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The information expression and modeling of decision-making are critical problems in the fuzzy decision theory and method.
However, existing trapezoidal neutrosophic numbers (TrNNs) and neutrosophic Z-numbers (NZNs) and their multicriteria
decision-making (MDM) methods reveal their insufficiencies, such as without considering the reliability measures in TrNN and
continuous Z-numbers in NZN. To overcome the insufficiencies, it is necessary that one needs to propose trapezoidal neu-
trosophic Z-numbers (TrNZNs), their aggregation operations, and an MDM method for solving MDM problems with TrNZN
information. Hence, this study first proposes a TrNZN set, some basic operations of TrNZNs, and the score and accuracy functions
of TrNZN and their ranking laws. Then, the TrNZN weighted arithmetic averaging (TrNZNWAA) and TrNZN weighted
geometric averaging (TTNZNWGA) operators are presented based on the operations of TrNZNs. Next, an MDM approach using
the proposed aggregation operators and score and accuracy functions is established to carry out MDM problems under the
environment of TrNZNSs. In the end, the established MDM approach is applied to an MDM example of software selection for
revealing its rationality and efficiency in the setting of TrNZNs. The main advantage of this study is that the established approach
not only makes assessment information continuous and reliable but also strengthens the decision rationality and efficiency in the

setting of TrNZNs.

1. Introduction

In fuzzy decision-making problems, various new fuzzy
decision-making methods [1-3] have received many ap-
plications under neutrosophic, simplified neutrosophic
hesitant fuzzy, and bipolar neutrosophic environments.
Then, triangular and trapezoidal fuzzy numbers are usually
used for real decision-making problems because they can be
depicted by the continuous fuzzy numbers of membership
functions rather than exact/discrete fuzzy values. Hence,
some researchers extended triangular fuzzy numbers to
intuitionistic fuzzy sets (IFSs) and presented triangular
intuitionistic fuzzy sets (TIFSs), where the values of the
membership and nonmembership functions are triangular
fuzzy numbers, and some triangular intuitionistic fuzzy
aggregation operators for multicriteria decision-making
(MDM) problems with triangular intuitionistic fuzzy

information [4-7]. As the extension of TIFSs, Ye [8] in-
troduced a trapezoidal intuitionistic fuzzy set (TrIFS), in
which the values of its membership and nonmembership
functions are trapezoidal fuzzy numbers rather than trian-
gular fuzzy numbers, and some prioritized weighted ag-
gregation operators of trapezoidal intuitionistic fuzzy
numbers (TrIFNs) for MDM problems with TrIFNs.
However, TIFSs and TrIFSs cannot depict inconsistence and
indeterminacy information. Hence, Ye [9] generalized TrIFS
and proposed a trapezoidal neutrosophic set (TrNS), in
which the values of its truth, falsity, and indeterminacy
membership functions are trapezoidal fuzzy numbers, to
express incomplete, indeterminate, and inconsistent infor-
mation, and then he presented some basic operations of
trapezoidal neutrosophic numbers (TrNNs), score and ac-
curacy functions of TrNNs, and TrNN weighted arithmetic
averaging (TrNNWAA) and TrNN weighted geometric
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averaging (IT'NNWGA) operators for MDM problems in the
setting of TrNNs. Then, some researchers utilized the in-
tegrated approach [10] and defuzzification method [11] for
the evaluation and MDM problems with interval-valued
TrNNs. Further, Giri et al. [12] applied TOPSIS method in
MDM problems with interval-valued TrNNs. Also, Jana et al.
[13] and Khatter [14] presented some basic operations of
interval-valued TrNNs, score and accuracy functions of an
interval-valued TrNN, and the interval-valued TINNWAA
and T'TNNWGA operators for MDM problems in the setting
of interval-valued TrNNs.

The notion of a Z-number introduced by Zadeh [15] is
described by a fuzzy number and its reliability measure to
strengthen the reliability of the fuzzy information. After that,
Z-numbers have been used for many areas [16-22]. Based on
the truth, falsity, and indeterminacy Z-numbers, Du et al.
[23] extended the Z-number concept and proposed neu-
trosophic Z-numbers (NZNs) to enhance the reliability of
the neutrosophic information, and then they presented basic
operations of NZNs, score and accuracy functions of NZN,
and the NZN weighted geometric averaging (NZNWGA)
and NZN weighted arithmetic averaging (NZNWAA) op-
erators and further established their MDM method under
the environment of NZNs.

However, TrNN is described only by the trapezoidal fuzzy
numbers of its truth, falsity, and indeterminacy membership
functions without considering their reliability measures, while
NZN is depicted only by exact/discrete truth, falsity, and in-
determinacy Z-numbers rather than continuous Z-numbers.
Hence, TrNN and NZN and their MDM methods reveal their
insufficiencies in their information expressions and applica-
tions. To express both the continuous Z-numbers of truth,
falsity, and indeterminacy membership functions and the re-
liability measures in MDM problems, it is necessary that this
study needs to propose an MDM method based on trapezoidal
neutrosophic Z-numbers (TrNZNs) to make up such insuffi-
ciencies of existing information expressions and MDM methods
in the environments of TrNNs and NZNs. To do so, the main
aims of this article are (1) to propose a TrNZN set and some
basic operations of TrNZNS, (2) to introduce score and accuracy
functions of TrNZN for ranking TrNZNss, (3) to put forward the
TINZNWAA and TrNZNWGA operators for aggregating
TrNZNs, (4) to develop a MDM approach using the proposed
aggregation operators and score and accuracy functions for
solving MDM problems under the environment of TrNZNs,
and (5) to apply the established MDM approach to an MDM
example of software selection for revealing its efficiency in the
setting of TrNZNs.

