhang et al. [22] defined the weighted correlation coefficient for INNs. Chen and Ye [23]
proposed the use of Dombi operations with SVNNSs. Liu and Wang [24] proposed the use of the SVN
normalized weighted Bonferroni mean (WBM). Wu et al. [25] proposed the use of prioritized operator
and cross-entropy with SNSs in MADM problems. Li et al. [26] developed some SVNN Heronian
mean operators in MADM problems. Xu et al. [27] proposed the use of the TODIM (an acronym in
Portuguese for Interactive Multi-Criteria Decision Making)method for SVN MADM.

Even though SVNSs have been widely used in some areas, all the existing methods are
unsuitable  for expressing the truth-membership, indeterminacy-membership, and
falsity-membership of an element to a 2-tuple linguistic term set, which can affect a decisionmaker’s
confidence level when they are making evaluations. In order to overcome this limit, Wu et al. [28]
defined the basic concept of single-valued neutrosophic 2-tuple linguistic sets (SVN2TLSs) to cope
with this problem on the basis of the SVNSs [6] and 2-tuple linguistic term set [29,30]. Therefore,
how to aggregate these single-valued neutrosophic 2-tuple linguistic numbers (SVN2TLNs) is an
interesting issue. To solve it, we propose the use of some Muirhead mean (MM) operators with
SVN2TLNSs. In order to do this, the remainder of this paper is presented as follows: In Section 2, we
introduce the concept of SVN2TLSs. In Section 3, we develop some MM operators with SVN2TLNSs.
In Section 4, we develop some MADM models with SVN2TLNs based on these operators. In Section
5, we present a numerical example to select green suppliers with SVN2TLNs in order to illustrate the
method proposed. Section 6 finishes this paper with some concluding remarks.

2. Preliminaries

Wu et al. [28] proposed the use of the concept of SVN2TLSs based on the SVNSs [6] and 2-tuple
linguistic term sets [29,30].

2.1. Single-Valued Neutrosophic 2-Tuple Linguistic Sets
Definition 1 ([28]). A SVN2TLS A in X is given as follows:

A={(550002)- (T4 (), 1, (%), F, (x),.xe X))} 1)

where Sy, € S, TA(x)e [0,1], ]A(x)e [0,1], and F, (x)e [0,1] , with corresponding condition
037;(x)+1A (x)+FA(x)S3 , Vxe X . The values T, (x),IA (x) , and FA(X) represent,

respectively, the truth-membership, the indeterminacy-membership, and the falsity-membership of the element

X to the linguistic variable (Sa(x) , p) .

For convenience, Wu et al. [28] called a= <(Sa, P, ), (7;, 1,.F, )> a single-valued
neutrosophic ~ 2-tuple  linguistic  number, where T € (0,1) I, € (0,1) F e (0,1)
0ST,+1,+F,<3 s,,€S, and pe[-0.50.5).
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Definition 2 ([31]). Let a, =<(Sal,p1) (T I ,F, )> and a, =<(Sa2,p2),(7;2,1a2,Fa2 )> be two

(2+Tal -1, —Fal)
3

SVN2TLN, S(a)=A(A" (sg(g]),pl)

S(a,)e [0,7] and

(2+Taz -1, —Faz)

S(dz) =A(A™ (Sg(az),Pz) ,S(dz)e [O,t] be the scores values of a, and a,,

respectively, and let H(dl)=A<A_l( (a ,pl)(T -F, )> H(ﬁl)e [—t,t] and
H(&2)=A<A_l (Sa(az)’pZ)(T -F )>,H(dz)€ [—t,t] be the accuracy degrees of a, and d, ,
respectively. Then, if S(5)<S(5 ),dl <a,; ifS(&I)ZS(dz), then (1) if H(&l)ZH(dz),
a, =a, ,and(Z)sz( )<

Definition 3 ([32]). Let g, = ( al,pl),(Tal,Ial,Fa1 )> and a, :<(saz,,02),(Taz,la2,Fa2 )> be two
SVN2TLNSs; then, the following is true:

1) @ ®a, =<A(A_1(s9(al),pl)+A_l(sg(az),pz)) (1,+1, -T1,T,.1,1, .F,F, )>

aay?

@) dl®52:<A(A1 (S22 ) A (0o 22 )T T o1, +1, =1, L By +F, = F, )>

@) Ad, = <A(1A-1 (So(0)- 2 )),(1—(1—7;1 V() (F, )l)>,/1 >0;

4) (az)‘=<A(A‘1(sg(al),pl)‘),((7;1)%1—(1—5[)ﬁl—(l—Fal)ﬂ)>,ﬂ>o,

where A™ is the function of converting the 2-tuple linguistic variables to the exact numbers and Ais the

function of converting the computing results to the 2-tuple linguistic variables.

2.2. MM Operators

Muirhead [33] proposed the use of the MM operator. Tang et al. [34] developed some
interval-valued Pythagorean fuzzy Muirhead mean operators. Wang et al. [35] proposed the use of
some picture fuzzy Muirhead mean operators in MADM problems.

Definition 4 ([33D). Let a,(j=12,...,n) be a set of nonnegative real numbers, and
P=(p,,pys---»p,)E R" beavector of parameters if:

MMP(alaaz”' [ z H o ]ZZ " : )

o‘eS Jj=1

MMP is the MM operator, where O(j)(j=1,2,...,n) is any permutation of {1, 2,..., n} and

S, is the set of all permutations of{l, 2,0n, n} )

3. Some Muirhead Mean Operators with SVN2TLNs
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3.1. The Single-Valued Neutrosophic 2-Tuple Linguistic Muirhead Mean (SVN2TLMM) Operator

This section covers MM and its fusing with SVN2TLNSs and proposes the SVN2TLMM operator.
Definition 5. Let &, = (s, p,),(T; 1, F;)) (j =1,2,...,n) beasetof SYN2TLNs. The SYN2TLMM

J2ric

operator is

SVN2TLMMP(511,d2,...,d,,)=[i[ ® ( i) ,)Djzﬂ"’y ©
J

n!