The rest of the article is composed of the following
sections. Section 2 introduces some basic notions of TrNNs
as preliminaries of this study. Section 3 proposes a TrNZN
set, basic operations of TrNZNs, the score and accuracy
functions of TrNZN, and their ranking laws of TrNZNs.
Then, the TrNZNWAA and TrNZNWGA operators and
their relative properties are presented in section 4. Section 5
develops an MDM approach using the TINZNWAA and
TrNZNWGA operators and score and accuracy functions of
TrNZNs. In Section 6, the developed MDM approach is
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applied to an MDM example of software selection to indicate
its efficiency in the setting of TrNZNs. In the end, con-
clusions and further study are contained in Section 7.

2. Preliminaries of TrNSs

In this section, we introduce preliminaries of TrNSs, in-
cluding TrNNs, operations of TrNNs, two TrNN weighted
aggregation operators, and score and accuracy functions of
TrNNs for ranking TrNNs.

Ye [9] first proposed TrNS in a universe set U, which is
denoted as

¥ ={(u NG (), INg (), ENg (), weU}, (1)

where TN; (u)c(o, 1], IN; (u)<[0,1],and FNz (u)c[0, 1] are
the truth, indeterminacy, and falsity membership functions;
then their values are three trapezoidal fuzzy numbers
TN;(u) = (TN, (u), TN, (1), TN;5 (1), TN, (u)): U — [0,
1], IN;(u) = (INy (), IN, (1), IN5 (1), IN, (u)): U — [0,
1], and FN; (u) = (FN, (1), FN, (1), FN; (1), FN, (u)): U
— [0, 1] with the condition
0<TN, (1) + IN, (u) + FN, (1) <3 for u € U. For conve-
nience, a TrNN in Y is simply denoted by 7 = <(TN1, TN2,
TN3, TN4), (IN1, IN2, IN3, IN4), (FN1, FN2, FN3, FN4)>.

Regarding two TrNNs 3, = <(TNy;, TNy, TNy3, TNyy),
(IN115 IN13, INy3, INyy), (ENyy, FNy, FNs, ENpg)> and y, =
<(TN21) TNZZ’ TNZ?» TN24)> (INZI’ INZZ’ IN23’ IN24)’ (FNZD
ENy,, FN,3, FN,4)>, Ye [14] defined the following basic
operations:

(1) 7,8y, = ( (TN, + TN, = TN, TN,,, TN+
TN, ~TN,,TN,,  TNys+ TNy~ TNsTNys,
TN, +TN,, —-TN,TN,,), (IN;;IN,;,IN{,IN,,,
IN 31Ny, IN 14 IN,,), (FN FN,, FN(,FN,,,
FN3;FN,;, FN,FN,,)>

(2) 7,85, = ( (TN}, TNy, TN |, TN, TN3TN,;,
TN,,TN,,), IN; + IN,; —IN;IN,;,IN,, +
IN,, — IN,INy, IN3 + IN,s — IN;IN 5, IN,, +
IN,, —IN, IN,,), (FN;; + FN,; = FN;FN,,,
FN,, + EN,, — FN,FNy,, EN 5 + FNy; - FN
FN,;,FN,, + FN,, - FN,,FN,,))

@A =((1-0-TN 1= (1-TN), 1- (-
TN )Y 1 - (1-TN )Y, (IN},, IN},, IN},, INY)),
(FN},,FN},, ENL, FN1,), 150

@ 7 = ((TN},, ATN’I‘Z,TN’IQ,TN;L‘), (1-(1- INu;*,
1-(1-IN)1-(1-IN), 1-(1-IN)"),
(1-(1-FN;)Y, 1= (1-FN,), 1= (1-FNy),
1- (1-FN, )", 120

Regarding a group of TrNNs y; = <(TNj;, TNj, TNjs,

TI\’j4)) (Il\ljlr Il\ij) II\IjS) IZ\]j4)) (FI\le) FI\IjZ» FZ\IjS) FI\]j4)> (j: 1)
2,..,n) with their weights /1]- (i=1,2,...,n)for )Lj €[0,1] and
YiaAj=1 Ye [9] proposed the TrNNWAA and
TrNNWGA operators:
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—_~ —~ o~ n —~
TINNWAA (3, Vo - -5 V) = jefl Ay

n

_ <<1 TNy TN - T (- TN -

TINNWGA (71,72,...,%) =&y

n L PP P Iy
=< [TrNG TN TTrN [TTNG ),
j=1 j=1 j=1 j=1
(i moba it

j=1 j=1

1 A 1 by
1- (1 —FN]-I) i1- (1 -FN,)",

=1 i1

Then, the score and accuracy functions of the TrNN 3 =
<(TN,, TN,, TN, TN,), (INy, IN,, INs, IN,), (FN,, FN,, FN;,
FN,)> were defined as follows [9]:

12+TN1+TN2+TN3+TN4 IN, +IN, +IN;+IN, FN;+FN,+FN;+FN,

1-T](1-1N,)",1 -

n n

1.
(1-TN) ]>’ 2)

i1 i1

(3)

n 1. n 1.
1-[J(1-FNj) 1= (1 -FNj,)” >

S@)=§< 4 4

TN,+TN,+TN;+TN, FN,+FN,+FN;+FN,

. ) SG)elo1], (4

, H(®) e [-1,1]. (5)

H() = y

Based on the score and accuracy functions of TrNNs, the
ranking relations between two TrNNs 3, = <(TNy;, TNy,
TN13’ TN14)> (INII’ IN12> IN133 IN14)) (FNID FN]Z’ FNI?»
FN14)> and ¥, = <(TN3;, TNy, TNp3, TNp4), (IN2;, INp,
IN23, IN24), (FNZD FN22, FN23, FN24)> were defined as
follows [9]:

(1) ¥,>y, for S(¥;) = S(¥,)
(2) 7,>9, for S(3,) = S(¥,) and H(3,) > H (3,)
(3) y1 =y, for S(¥,) =S(¥,) and H(y,) = H(¥,)

4

3. Trapezoidal Neutrosophic Z-Number
(TrNZN) Sets

To make trapezoidal neutrosophic information reliable, this
section gives the following definitions of a TrNZN set,
operations of TrNZNs, score and accuracy functions of
TrNZN, and ranking laws of TrNZNss.

Definition 1. Set U as a universe set; then, a TrNZN set in U
is defined as the following mathematical representation:

Z ={u, (T2 W), TZz W), (12 (), 125 (W), (FZ; (w), FZ7 () )lu € U}, (6)

where (TZi;(u), TZ~(u)), (IZ; (u),IZE(u)), and (FZ\~/ (u),
FZ~(u)) are the truﬁq, indeterminacy, and falsity trapezoidal
Z-numbers that are composed of the truth, indeterminacy, and
falsity trapezoidal fuzzy numbers and their reliability measures,
denoted as (TZ;(u),TZ~(u)) = ((Ty, (u), Ty, (w), Tys (1),
Ty (1)), (Tay (1), Ty (4), Ty (), Ty () U— [0, 1] x
0, 1], (125 (W), 1Z5 (u) = ((Tyy (), Ly (), T3 (w), Iy (1)),

(Igy (u), Tpy (1), 15 (1), Ipy(u))): U — [0, 1]%[0, 1], and
(FZ“/’ (U)>FZ§ (u)=( (Fv1 (U):sz (u)>Fv3 (u), Fy, (u)), (FRl
(1), Fry (1), Fps(u),Fpy(u))): U — [0, 1]x[0, 1] with the
conditions 0<T'y, (u)+Iy, (u)+Fy,(u)<3 and 0<Tp, (u)+
Ipy (W)+Fpy (u)<3 for ueU.

For convenience, the three trapezoidal Z-numbers in Z
are simply denoted as (TZ; (u), TZE(u)) = ((Tyy,



Ty Ty Tya)s (Tri> Tros Tras Tra))s (IZ (), IZ* (u) =
((Iyy Iy Iyss Iypa)s (Ipys Tros Lras Tra))s and (FZ~ (u) FZ~
() = (Fyy> Fya, Fys, Fyy)s (Fris Fros Frss Fry)). Thus, a
TrNZN in Z is simply denoted as Z = <((Ty1, Tva, Tvs> Tva)s
(TRI) TRZ’ TR3’ TR4))’ ((IVI) IV2) IV3’ IV4)’ (IRI) IR2) IRS) TR4)))
((FVD FV2> FV3’ FV4)> (FRD FRZ’ FR3’ FR4))>-

If Ty, =Tvs, Tra = Tr3s Iv2=1Iv3, Iy = Irs, and Fy, = Fys,
Fro = Fgs hold in the TrNZN Z; it is reduced to the triangular
neutrosophic Z-number, which is a special case of TrNZN.

Definition 2. Set Z,= <((Tvi1, Tviz Tviz» Tvia)s (Tri1> Tri2s
TR13) TR14))) ((IVII’ IV12’ IV13: IV14)) (IR11> IR12’ IR13’ TR14))’
((Fvi1> Fvia, Fviss Fyvia)s (Frits Frizs Frizs Fria))> and z,=
<((Tva1> Tvazs Tvazs Tvza)s (Trats Trozs Trozs Troa))s ((Tvais
Ivazs Tvazs Tvaa)s (Irats Irozs Irass Troa))s ((Fvars Fvaas Fyos,
Fy24), (Fra1> Froa, Frass Froa))> as two TrNZNs. Then they
are defined as the following basic operations:

1) 2,2, = ( (Tyy, + Tyay = Ty Tyars Typy + Tyay —
Ty, Ty Tyis + Tyas = Tyi3Tyos Tyvig+Typy—
TyviaTvaa), (Triy + Trat = TrinTro> Triz + Troa —

T ri2T Ro2s T3+ Tros = TrisTrozs Tria + Troa—

TR14TR24))’ ((IVIIIVZI’ IVIZIVZZ’IV13IV23’IV14IV24)’
(IRHIRZI’ IR121R22’ IR13IR23’ IR14IR24))’ ((FVIIFVZD
FVIZFVZZ’ FV13FV23’ FV14FV24)’ (FRllFRZI’ FRIZFRZZ’
FR13FR23’ FR14FR24))>

(2) z1 ®z2 = < ((TVIITVZI’ TV12TV22’TV13TV23’TV14

Tyou) (Tri T ro1> Tri2 T Ro2s Tri3Tro3 TriaT Ro4))>
((Tyyy + Iyyy = Ty Lygs Ly + Iya = Lyl
Lyist Iy = Iyislyass Iyig + Ty — Iyiadyas), gy +
Iror = Ipiidpors  Iriz + Ireo = Iriodgoos Iris + 1ros —

+ Ty +Tyia+ Ty + Ty y
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Iri3Iross Tria + Iroa = Irialgoa))s ( (Fyyy + Fy -
Fyvi1Fvars Fyiat Fyay = FyiaFyags Fyis + Fyps — Fygs
Fyos Fyig + Fyoy = FyiaFypy),  (Fpryg + Fryy — Fryy
Frot» Fria + Frao = FrizFroos Fris + Fras = FrizFross
Fria + Frog = FrisFroa))?