Theorem 1. Let a, = <(Sj,pj>,(Tj,Ij,Fj )>(] =1,2,...,n) be a set of SVN2TLNs. The aggregated
value by using SVN2TLMM operators is also a SYN2TLN where
SVN2TLMM” (G, , a,,...,a,)

1
_ 1 : ~P; jJi

1
1 u _ Pj Z::H”f
A ;(Z(H(A 1(3./’/’./)) D >
s\ oeS, \j=1
1 1
_r 4
. | \ T @
= 1—]‘[[1—1‘[(%))‘”] - 1—H[1—H(1—1a(j))’fJ ;
O€S, J=1 oeS, Jj=1
_
n % Z’;:‘P,
=TT TTo-£, |
€S, J=1
Proof. Based on the exponential operation laws of SVN2TLNs, we can derive
~P; __ -1 P Pj _ _ P _ _ P
Qi) = {A((A (5,.2,) )’((Trf(./)) A=(=Lp,)7 1= =) )} : ®)

n

Therefore, by utilizing the multiplication operation laws of SVN2TLNs, the 5;){]) can be
=1
derived as follows:

[T 0 |

al = j - j
®dy) =1 T1T)" ’I_H(l —Lo)” s | 6)
L

P;
I_H(I_FG(/'))
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Therefore, according to the addition operation laws of SVN2TLNs, we can obtain

g(@"%))
() '
) H( H(T V’}H(l Ta-1, )] 7

o€Ss, o€Ss, Jj=1

H(l‘g(l‘Fam)Ej

o€S,

Furthermore, based on the scalar-multiplication operation of SVN2TLNSs, we can derive

1 ",
HEIEED)
1 L -1 Py
2 Z(rre e
n % n % . (8)
= 1—]‘[(1— } (Ta(j.))"’] ,H[I—H(l—lg(j))”"j ,

€S, €S, Jj=1

1

I1 [1—11(1—5,“))”’} |

ceSs,

Therefore, the aggregated value by using SVN2TLMM operators can be listed as follows:
SVN2TLMM” (G,,a, .., d,)

1
— l ('B é &'Pj Zf;’:lp/
n!\ oes, \ j=1 a(j)

A i{Z[ﬁ(A‘(sjapj))p/ﬂz;lm :

n! oes, \_j=1

n 1‘ ijlp/ n % 27:11)1
o1 0 CRE 1 o (1 s CEVAEY
O €S, j=

n % ﬂ
1- 1—H(1—H(1—Fa(_/))"fj
J=

oeS,

Therefore, Equation (4) is kept. In Equations (4)—(9), the A" is the function of converting the
2-tuple linguistic variables to the exact numbers and A is the function of converting the computing
results to the 2-tuple linguistic variables.

Then, we need to prove that Equation (4) is a SVN2TLN. We need to prove two conditions as
follows:
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D 0<T<L1,0<I<1,0SF<1 @ 0<T+I+F<3
Let

1
n % m
T= 1—]‘[(1—]1(@“))”’}
b

o€Ss,

1

n % z;p,
I=1- 1—]‘[[1—]‘[(1—10(1.))1’/J
j=1

oes,

1
1

n n =P
Fe1- -T11-TTa- |
=1

oeSs,

Proof. (1) Because 0< TG(/.) <L, we get

0<(T, ;)" <1 and 0<1-TT(T, )" <1. (10)

J=1

Then,

L
0< H[l—ll[(T(,(_f))p’J”‘ <1 an
j=1

oeS,

B
0< I—H[I—H(Tg(j))pfj | <lI. (12)
j=l

oeS,

That means0 < 7 <1 , so (1) is maintained. Similarly, we can find that0 </ <LL0< F <1.
(@) Because 0ST<L,OSILI,0SF<L1,0<T+I+F<3.
o

Example 1. Let{(s;,0),(0.7,0.5,03)),((s,,0),(0.8,0.6,0.2)), {(s,,0),(0.6,0.7,0.1)) be three
SVN2TLNs, and P=(0.3,0.4,0.2); then, according to Equation (4), we have
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SVN2TIJMM(O'3’O.4,O'2) [

J=1

VU sfin

((5::0),(0.7,05,0.3)).((5,,0).(0.8,06,0.2)),
((5,,0).(0.6,0.7,0.1))

(s.0))" DZ}

|

1

1

= {1]‘[[11'[(&9“” ,1[1]‘[(11‘[(11 om)”/j} ,

1—[1—H(1—H<1—FM>“} J

7 of 35
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1 (30.3 ><40.4 % 20.2 + 30.3 X 2044 ><402 + 4043 ><30.4 X20.2

1

JOA3+OA4+O,2

1 \0.3+0.4+0.2

1
0.3+0.4+0.2

1
0.3+0.4+0.2

314407 X204 X302 4203 34 x 42 1 209 x 44 x 30
(1-0.7%0.8"*x0.6°*)x(1-0.7* x 0.6 x0.8"%) |*
1| x(1-0.8"%0.7* x0.6"* )x(1-0.8"* x0.6"*x0.7°?)
x(1-0.6"%0.7"*x0.8°%)x(1-0.6"* x0.8"*x0.7°? )
(1-(1-0.5)""x(1-0.6)"" x(1-0.
X(1-(1-0.5)"x(1-0.7)"’ x(1-
i x(1-(1-0.6)"x(1-0.5)" x(1-

e x(1-(1-0.6)"x(1-0.7)" x(1-
X(1-(1-0.7)" x(1-0.5)"x(1-
x(1-(1-0.7)" x(1-0.6)" x(1-

(1-(1-03)"" x(1-0.2)" x(1-
X(1-(1-03)"x(1-0.1)" x(1-0
x(1-(1-02)"x(1-03)" x(1-

e X(1-(1-02)" x(1-0.1)" (1
X(1=(1-0.1)" x(1-0.3)" x (1
X(1=-(1-0.1)" x(1-0.2) " x(1-

=((s,,—0.475),(0.6958,0.6080,0.2034))

Then, we can identify some properties of the SVN2TLMM operator.

’

1

8 of 35

Property 1. (Idempotency) If a, , = <(Sj,pj ),(Tg(j),lg(j), F, )>(] =1,2,...,n) areequal, then
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SVN2TLMM” (G,,d,,*++,a,) =a. (13)

Proof. Because aam = <(S,p) ,(T,I,F)> , then

SVN2TLMM? (G,,d,,-,d, )

1 L -1 Pj 2’/;]1)/
s\ oeS, \_j=1

= H( HT"’J - 1-]‘[[1-]‘[(1—1)”/] :

oeSs, oes,

o€S, J=1

1- 1—]‘[(1—]‘[(1—1«“)"/]

1

A L[n,(( & (s, ) B BZ ,

n!