()1Z = ( (- (-Ty', 1-0 - Ty 1- (1=

Ty 1- (1 —Tm) ), (1= (1- TRFY& 1-0-
Tr)s1-(1- TRAB) , 11— (1- TRAM) )s ((ﬂm,IAVlz,
A

IV13’ V14)> (IR11’1R12’1R13> IR14))’ ((FVII’FVIZ’

1 gk DI S S |
Fyi3 Fyia)s (Frip Frip Frizs Frig)))» A>0

(4) z} =

A
1;\ <((TV11’ v12’T%3)T¢14) (TRll’ R12’TR13’

R14)) (- -1y, 1-01 —Ivu) 1-(1-
Iv13) 1- (1—1\/14) ), (1= (1- }311) 1= (1-
IRlz) 1- (1-Ipy) 1-(1 _IRl‘i) ), (1= (1=
FVll) I- (I—Fvn) 1 (1_FV13) 1-(1-
FV14) ), (1—(1-Fg 1) -(1- FRIZ) 1-(1-
FR13) I- (I_FR14) NS A>0

For ranking TrNZNss, the score and accuracy functions of
TrNZN are defined according to the expected value of a
trapezoidal fuzzy number and score and accuracy functions
of TrNN [9].

Definition 3. Set Z,= <((Tvi1, Tviz Tviz» Tvia)s (Tri1> Trizs
TR137 TR14))’ ((IVlla IV123 IV13: IV14)a (IRll’ IR12> IR13r TR14))’
((Fvi1> Fyiz, Fyis, Fyia)s (Frits Frizs Fris» Fria))> as TINZN.
Then the score and accuracy functions of the TrNZN Z, can
be defined as follows:

Triy+Trip+ Triz+ Triy

4 4
S(z,) :% Iyy +IV1ZZIV13+IV14X1R11 +IR12;:IR13+IR14 ., S(z) e [0,1], 7)
Fyp +FV12+FV13+FV14XFR11 + Frip + Friz + Fryy
4 4
H(Z,) = Ty +Tyip+ Ty + Ty % Triy +Trip + Tris + Triy Fyyy + Fyp + Fyis + Fyyy
! 4 4 4 (8)
XFRll +FR121FR13+FR14) HZ) e [-1,1].

Based on equations (7) and (8), ranking laws between
two TrNZNs are given by the following definition.

Definition 4. Set Z,= <((Tv11, Tviz Tviz» Tvia)s (Tri1> Tr12s
TR13) TR14))’ ((IVII’ IVIZ’ IV13’ IV14)’ (IR11> IR12’ IR13’ TR14))’
((Fvi1> Fvia, Fviss Fyvia)s (Frits Frizs Friszs Fria))> and z,=
<((Tva1> Tvazs Tvazs Tvza)s (Trats Trazs Trozs Troa))s ((Tyars
IV227 IV237 IV24): (IR21’ IR22> IR233 TR24))> ((FVZI) FV22) FV233
Fyv»4)s (Frots Frozs Frass Froa))> as two TrNZNs. Then, the
ranking laws between two TrNZNs are defined as follows:

(1) If SZ,) > S(Z,), then Z,>Z,
(2) If Sz,) =S(Z,) and H(Z,) > H(Z,), then Z,>Z,
(3) If S(,) = S(Z,) and H(Z,) = H(Z,), then Z, = Z,

4. Weighted Aggregation Operators of TrNZNs

Regarding information aggregation in MDM problems, one
usually utilizes the weighted arithmetic and geometric av-
eraging operators as the most basic information aggregation
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approaches. To aggregate TrNZNs, therefore, this section
proposes the two following weighted aggregation operators
of TrNZNs based on the basic operations of TrNZNs in
Definition 2.

4.1. Weighted Arithmetic Averaging Operator of TrNZNs

Definition 5. Set Z;= <((Tvj1i, Tvjz Tvjs> Tvja)s (Trjt> Trjo>
Trj3» Tria))> ((Lvjis Lvias Tviss Tvia)s URji> Irjs Irjas Irja))s ((Fyjns
Fyja, Fyjs, Fyja), (Frj1> Friz» Frjs Frja))> (j=1, 2,...,n) as a
series of TrNZNs. Then, the TTNZNW AA operator is defined
as

TINZNWAA (Z,,2,, . . .,Z,)

((171_[(1’71%)%’1 (1) =TT (1-Te) 1 - (l—Tvﬂ)A/)’
1

-
il

Jj=1 Jj=1

5

whered; (j=1,2,.. ,n) is the weight of the jth TINZN Z; (j = I,

2, .., n)forA]- e [o, 1] andzj 1/1]—1

TINZNWAA (Z,,Z,) = L,Z, ® A,Z,

= ((1— 1—TV11)*1+1—(1—TV21)
-(1- \/12))Ll +1- vzz
-(1- V13) +1-( l_TV23
(1 _TV14) +1- 1 _TV24

1-

M
(1 ~(1=Tgry)" +1-(1~ TR21)

TINZNWAA (2,2, . . ., Z,) = e AZ; (9)

SR
where A; (j=1, 2,...,n) is the weight of the jth TINZN Z;
(=1, 2 . ,n)for/\ € [0, 1] andZ,I/\ =1.

Based on the bas1c operations of TrNZNs in Definition 2
and equation (9), we have the following theorem.