! ot
) i n! Zjilp ) i n! Zr;:lpj

- 1—{[142/"”)"] - 1—[(1—(1—1)2“"’)J :

1

) l' n! Z;:lp/
1- 1—((1—(1—1?)2/,%}"-}

<

Property 2. (Monotonicity) Let Zl.=<( S0P, ),(T 1 ,F )>(j=l,2,...,n) and

<(sb Py ) ( )> (j=12,...,n)  be two sets of  SVN2TLNs. If
A (Sa_/ P, ) <A (Sb/ Py, ) and Taj < 1;/ and Iaj > ij and F;j > F;j hold for all j , then

SVN2TLMM" (G, ,,",d,) <SVN2TLMM” (b, b,,-+-,b, ). (14)

a’>a’

Proof. Let  SVN2TLMM’ (G,,d,.-.4,)={((s,.2,).(T,.1,.F,)) and
SVN2TLMM” (bbb, ) =((5,.9,):(T;-1,. F; )} - Given that A (S, . p, ) <A™ (S, ) , we

can obtain
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[1a"(s,-2.))" S_H(A_1 (8-2))” (15)
Z(ﬁ(”l (8,-2,))" ] =L [ﬁ(f (5,2, ))pj} (16)

Therefore,

it i )

That means(Sa,,Oa) < (Sb,pb) .Given that 7, <7, , we can also obtain

[ <17 09

=1 j=1

dh b

=N Jj=1 o€,
_ _
n % Z;’/;lpf n % z’;=|pf
1—]‘[(1—]‘[7’4’/] < 1—]‘[[1—]‘[7;7} : (20)
o€, Jj=1 €S, Jj=1

Thatis 7, <7, . Similarly, we can obtain/, = [, and F, > F, .

it A(S,.p, ) <A (S,.p,) and T, <T, and I, 21, and F, > F, ,
SVN2TLMM” (&.d,,+,d,) < SVN2TLMM" (B,,b,.-+-.,b, )

n

it A7(S,.p,)=A"(S,.p,) and T, <T, and I, >1, and F, > F, ,

)

)
SVN2TLMMP(a1,a2,.. , n)<SVN2TLMMP(5]’52,...’1§”)
If Afl(SaiaPa‘.) ( b ,,) and T, =T, and I, =1, and F,=F,,
)

SVN2TLMM” (G,,d,,"-,d,)=SVN2TLMM" (b;,b,,---,b, )

ﬂ

So, Property 2 is correct.0

Property 3. (Boundedness) Let a; = <(Sj,pj),(Tj,[j,Fj)>(j =1,2,...,n) be a set of SVN2TLNs. If
a’ = (max,. (S,,p,),(max, (7;),min, (Z,), min, (E))) and
a; = (mini (Si,pi),(rnini (T,),max, (I,), max, (F, ))) , then

a <SVN2TLMM’ (a,,a,,-,a,)<a* 1)

From Property 1:
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SVN2TLMM” (@,,d5,-+-,d, ) =a
SVN2TLMM (a},d},-,a!)=a"
From Property 2:
a <SVN2TLMM’ (G,,d,,+,d,) <a".

3.2. The Single-Valued Neutrosophic 2-Tuple Linguistic Weighted Muirhead Mean (SVN2TLWMM)
Operator

In actual MADM,, it is important to consider attribute weights. This section proposes the use of
a SVN2TLWMM operator as follows:

Definition 6. Let a; =<(Sj,pj),(7},1/.,F/)>(j =1,2,...,n) be a set of SVN2TLNs with a weight

vector of w, = (W, W,,...,w,)" , thereby satisfying w,e[0,1] and z; w,=1, and let
P=(p,,pys---»p,)E R" beavector of parameters if

_r
SVN2TLWMM’ (al,az,...,an)=[i( ® (é nw., ,a”fj)mzﬂ"/ . (22)

" ntl oes, a7l

SVNZTLWMMZ is the single-valued neutrosophic 2-tuple linguistic MM, where

o(j)(j=L2,...,n) is any permutation of {1, 2,...,n} and S, is the set of all permutations of
{1,2,...,n}.

Theorem 2. Let a; = <(sj,pj),(Tj I,F, )>(] =1,2,...,n) be a set of SVN2TLNs. The aggregated
value by using SVN2TLWMM operators is also a SVN2TLN where
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1
P~ ~ ~ 1 : ~p pNI
SVN2TLWMM, (a,,a,,...,a,)=| —| @ ®nw(.a . /
nw n n'\ oes, | j=1 a(j)"a(J))
1
1 I 1 pPj Zj-zlpj
Al | 2 T (g (87 (5100,)") ,
n:\ ges,\ j=1
1
n % 2::117/
p; a(j)
1—(]‘[[1— (1—(1—T0(/.)) )D :
oeS, j=1 (23)
= 1
\ R DI
p; o) '
1- 1—(]‘!(1—]1(1—(1—(1—15(”) ) )D ,
o€es, j=
1
" R
p;\ el )
- 1—(]‘[(1— (1—(1—(1—1«;(].)) ) m
oeS, Jj=1
Proof. From the exponential operation of the SVN2TLNs, we can derive
~P; -1 Pj P _ Pj —(1— Pj
"o(f)‘<A((A (s,-2,)) )’(Ta(jwl_(l Lo 1= (= Fp) )> @4

Therefore, by utilizing the scalar-multiplication operation laws of the SVN2TLNSs, the

nwg(j)ﬁﬁ(’j) can be derived as

MWo( )% ())

A(nwa(j) (Afl (sj,pj))p/ ),
= 1_(1_TGIEI}') )"”’o(f) ,(1_(1_10(1_))1:, )”Wrr(f) ,

(1-a-£, ")

Therefore, according to the multiplication operation of the SVN2TLNSs, we can obtain
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n

® nw (})ag(j)