Theorem 1. Set Z.= <((TVj1’ TVjZ) TVjS) TVj4)’ (TRjI’ TRjZ:
Trjs Tria) ((Ivj Lvjz Tvis Ivia)s (Ikjns Irj Irjs Irja))s ((Fvjn
Fij, F\/j3, FVj4)’ (FRjI’ FRjZ) FRj3’ FRj4))> (j= 1, 2,. . .,]’1) as a
series of TrNZNs. Then, the aggregated value of equation (9) is
also TrNZN, which is yielded by the following equation:

L noon noom o noon nooon
HIV]l HIV/]Z nlua l_! Vid HIR]l n Rjz> HIR]" HIRﬂ Eyis | | Fvps | FV/jS’l__! Via > | Fris | F/I‘lij’ | Fris | Fria
= =

(10)

Proof. The proof of equation (10) can be given by mathe-
matical induction.

(1) Set n=2. Then there is the following result:

(1 -(1-Tyy,) ‘)(1 -(1- Tvzl)Az)
( (1 - v12 )(1 (1 - V22 )
—(1= (1 =Typ)" ) (1= (1= Tys)"),
(1—(1—TV14 Al)( —(1=Ty,,) Az))
(1 -(1-Tgry) A‘ (1 (1 _TRZI) )

A A A

)
1- (I_TRIZ) ' +1_(1_TR22) (1_(1_TR12 1)(1 (I_TRzz )
1_(1_TR13))Ll +1_(1_TR23) (1_(1_TR13 )(1 (I_TR23 )
1_(1_Tv14))Ll +1_(1_TR24) (1_ 1_TRl4) )( - 1_TRz4) )))
Iy

1
A, A A A A
R22 R13IR223’IR14IR24))’ (11)

((I/\\/llll%/zzpI/\\/llzlvzzrI\}13I\/223’I)\\/114I)\L/224)> (1;12111;\221’1212 o

((F/\\/IIIF/\\/ZZI’ Féflle/\\/zzz’ F%/113F)‘L/223’F%/114F%/224)> (FllglllF%Zl’ F?elle?zzzza F?2113F?2223a F?2114F?2224))>
= ((1 -(1- TVH))Ll (1- Tvzl))Lz’ 1-(1- TVIZ)AI (1- Tsz)AZ’

L= (1= Typa)" (1= Tys) %1 = (1= Tyy) " (1= Ty) ™)

(1 - (1 - TRH)/\l (1 - TRzl))LZ’ 1- (1 - TRIZ)AI (1 - TR22)A2>

M A 28 =
1_(1_TR13) (I_Tst) ’1_(1_TR14) (I_TR24) ))’

(1111

2 2 2 2 2
e[ 11 f%sﬂf’éfﬂ) (Hfiepmezﬂ w1 ))
(GESIERIE
j

e S

<

e

J

j=1 j=1 j=1 j=1 =1 =1
2 2 2 2 2 2
A A A A A 1. 1. 1.
j j j j j j j
Fle’l |FVj2’| |FVj3’| |FVj4>’<| |FRj1’| |FRj2’| |FRj3>| |FRj4>>>'
1 . " - ; "

Il
—



(2) Set n=k. Then, equation (10) can hold in the fol-
lowing equation:

Journal of Mathematics

j=1 j=1 j=1
k k k k
A : A A
P= [T =Tagn) =TT (0= Taie) 1 =TT (0= Tria) 5 1 =TT (1= Tip)” ) ) (12)
j=1 j=1 j=1 j=1
k \ k \ k | k A\ ko, ok y k y k 1y
[T TTW [T [T ) { TTE e T T R [ TR [ T2 ) )
IS T N U = A
k k k k k k k k
1 A A iy N 1 1. iy
J J 7 ] 7 J 7 J
[T TTR TTE o [T o\ TTF i [T PR T Fils [ T >
j=1 j=1 j=1 j=1 j=1 j=1 j=1 j=1
(3) Set n=k+1. By equations (11) and (12), we can
obtain
TINZNWAA (2,2, .. Z1 By ) = é‘aﬂ;gﬁhim
E
5 i o A , A - . e £ 3
L= [T (=) 1= Tygan))™ = (1= TT(=T)" )0 == Togan)) ™ |1 =TT =Tw) "+ 1=(1=Tygn)™ = ( (1= [T (1= )" J(1=(1= Tygnn))
j=1 =1 j=1 j=1
£ Yoo £ 1 e £ . - p
I*H(I*Tv,a) +1=(1= Ty ) ’<<1 H(l ijs)j)(lf(l’Tv(ku)z)) ! >,1 H(l Ty 74) 1’(1’Tv(k+1>4) . *<<1’H(1*T\/,4) /> 1 1 Ty (k+1)4 )
=1 j=1 J=1 =1
k k " K A k ),
:< (1 (1- TRJ!) +1=(1 = Ty d’<<1 [T(-Twy) ) (1=(1 = Trgean)) ”>’1 [10- TR;Z) (1= Treernn) “*((171_[(17%2)’) (1=(1 = Treernn) ) >
=1 j=1 j=1 j=1
k k k k A
10T+ 11 Taons) 7<<17n<17rm) )(v(mm ) ) 10T+ 11 Tans) “‘—((1—1'[(1—T.<j4) ) (1 Ty )
j=1 j=1 j=1 j=1
k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 41 k+1 k+1 k+1 k+1 k+1 k+1 k+1
(Tt e e T ) (L F o o Fo) ) ((Fot 0 E e Pt ) (F e Hov e ))
j=1 j=1 j=1 j=1 j=1 j=1 j=1 j=1 -1 =1 =1 j=1 j=1 j=1 j=1 =1
k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1
((-Hia=ranta-Fa-rota-fa-rota-fo-rot ) (i-Fo-rat - o fo-mera-flo-n))
< j=1 j=1 j=1 j=1 j=1 j=1 j=1 j=1 >
k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 k+1 ’
(e T ) (i E T o Fo) D (F ot B E e Bt ) (E e Hr i F ))
J=1 J=1 J=t J=1 J=1 J=1 j=t J=t j=1 j=t j=t Jj=t J=1 j=1 Jj=t Jj=t
(13)

Regarding the above results, equation (10) can hold for
any n. Thus, the proof is completed.