=l
A(H(nwg( ) jap )]
j=1
n] (26)
Yor.)) \™ot )
= H(l (=72, )" j H( ~(1-0-1,,)") j
1—11:1[(1_(1_(1_1:0“))19,») omj'
Therefore, by utilizing the addition operation of the SVN2TLNs, we can get
2 (,®1”W (J)aa(l)j
A[ZS:(H(nWU(,-)(A_I(Sj’Pj))pj )B,
oe Jj
B (B (] @
H(l_ﬁ(l_(l_(l_[wi))p’ ) )j
o€S, j=1
H(l_ﬁ(l_(l‘(l‘F ") jj
o€S, j=1

Furthermore, based on the scalar-multiplication operation of the SVN2TLNSs, we can derive

_ ;Yo "
1_[01:[&(1 i (1 (1=7:0) m o (28)
1

{H (1 - H (1 (- ) le

Therefore, the aggregated value by using SVN2TLWMM operators can be listed as follows:
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SVN2TLWMM? (G@,,d,.,...,d,)

nw

1
1 " 'y
= —| ®| Qnw_.a" 27
}’l‘ oes, \ j=1 a(j) " a(Jj)

n [ ; z“Flp"
1—(%2[{1—H(1—(1—T§’,-)) ”)D ’ (29)

n " % Z/‘:lp/
- I_EH[I_} (1_(1‘(1“?0(1))%)" ““)m

Therefore, Equation (23) is kept. In Equations (23)-(29), A" is the function of converting the

2-tuple linguistic variables to the exact numbers and A is the function of converting the computing
results to the 2-tuple linguistic variables.

Then we need to prove that Equation (23) is a SVN2TLN.
O 0<sT<LO0<I<LO0<F<I1 @ 0<T+I+F<3.

O

Proof. Let

T= 1—(]‘[ (1—H(1_(1—T§}> )%m )D

oeS, j=1

i {0 ) T

oes, J=l

Fr- 1 T I{1-0-0-5,7) )

(D Because 0<T o) = 1, we get
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p; _(1_ 7P o ()
0<Ty <1 and 0<1-(1-7) ) " <1. (30)
Then,
0<1- (1—(1—T6”(’/.))’1W””))S1 (31)
Jj=1
il
n : i ) n!
os[]‘[(l— (1—(1—T;‘[)) jD <1 (32)
€S, Jj=1
1
n n z};:lp./
;o\ M) o
0< 1—(]:[[1—]1(1—(14;[)) )D <1. (33)
oeS, j=

That means 0<7 <1 , so (1) is maintained.
Similarly, we can get0< / <1,0< F' <1,

0<T<1,0<I<LO0<F<I1

@ Because "0<T+I+F<3.

O

Example 2. Let ((s,,0),(0.7,0.5,0.3)),((s,.0),(0.8,0.6,0.2)) , and {(s,,0),(0.6,0.7,0.1)) be
three SUN2TLNs, P=(0.3,0.4,0.2) and w=(0.4,0.3,0.3), then according to (23) we have:

<(s3,0),(0.7,0.5,0.3)>,<(s4,O),(O.8,0.6,0.2)>,]

..... {(5,0),(0.6,0.7,0.1))

1

’ [%(z[ﬁ('qwﬁﬂ@I(Sj,p,))”f )JNZP |

o€S,
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=((5,,0.415),(0.6827,0.7900,0.2568))

We will now discuss some properties of the SVN2TLWMM operator.

Property 4, (Monotonicity) Let le =<( 8,2P ),(7; ,] F )>(j=1,2,. )] and
<(sb P, ) ( 5 )> (j=12,...,n)  be two sets of SVN2TLNs. If
<

SVN2TLWMM?, (G,,d,,-,d,) < SVN2TLWMMY?, (b,.b,.-+-.b, ) (34)

The proof is similar to SVN2TLMM. It is omitted here.
Property 5. (Boundedness) Let a, = <(Sl,p ) (Tl, I,Fi)>(i= 1,2,...,n) be a set of
SVN2TLNG. If a’ :(max,.(S,.,pl.),(max,.(T,.),min,.(1,),min,.(Fl.))) and
a z(mini(S,.,p) (min, (7, ), max I(I,),max,.(E)))then:

a <SVN2TLWMM,, (a,,d,, --,a,)<a" (35)

From Theorem 2, we get:

SVN2TLWMM?, (@,,a,, .4, )

nw n

Azttt o

1
) e YV
1—(H(1—H(1—(1—minT;/’j>) " m :
" (36)

N
. Zt-lpi

" 1_(1_[{l_ﬁ(l_(l—(l—maxIa(j))ﬂ,- )”Wa(.f) jj]’“ =" ,

1
" z::lpf

. 1_(1_[ [1_11[(1_(1‘(1_maXFa<.f>)p/ )nw )D
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SVN2TLWMM,, (a;,a3,-++,a})

nw n

1
n % Z::]P/
1—(H[1—H(1—(1—maxT;z/j)) ““)m :
€S, j=1
J (37)
= 1
n nl Z::]p/
- 1—(]‘[[1— (1—(1—(1—mm1 ) )“m :
o€, Jj=1
1
0 2
. ; W) :
- 1—(6611[[1— ] (1—(1—(1—m1nFa(j))p) jD
From Property 4, we get:
i~ <SVN2TLWMM? (a,,a,,++,a,)<a" (38)

It is obvious that SVN2TLMM operators lacks the property of idempotency.

3.3. The Single-Valued Neutrosophic 2-Tuple Linguistic Dual Muirhead Mean (SVN2TLDMM) Operator
Qin and Liu [36] proposed the use of the dual Muirhead mean (DMM) operator.

Definition 7. Let a;(j=1,2,....n) be a set of non-negative real numbers and

P=(p,,pys---»p,)€ R" beavector of parameters if:

DMM’(q,,a,,...,a

L
(39)
=5t S e |

DMM”" is the dual Muirhead mean (DMM) operator, where O(j)(j=1,2,...,n) is any
permutation of {1, 2,00, n} ,and S, is the set of all permutations of{l, 2,..., n} .
In this section we will propose the SVN 2-tuple linguistic DMM (SVN2TLDMM) operator.