Especially when A;=1/n (j=1,2, ..., n), the TNZNWAA
operator is reduced to the TrNZN arithmetic averaging
operator. O

Theorem 2. The TrNZNWAA operator contains the three
following properties:

(P1) Idempotency: set Z;= <((Tvjp Tvj» Tvjs Tvja)s
(Trjp Triz Trjz Trid))s ((Ivjs Tviz Tvjs Tvia), (Igjs Irjz
IRj3) IRj4))’ ((FV]b FVjZ) FVjS) FVj4)> (FRjI’ FRjZ) FRj3) FR]4))
>(j=1,2,...,n)asaseries of TINZNs. IfZ; = Z for j =1,
2, ..., n, then there exists TrNZNWAA(Z,,Z,,...,
Z,) =Z

(P2) Set Z;= <((Tvj> Tvi> Tvis Tvia) (Trjn> Tri> Triz
Tris)) ((Lvji, Lvjz Lviz Tvja)s (Irj Irjz iz Irjia))s ((Fyjs
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Fvjz, Fyjs, Fyja), (Frji> Frio Frjs Frjd)) > (j=1,2, ..., n)
as a series of TrNZNs; then, set the minimum and
maximum TrNZNs as

min Ty, m1n TRJZ,m]m Tgjs 1’1’1]1n TR]4)>

((mlnTVﬂ,mmTV]Z,m]lnTVﬁ,mln Ty ) ;

J

< <maxIV]1,maxlvjz,mjelxlvj3,maxlvj4> (m xIRﬂ,maxIRjz,m]elxIRJ3,maxIR]4>) >

((maxFVﬂ, maxFVJZ, m]axFV]3, maxFV]4) (maXFle, maxFRjz, m]axFRﬁ, maXFR]4 )

(14)
( maxTVﬂ,maxTVﬂ,maxTV]3,maxTVJ4> (m XTRJI,maxTRJZ,maXTRJS,maxTRJ4))
i j i j
z" =< ( mlnIVﬂ,mlnIVﬂ,mlnIV]3,m1nIV]4> (mlnIRﬂ,mlnIRJZ,mlnIR]3,m1nIRJ4>> >
j j j j j j
((mmFVﬂ,mmFVﬂ,m1nFV]3,m1nFVJ4> (mmFR]l,m1nFR12,m1nFRJ3,m1nFRJ4>)
j j i j j
Then, there is Z~ < TrNZNWAA(Z,,2,,...,2,)<Z". Proof.
(P3) Monotony: set z;= <((TVj1, TVj2, TVj3, TVjd),
(TR'J.L TR]Q’ TRj3> TRj4))» ((IWI) IY]Q’ I‘/?3’ IVJ:4)’ (P1) Owing to z; =z for j=1, 2, ..., n, there is the
(IRj1, IRj2, IRj3, IRj4)), ((FVjl, FVj2, FVj3, FVjd), following result:
(FRjl, FRj2, FRj3, FRj4))> (j=1, 2, ..., n) as a series of
TrNZNs. If 2;<Z; for j=1, 2, ..., n, then there is
TrNZNWAA(Z,,2,, .. .,2,) < TrNZNWAA (z7,
Z5s s 2p).
TINZNWAA (2,2, 2,) = © A2
j=
2 A o by & A 2 A
=<<<1 1O -Ton) 5 =TT -Tu) 1 - T[(1-Tos) 1 - T (1- o) >
j=1 j=1 j=1 j=1

n A] n A n J n A] n A] n AJ n /\) n AJ
Iv]pl_[[v]2> I Iv]'4 > Ile’ . IRjZ’ IR]'3’ . IRj4 >
j

j= j=1 J=1

<<<1—(1—TVl)JZ;n)L (I—Tvz);n/\j,l (I—TV3)Zn/1 1- (I—TV4)JZ{MJ~>,

<1—(1—TR1);MJ.,1 (1 TRZ)Zn)tl (1—TR3)jZInAj,1—(1—TR4)]Zln/1j>>,
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<I\;_] = lnw]'; I‘;_] = lnw]‘, Iv3 ] = lnw]‘) I\;] = lnw]‘>)
Igj = 1”w].,1gj = 1”w].,11§j = 1”wj,1}§j = I”w]->>,
V =

<<FZ;‘] 1"wj FVZZ:]—lw],Fw]—lw F‘;]—l w>

Firj=1w;Fizj= I"wj,Fg’j = 1nwj’F1§j = 1"wj>>>

<((TV1’TV2’TV3’TV4) (TRI’TRZ’TR3’TR4))’ ((IVI’IV2’1V3’1V4)’ (IR1’1R2’1R3’1R4))’

((IVI’IVZ’IV3’IV4)’ (IRI’IR2’1R3’IR4))> =Z (15)

(P2) Duetoz” <Z; < Z* for j =1, 2, ..., n, there exists series of TrNZNs. Then, the TINZNWGA operator is defined
@112 <@ /\]z] <@ ,AZ" So, the inequality  as
Zz <o 71)L]z] <z' can flold accordlng to (P1); that is,

Z~ <TINZNWAA (Z,, 7y, ..., 7,)<Z".

(P3) DuetoE]<E;‘ forj=1,2,...,mn, therelsEB;’ AZ;
<@ Az], that is, TrNZNWAA(zl, Zys -
TrNZNWAA(z],Z5,...,Z,,).