Definition 8. Let dj=<(Sj,pj),(7},1j,Fj)>(j=1,2,...,n) be a set of SVN2TLNs and let
P=(p,,pys---»p,)E R" beavector of parameters if:

1

SVN2TLDMM (@, d,,...,d, }=——— [@(é(pj M)D"’ (40)

oesS, \ j=1
2P

n
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where 0(j)(j=L12,...,n) is any permutation of {1,2,...,n} and S, is the set of all permutations of
{1,2,....,n}.

Theorem 3. Let dj = <(Sj,pj>,(Tj I,F, )>(] =1,2,...,n) be a set of SVN2TLNs. The aggregated
value by using the SVN2TLDMM operators is also a SVN2TLN where:
SVN2TLDMM" (4,,d,,...,a,)

1

1 o)

:Z” p(g”(,@l(pf"am)n
=¥

1 H("

Al ———
n
PHIIES

(8" (Sppj))J; :

j=1
1 LY @
- pj % ZZ:‘ Fi n % 2;:1 Pj
et T e
75 a oES, Jj=

1
n % z:’:lpj
Cnefe
o€eS, Jj=1

Proof. From the multiplication operation laws of SVN2TLNs depicted in Definition 3, we can obtain:

piaoiy =(8(p A" (500, ) (10T, ) 12072 ) @)

Therefore, according to the addition operation of SVN2TLNSs, we can derive:

j@:l(piav(j)): <A[Z(ij_l (Sf’p.f))]’(1_H(1_Tﬂ(j))pj’HI;waFop({/)j (43)

J= j=1 = j=1

Therefore, based on the multiplication operation of SVN2TLNSs, we can get:

A(I_S[[Z;(%A_l (%P,-))Da
oe n J=
gﬂ(é(%%m)j: H[l_H(I_Ta(/‘))m]’l_l_S[[l‘ngfﬂ} (44)
o€d, J= €D, J=
I_H[I_HF;(Q)]
€S, j=

Furthermore, by utilizing the exponential operation of SVN2TLNs we can derive:
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1

] P L -
(Ug”(%(l?jaan)n = (1_ (1_Ta(j))p,]n-’1_l_[ (1_1_[15(/]&”_’ .
ces, J

Therefore, the aggregated results using the SVN2TLDMM operator can be shown as:
SVN2TLDMM”(a,,a,,...,a,)

! 1 (46)

1

n P, nl Z/’:lp/ n nl Zj:lp/
- 1—H(1—H(1—Tam)) ; 1‘H[1‘H1§51>J ’

1
n % z.r:ﬂp’
I_H(l_HFo[?})] :
j=

o€,

Therefore, (41) is kept. In Equations (41)-(46), the symbol “ A™" 7 is the function of converting
the 2-tuple linguistic variables to the exact numbers and “A” is the function of converting the
computing results to the 2-tuple linguistic variables.

We now need to prove that (41) is a SVN2TLN. We need to prove the two conditions:

(D) 0<T<L,0<I<L0SF<l () 0<T+I+F<3

Let

1
1

n ; Z“/:‘p/
T=1- 1—]‘[(1— (1—T0(4/.))"’j
J

oeSs, j=1

1
1

n ! zjzlp/
=T 111

oeS,

1
1

. 2
re-T T |

oeSs,
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(D Since 0 < T, =1, we get:

n

0<(1-1,,)" <t and 0<1-[(1-1,,)" <1

~.
N

1
031—H(1—ﬁ(1—7’6(ﬂ)”’}"! <1

oeS,

Then:

n p % Z/:I‘p]
0<1- 1—H(1—H(1—Ta(j))/j <1

€S, Jj=1

That means0 < 7 <1 , so (1) is maintained.
Similarly, we can get0</ <1,0< F <1
@) Because 0ST<LOSIL<LOSF<LOST+I+F<3.
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(47)

(48)

(49)

Example 3. Let ((s;,0),(0.7,0.5,0.3)).((s,,0).(0.8,0.6,0.2)), ((5,.0).(0.6,0.7,0.1)) e three

SVN2TLNs, and P=(0.3,0.4,0.2); then, according to Equation (41), we have

<(s3,0),(O.7,0.5,0.3)>,<(s4,0),(0.8,0.6,0.2)>,J

SVNzTLDMM(0.3,0.4,o.2)
((5,,0).(0.6,0.7,0.1))

A

s
1 , n!
E I l 2 A'(s.,p, ,
,)/1':1 p; O'esn(jzl (p/ (Sj p]))j

., o ) 2 n n!
=4l 1= I_H[I_H(I_Ta(/’)) j ’ 1—H[1—]}11§(ﬂ}

oeS, oceS,

1
n % Z/;:lpj
1—]‘[[1—]117;’5].)} )
i

oes,

1 n 1 n
n = P Z =1 Pi
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1
(0.3x3-+0.4x4+02x2)x(0.3x3+04x2+02x4) }
X(0.3x4+0.4x3+0.2x2) x(0.3x4+0.4x2+0.2x3)
X(0.3%2+0.4x3+0.2x4) x( 0.3x2+0.4x4+0.2x3)

A b
03+04-+02

1 \03+04+02

(1_(1_0,7)‘14x(1_0,8)0'3x(1—0.6)0‘2)x(1—(1—0.7)0'4><(1—0.6)°'3x(1—0.8)°'2) ’

1 1= {1-(1-08)"*x(1-07)"(1-06)
08

02

X(1-(1-08)"*x(1-06) "x(1-0.7)"") :
H{1=(1-06)"x(1-0.7)""x(1-08)"*|{1~(

)
")

1-(1-06)"*x(1-08) "x(1-0.7)"")

(105065 %07 x{1-05 x0T x062 (10643035 x07%) B |
_ X( 1-06"X0.7x05" ) X(1_0-70‘4 x0.5"%0.6 ) ><(1—0.7°'4 x0.6 ><0.5°*2)

1 \03+04+02

(1-03"x02% x0.1)x(1-03"*x0.1" x02)x(1-02"x03" x0.1*) }*
{12020, 1x037)x{1-0. X037 %02 (1-0.1"x02°x0.3")

={(5,,—0.004),(0.7110,0.5949,0.1825))..
Similar to the SVN2TLMM operator, we can get the properties as follows:
Property 6. (Idempotency) If a, ,, = <( S:5P; ) ( T, Loy Fois) )>(] ..., 1) areequal, then

SVN2TLDMM (G,,d,,-+,@,)=a. (50)

Property 7. (Monotonicity) Let a, =<( S0 Ps ),(T 1 ,F )>(j=l,2,...,n) and
<(Sb Py, ) ( ’ )> (j=L2,...,n)  be two sets of  SVN2TLNs. If

A(S,.p,)sA (Sbj, p, ) and T, <T, and I, 21, and F, 2 F, hold forall j , then

SVN2TLDMM (é,.d,.-+,&,) < SVN2TLDMM” (b,,b,,+-+.5, ). (51)

Property 8. (Boundedness) Let q, <(Si,pi),(];,[i, l.)>(i:l,2,...,n) be a set of SVN2TLNs. If
a’ :(maxi(S[,p[),(max,.(T),min[(ll.),minl.( 1))) and
a, z(mini(S,.,p,.),(min,.(Z),maxi(li),max,( i))),then

@ <SVN2TLDMM (d,,d,,--,d,) <a". (52)
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3.4. The Single-Valued Neutrosophic 2-Tuple Linguistic Weighted Dual Muirhead Mean (SVN2TLWDMM)
Operator

In actual MADJV,, it is important to consider attribute weights. This section proposes the use of
a SVN2TLWDMM operator.

Definition 9. Let a, = <(Sj,pj),(7},1/.,F/)>(j =1,2,...,n) be a set of SVN2TLNs with a weight

vector of w, = (W, W,,...,w,)" , thereby satisfying w,e[0,1] and z w,=1, and let
P=(p,,pys---»p,)E R" beawvector of parameters if

I
SVNZTLWDMMfW(dl,dz,---,dn)=+( ® (@1 (P ))D (53)
N\ oes, \ =
where O0(j)(j=L12,...,n) is any permutation of {1,2,...,1’1} and S, is the set of all

permutations of{l, 2,0n, n} )

Theorem 4. Let a; = <(sj,pj),(Tj,Ij,Fj )>(] =1,2,...,n) be a set of SVN2TLNs. The aggqregated
value by using SVN2TLWDMM operators is also a SVN2TLN where

SVN2TLWDMM, (a,,d,, --,d,)

nw

1

s8]

j=147J

Z,lpj [(H(;(p,( (l,p))nwﬂ/)m; ’

) |2t
I- 1—]‘[[1 [1(-n ) ] : (54)

oeS,

= 1

Proof. From the exponential operation laws of SVN2TLNSs depicted in Definition 3, we can ascertain
that

T (SO e N AN (A R I A
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Then, based on the scalar-multiplication operation laws of SVN2TLNs, we can derive

A(pj (A7 (s,.0,))" )
P,-a;?)"-ﬁ” - 1_(1_T;g;:(/) )pj ’(1_(1_16(/‘) )WM )"/ alh (56)

(1=(1=F,) )" )"

Therefore, according to the addition operation laws of SVN2TLNs, we can get

A[i(p,- (a7 (s,,)) )]
=
g(pjaZYf;‘-ﬁ’))= 1—]i[(1—T;’(”_}f;<f>)p'f, ” (1—(1—1(,(_,))’””“(”)p"', : (57)
j=1 Jj=1
L MW pj
H(l_(l_Fa(‘n) (‘))
J=

Therefore, by utilizing the multiplication operation laws of SVN2TLNs, we can derive

2 (&(pey)

(m(gle oo™

L ey \Pi .
E(I_E(I_Ta”;)) J (58)
u nWo(; Pj
1—]‘!(1—1‘[1(1—(1—16(,)) ”) J
oe j=
1-T1 (1 11 (1— (1=Fo))" )p/ J
oes, Jj=1

Furthermore, by using the exponential operation laws of SVN2TLNs, we can get
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1

11107 ) | ®
1
oy )

o€, Jj=1
1
n Mg, r; n!
1—[1_![1—]__[1(1—(1—12(,-)) ") jj .
oes, Jj=

Therefore, the fused results using the SVN2TLWDMM operator can be shown as follows:
SVN2TLWDMM?, (ad,,d,,-,a,)

nw

1 n an/- ;
XL (ac?sn (,-@1 (P )D

n , P m Zizlp’
1- 1—H(1—H(1—Ta’}‘;<”) ] : (60)

o€S,

TR

1
1

T

J=1

Therefore, Equation (54) is kept. In Equations (54)-(60), A" is the function of converting the
2-tuple linguistic variables to the exact numbers and A is the function of converting the computing
results to the 2-tuple linguistic variables.

Then, we need to prove that Equation (54) is a SVN2TLN. We need to prove the two conditions:
DO<T<,0<I<LO<F<I (DOLT+1+F<3

O

Proof. Let
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1
n P % z::'pf
o1 I—H(I—H(l—T!ﬁ%‘”) ]

[=h j=1

J=1

1
n \Pj iﬂ
I= —[]1[(1—]‘[(1—(1—10(,)) “")) J]

1

F= 1—[H(l—ﬁ(l—(l—Fgm)%,-) )Bl 2

oeS, j=1

(1) Because 0< To(j) <1, we can get

o)

os(l—T”‘”f’w)p’ <land 0<1-] (1—T"”’ff<»'>)p’ <1,

Jj=1

Then,

0<i- 1—]‘[[1—]1[(14;5;‘”)“]"! <1.

oeS,

That means0 < 7T <1 , so (1) is maintained.
Similarly, we can get 0</ <1,0< F <1.
(2 Because 0 ST <LOLSILLLOSFL<LO<T+I+F<3.o
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(61)

(62)

(63)

Example 4. Let ((s;,0),(0.7,0.5,0.3)),((s,,0),(0.8,0.6,0.2)), ((5,.0).(0.6,0.7,0.1)) e three
SVN2TLNs, and P=(0.3,0.4,0.2) and w=(0.4,0.3,0.3); then, according to Equation (54), we have
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<(s3,O),(0.7,0.5,0.3)>,<(s4,0),(0.8,0.6,0.2)>,]

""" ((5.0).(0607.0.1)

(e {nlso )]

1

\ X
1—{1—]‘[(1—]‘[(14;&,) )"] J ’

oeS,

I[H(lﬁ(l(”«»>"”“m>"'JJ':T;“,

o€, J=1

1

n P, % ztzlp.f
1_( (1_ (1_(1_Fa(j))nwo</>) j J]
o€Ss, Jj=1
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We will now discuss some properties of the SVN2TLWMM operator.
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Property 9. (Monotonicity) Let a, =<(Saj,,0af )’(];,’Iaj’F;j )>(j=1,2,. )] and

b, =<(Sbj,pbj),(];j,[bj,Fl;j )> (j=12,...,n)  be two sets of  SVN2TLNs. If

A(S,.p, )<A7(S, . p,)) and T, <T, and I, 21, and F, > F, hold forall j , then

SVN2TLWDMM!, (d,d,"+-,d,) < SVN2TLWDMMY,, (B,,5,,-+-,b, ).