TINZNWGA (2,25, +,3,) = & Z,  (16)
2

Nl
\/&
AL

where A; (j=1,2,...,n) is the weight of the jth TrNZN Z; for
A; €0, 1] andz_l/\]—l

Regarding the basic operations of TrNZNs in Definition
Thus, the proof of these properties is completed. [ 2 and equation (16), we can give the theorem below.

4.2. Weighted Geometric Averaging Operator of TrNZNs Theorem 3. Set Z;= <((Tvj, Tviz Tvjs Tvja) (Trjp Trjz
TRj3) TRj4))) ((IV_]I) IVjZ’ IVjS) I\/j4)) (Iij IRjZ’ IRj3) IRj4))) ((FV_]I)
Fvis Fyis, Fyja)s (Frjis Friz Fris Frig))> (j=1,2, ..., n)asa
series of TrNZNs. Then, the aggregated value of the

TrNZNWGA operator is also TrNZN, which is obtained by

Definition 6. Set Z;= <((Tvji, Tvjz Tvjs Tvja)s (Trjis Trin
TRj3s TRj4))> ((Iij IVjZ) IVj3> IVj4)’ (Iij IRj2> IRj3’ IRj4))r ((Fles
Fyj, Fyjs, Fyja), (Frji> Fri» Frjs Fria))> (j=1,2, ..., n) asa

TINZNWGA (Z,,Z,, . . .

—
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whereA; (j=1, 2, ..., n) is the weight of the jth TrNZN z; for
)L € [0, I]andz /\ =1.
Based on the szmzlar proof process of Theorem 1, we can
verify Theorem 3, which is omitted.
In particular, the TINZNWGA operator is reduced to the
TrNZN geometric averaging operator when A;=1/n (j=1, 2,
. ).

Theorem 4. The TrNZNWGA operator also contains the
three following properties:

j

< (maXIVﬂ,maXIV]z,m]a)(I‘,]3,meL)(IV]4

((maxFVﬂ, maxFVJZ, mjax Fyjs, maxFVJ4) (maxFle, maxFRJZ, m]axFR]3, maxFR]4)>

( min Ty, mjln Ty m]m Tyjs mm Tyj,

(P1) Idempotency: set z;= <((Tvj1» Tviz Tvjs Tvia),
(Trji> Trj> Trjz» Trid)) ((Lvjn Tvjz Lvis Tvia)s (IRjs Irj
I3 Irja)), (Fvji, Fvia Fyjs, Fyja), (Frji Friz Frjs Fria))
>(j=12,...n)as aseries of TT'NZNs. If Z; = Z for j=1,
2, ..., n, then there exists TINZNWGA (Z,,2,, ..., Z,) =

Z.
(P2) Boundedness: set Zi= <((Tvjp Tvi Tvjz Tvja)s
(Trjp Triz Trizs Trjd), ((Tvjp Lviz Lviz Tvid), (Irjs i
Igjs, Irja))s ((Fvji, Fvjo Fyjs Fyja), (Frjp, Friz Fris Frja))
> (j=1, 2, ..., n) as a series of TrNZNs; then set the
minimum and maximum TrNZNs as

) <m1n TRJI,mm T'gjp> min T'gj3, mm TRJ4>>
i i

m xIRJI,maxIRjz,mJaXIRp,maxIRﬂ) >

( max Ty, max Ty max Tyjs max Tyjs | max Trj1> max TR mJax Tyjs max TRJ4>)

J

((mjm Fyip m]m Fy s m]m Fy 3 mm Fyi ),

Then, there is = < TrNZNWGA(Z,,2,,...,2,) <Z".
(P3) Monotony: set Z;= <((Tvj» Tvijz Tvjz Tvja)s (Tgjss
Tri> Trip Trjd))s ((Ivjns Iviz Tvjs Ivia) (Irjn> Irjz Irjs
Iria), ((Fvji Fyja Fyjs Fyja), (Frjs Friz Fris Fria))>
(i=12 ... n)asaseries of TrNZNs. If Z; < Z] for j=1,
2, ..., n, then there exists TINZNWGA (Z1,2,, . . ., 2,,) <
TINZNWGA (21,25, .. ., Z°).

By the same proof process of Theorem 2, the properties of
the TINZNWGA operator can be also verified, which are not
repeated here.

5. MDM Approach Using the TTNZNWAA and
TrNZNWGA Operators and Score and
Accuracy Functions

This section establishes an MDM approach by using the
TINZNWAA and TrNZNWGA operators and score and
accuracy functions to handle MDM problems with TrNZN
information.

Regarding an MDM problem with TrNZN information,
a set of alternatives Q=1{Q;, Q,, ..., Q,} are commonly
presented and satisfactorily assessed by a set of criteria S=
{s1> s, ... s,}. Each alternative over criteria is assessed by

z" =< ((mm[vﬂ,rnJlnIV]z,rnJlnIVﬁ,mmIVﬂ) <m]1nIR]1,m1nIR]2,m]1nIR]3,n1]1nIR]4)) >

m]mFR]l,mmFR]z,m]m FR]3,m]1n FRJ4))

decision makers and then their given assessment values are
expressed in the form of TrNZNs Z;,= <((Tvij, Tvips Tvija
TVij4)’ (TRijla TRijZ: TRij3: TRij4))3 ((IVijb IVij2’ IVij37 IVij4)7 (IRijb
IRij2> IRij3> IRij4))) ((FVijb FVijZ) FVijS) Fsz4)> (FRijl’ FRijZ) FRijS)
FRij4))> (i= 1, 2,. R i= 1, 2,. . .,m), Where (TVijl) TVijZi TVij37
TVij4) - [0, 1] and (TRijl! TRijZS TRij3> TRij4) < [0, 1] indicate the
truth degrees and reliability measures of the alternative Q; over
the criteria Sj, (IVijl) IVijZ) IVij3) Isz4) Cc [0, l] and (IRijl’ Iszz, IRij3)
Iria) € [0, 1] indicate the indeterminate degrees and reliability
measures of the alternative Q; over the criteria s;, and (Fy;,
Fyij, Fyijs Fyia) € [0, 1] and (Fgj1, Frija» Frijz Frija) € [0, 1]
indicate the falsity degrees and reliability measures of the al-
ternative  Q; over the criteria s, along  with
0< TVij4+IVij4+FVij4S3 andOS TRij4+IRij4+FRij4S3 fOrj: 1,
2,..,nandi=1,2,..., m. Then, all the specified TrNZNs are
constructed as their decision matrix Z = (Zi)) mscn-