>%n

(64)

The proof is similar to SVN2TLWMM. It is omitted here.

Property 10. (Boundedness) Letda, = <(sj,pj>,(Tj,Ij,Fj )>(] =1,2,...,n) be a set of SVN2TLNs. If
di+ = (maXz‘ (Si’pi)’(maxi (T,.),min,. ([i)’mini (E)))

and
a, = (min[ (Si’pi)’(mini (Z),max[ (1[)’maxi (F:)))' then
a  <SVN2TLWDMM, (a,,a,, --,a,)<a". (65)
From Theorem 4:
SVN2TLWDMM., (G, d;, -+, d, )
1
1 n X _ MW ; n!
A - (H(Z(pj(mlnAl(Sjapj)) ())]J )
Z_;‘:l p/- oeS, \_Jj=1
_
n P % z;lpj
1- 1—H[1—H(1—nﬁnT;’f]’f§”) J ,
[=h Jj=1 (66)

et e

oeS, J=

o€S, Jj=1

| 111t )]] o
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SVN2TLWDMM?, (@, s, )

n

1

A ;{H (Zn‘,(p,» (maxa'(s,.p,)) " )D |

j=1p./' oeS, \_j=1
n i‘ zn':lpf
p; | 7
I- 1—]'[(1 [1(1-maxzys”) ] ,
oeS, j=1 (67)
" Y Z',’Ip,
1_{H(1_H(1_(1_mmlau>)W/)) ]J ,
oeS, Jj=1
. ) Z,lp,
1—(]‘[(1—]‘[(1 (1- mlan(,))Mm) | D
oeS, Jj=1
From Property 9:
a  <SVN2TLWDMM! (a,,a,, --,a,)<a". (68)

It is obvious that the SVN2TLWDMM operator lacks the property of idempotency.
4. Numerical Example and Comparative Analysis

4.1. Numerical Example

The green supplier selection is a classic MADM problem [37-39]. Therefore, in this section we
use a numerical example to select green suppliers in green supply chain management with
SVN2TLNs in order to show the proposed method. There are five possible green suppliers

4 (i =1,2,3,4, 5) to be selected. We selected four attributes to assess these possible green
suppliers: G1 is the product quality factor, Gz is the environmental factor, Gs is the delivery factor,
and Gu is the price factor. These five possible green suppliers 4, (i =1,2,3,4,5) are to be assessed

with SVN2TLNs by the decisionmaker using the above four attributes, whose weighting vectors

= (0.2,0.3, 0.4,0. l) are listed in Table 1.

Table 1. Single-valued neutrosophic 2-tuple linguistic number (SVN2TLN) decision matrix.

G1 G2 Gs G4
A1 <(s60),(0.7,0.4,0.6)>  <(s4,0),(0.4,0.5,0.6)>  <(s30),(0.4,0.5,0.6)>  <(s40),(0.6,0.5,0.3)>
A <(s3,0),(0.5,0.4,0.2)>  <(s50),(0.6,0.5,04)>  <(s2,0),(0.6,0.4,0.2)>  <(s3,0),(0.8,0.3,0.5)>
As  <(52,0),(0.5,0.6,0.2)>  <(s3,0),(0.7,0.5,0.6)>  <(s4,0),(0.5,0.6,0.3)>  <(s50),(0.4,0.5,0.2)>
As  <(s50),(0.8,0.4,0.6)>  <(s4,0),(0.7,0.4,0.3)>  <(s60),(0.6,0.5,0.3)>  <(s4,0),(0.6,0.4,0.6)>
As  <(s51,0),(0.5,0.6,0.4)>  <(s50),(0.7,0.4,0.7)>  <(s1,0),(0.6,0.5,0.2)>  <(s3,0),(0.8,0.6,0.8)>

We can now use the approach developed for selecting green suppliers in green supply chain
management.
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Step 1. According to SVN2TLNSs 7; (i =1,2,3,4,5,j= 1,2,3,4) , we can aggregate all
SVN2TLNs 7, by using the SVN2TLWMM (SVN2TLWDMM) operator to get the SVN2TLNs
4(i=1,2,3,4,5)of the green suppliers 4, . Supposing that P =(1,1,1,0), the aggregating results
are shown in Table 2.

Table 2. The aggregating results of the green suppliers by the single-valued neutrosophic 2-tuple

linguistic dual Muirhead mean (SVN2TLWMM) (single-valued neutrosophic 2-tuple linguistic
weighted dual Muirhead mean (SVN2TLWDMM)) operator.

SVN2TLWMM SVN2TLWDMM
Ar <(s4,—0.4633),(0.4692,0.5201,0.5716)>  <(ss, —0.2958),(0.5785,0.4324,0.4843)>
Ar <(s3,—0.3366),(0.5757,0.4534,0.3992)>  <(s3, —0.0273),(0.6525,0.3702,0.2761)>
As  <(s3,—0.1294),(0.4853,0.5894,0.3953)>  <(ss, —0.2162),(0.5754,0.4996,0.2846)>
Ar <(s4,—0.0021),(0.6189,0.4719,0.5075)>  <(s7, 0.0573),(0.7143,0.3868,0.3947)>
As  <(s2-0.1995),(0.6013,0.5649,0.6052)>  <(sz, —0.2488),(0.6804,0.4747,0.4541)>

Step 2. In accordance with the aggregating results in Table 2, the score values of the green
suppliers are shown in Table 3.

Table 3. The score values of the green suppliers.

SVN2TLWMM SVN2TLWDMM
A (s2, ~0.3762) (s3, —0.3943)
A2 (s2, 0.4702) (52, ~0.0122)
As (s1, 0.4358) (s2,0.2592)
As (2, 0.1847) (4, 0.4730)
As (s1,-0.1410) (s1, 0.0225)

Step 3. According to the score values listed in Table 3, the order of the green suppliers are listed
in Table 4. The best green supplier is Aa.

Table 4. Ordering of the green suppliers.

Ordering
SVN2TLWMM As>A1>A2> As> As
SVN2TLWDMM As>A1>A3> Ao > As

4.2. Influence of the Parameter on the Final Result

In order to show the effects on the ranking results by altering the parameters of P in the
SVN2TLWMM (SVN2TLWDMM) operators, the results are listed in Tables 5 and 6.

Table 5. Ranking results for different parameters of the SVN2TLWMM operator.

P s(A1) s(A2) s(As) s(A4) s(As) Ordering
(1,0,0,0)  (s1,0.3096) (s1,0.2931) (s1,0.2036) (s2,-0.1905)  (s1,-0.1063)  A4>Al>A2>A3>A5
(1,1,00) (s, -0.4419)  (s2, —0.4987) (s1,0.4121) (s2,0.1192) (s1,-0.0706)  A4>Al1>A2>A3>A5
(L1,1,0) (s2, —0.3762)  (s2,—0.4702) (s1, 0.4358) (s2,0.1847) (s1,-0.1410)  A4>A1>A2>A3>A5
(1,1,1,1) (s, -0.3628)  (s2, —0.4811) (51,0.4095 (s2, 0.1700) (s1,-02159)  A4>Al1>A2>A3>A5
( ) )

( )
(

)
2222) (s2,-0.3628)  (s2,-0.4811 (1,0.4095) (s2,0.1700)  (s1,-0.2159)  A4>Al>A2>A3>A5
2,00,0) (s2,-0.2505)  (s2, -0.2515 (s2,-0.3744) (s, 0.3621) (s1,03912)  A4>Al>A2>A3>A5
3,000) (s2,-0.0101)  (s2,00035)  (s2,-0.1482)  (s3,-0.3787) (s, -0.2759) A4>Al>A2>A3>A5
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Table 6. Ranking results for different parameters of the SVN2TLWDMM operator.

P s(A1) s(A2) s(As) s(A4) s(As) Ordering
(1,0,0,0) (2, 0.2756) (s2,0.0001) (s2,—0.0497) (s4, —0.4654) (s1,0.0155)  A4>A1>A2>A3>A5
(1,1,0,0) (2, 0.3874) (s2, —0.0806) (s2,0.0341) (s4, —0.0287) (s1,-0.0515) A4>Al1>A3>A2>A5
(1,1,1,0)  (s3,—0.3943) (s2,-0.0122) (s2,0.2592) (s4, 0.4730) (s1,0.0225)  A4>A1>A3>A2>A5
(1,1,1,1)  (s3,-0.2159) (s1,0.2825) (s1,0.2287) (s2,—0.4771) (s1,-0.0165) Al1>A4>A2>A3>A5
(2222)  (s3,-02159)  (s1,0.2825) (s1,0.2287) (s, -04771)  (s1,-0.0165) Al>Ad>A2>A3>A5
(2,0,0,0)  (s2, 0.2100) (s2,—0.0916) (s2,—0.1583) (s3,0.2577) (s1,-0.1059) A4>Al1>A2>A3>A5
(3,0,0,0)  (s2 0.3086) (s2, 0.1445) (s2, 0.0336) (s3, 0.4540) (s1,0.0299)  A4>A1>A2>A3>A5

4.3. Comparative Analysis

We can now compare our proposed method with TOPSIS methods using the single-valued
neutrosophic linguistic numbers (SVNLNs) proposed by Ye [32]. The comparative results are listed
in Table 7.

Table 7. Ordering of the green suppliers.

Ordering
TOPSIS with SVNLNs As> A1> Ar> As > As

In Table 7, we can see that we get the same best green supplier, and only two of the methods’
ranking results are slightly different. This shows that the method we proposed is reasonable and
effective. However, the existing TOPSIS methods with SVNLNSs [32] do not consider the relationship
information among the arguments being aggregated and therefore cannot eliminate the influence of
unfair arguments on decision results. Our proposed SVN2TLWMM and SVN2TLWDMM operators
consider the relationship information among the arguments being aggregated.

5. Conclusions

In this paper, we investigated MADM problems with SVN2TLNs. Then, we utilized the
Muirhead mean operator and dual Muirhead mean operator to develop some Muirhead mean
operators with SVN2TLNs: the SVN2TLMM operator, the SVN2TLWMM operator, the
SVN2TLDMM operator, and the SVN2TLWDMM operator. The main properties of these proposed
operators were investigated. We then used these operators to propose some models for MADM
problems with SVN2TLNS.

The case study for green supplier selection shows that the proposed MADM method is practical
and effective. The advantages of the proposed approach are as follows:

(1) The proposed approach is based on SVN2TLNs, which are suitable to be used in real life
situations. SVN2TLNs have the capacity to deal with imprecise and vague information. They are
suitable for expressing the truth-membership, indeterminacy-membership, and falsity-membership
of an element to a 2-tuple linguistic term, which can affect the decisionmaker’s confidence level
when they are making the evaluation. Therefore, the decisionmakers may find it more flexible and
convenient to express their opinions as SVN2TLNSs. The existing operation rules and comparison
rules were contrasted and discussed.

(2) Some Muirhead mean operators with SVN2TLNs were developed: the SVN2TLMM
operator, the SVN2TLWMM operator, the SVN2TLDMM operator, and the SVN2TLWDMM
operator. The main characteristics of these proposed operators were investigated.

(3) Some methods were established to solve MADM problems with SVN2TLNs, and the
evaluation results turned out to be reasonable.

(4) MADM methods based on such operators with SVN2TLNs are novel decision making
methods, and these methods were applied to green supplier selection in this study. Furthermore,
MADM methods based on such operators with SVN2TLNs are not only easy to calculate, but can
also realize the reasonable and stable ranking of alternatives.
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In future studies, the application of the proposed aggregating operators of SVN2TLNs need to
be studied in many other uncertain and fuzzy environments [40-43] and extended to other
application domains [44,45].
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