Thus, the TTNZNWAA and TrNZNWGA operators
and the score and accuracy functions can be applied to
MDM problems with TrNZN information, and then their
MDM approach can be indicated by the following
procedures:

Step 1: the aggregated TINZN z, for Q; (i=1, 2, ..., m)

is obtained by applying the TrNZNWAA or
TrNZNWGA operator:
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Z; = TINZNWAA (Z;1,Z, - - -

(- T10 - Fla -]

Jj=1 Jj=1

2= Bz,
;
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(-110-mu - F0- - Fl0-ma - F0-m)))

Z, = TINZNWGA (Z,,,Zp» - . -
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Step 2: by equation (7), we calculate the score values of
S(z;). If necessary, we calculate the accuracy values of
H(z;,) (i=1, 2, ..., m) by equation (8).

Step 3: all the alternatives Q; (i=1, 2, .. ., m) are ranked
corresponding to the score values (the accuracy values)
and the best one(s) is chosen in the set of alternatives.

Step 4: end.

6. MDM Example and Comparison with Existing
MDM Approaches

6.1. MDM Example of Software Selection. This section in-
dicates an MDM example of software selection adapted from
[9] to reveal the usability and efliciency of the established
MDM approach under the environment of TrNZNs.

In an MDM example, an investment company needs to
select a suitable software system from potential software
systems, where five candidate software systems are provided
preliminarily and denoted as a set of five alternatives Q=
{Q1, Qz, Q3, Qu, Qs}. Then, these alternatives must satisfy the
requirements of the four criteria: s; (the contribution to

’Ein) = éé E‘f
n Y n 1. n 1.
= <<<HTV]ij1’HTVJij2’HTV}ij3’ T
j=1 j=1 j=1
A
(1 _I\/ijz) 1= .

(1 1)1 -

(1= 1) =TT =) )

j=1 j=1

. o N (20)
(-t 110 )}

j=1 j=1
n n

B (AR (W

=1 J=1

organization performance), s, (the effort to transform from
current system), s; (the costs of hardware/software invest-
ment), and s, (the outsourcing software developer reli-
ability). Regarding the importance of the four criteria, the
weight values of the four criteria are specified as the weight
vector A =(0.25, 0.25, 0.3, 0.2). Thus, decision makers/ex-
perts assess the satisfiability of the five alternatives over the
four criteria by TrNZNs Z= <((Tviji> Tvijz> Tvigss Tvija)s
(TRijl: TRij2) TRijS’ TRij4))> ((IVijb IVij2> IVijS) IVij4)) (IRijb IRij2)
Irijz Irija))> (Fviji> Fvijas Fvijss Fyija)s (Friji> Frijos Frijs» Frija))
> (] = 1, 2, 3, 4; i= 1, 2, 3, 4, 5), Where (TVijIS TVijZ) TVij3S TVij4)
- [0, 1] and (TRijl’ TRijZ) TRij3> TRij4) c [0, 1] indicate that the
alternative Q; satisfies the degrees and reliability measures of
the criteria Sj, (IVijD IVij2> IVij3’ IVij4) - [0, 1] and (IRijl) IRijZ!
Igij3 Irija) < [0, 1] indicate the indeterminate degrees and
reliability measures of the alternative Q; over the criteria sj,
and (FVijb FVijz, FVijS) FVij4) c [0, 1] and (FRijl) FRijZ) FRij?v
Frijs) € [0, 1] indicate that the alternative A; does not satisfy
the degrees and reliability measures of the criteria s;, along
with 0< TVij4 + IVij4 + FVij4 <3and 0< TR,']‘4 + IRij4 + FRij4 <3.
Hence, all the specified TrNZNs can be constructed as the
following decision matrix Z = (Z; )5t
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Z:

((0.4,0.5,0.6,0.7), (0.4,0.5,0.6,0.7)), ((0.0,0.1,0.2,0.3), (0.3,0.4,0.5,0.6)), ((0.1,0.1,0.1,0.1), (0.3,0.4,0.5,0.6))
(((0.3,0.4,0.5,0.5), (0.5,0.6,0.7,0.8)), ((0.1,0.2,0.3,0.4), (0.4,0.5,0.6,0.7)), ((0.0,0.1,0.1,0.1), (0.5, 0.6,0.7,0.8)))
¢((0.1,0.1,0.1,0.1), (0.5,0.6,0.7,0.8)), ((0.1,0.1,0.1,0.1), (0.6,0.7,0.8,0.9)), ((0.6,0.7,0.8,0.9), (0.5, 0.6,0.7,0.8)))
((0.7,0.7,0.7,0.7), (0.4,0.5,0.6,0.7)), ((0.0,0.1,0.2,0.3), (0.4,0.5,0.6,0.7)), ((0.1,0.1,0.1,0.1), (0.3,0.4,0.5,0.6)))
{((0.0,0.1,0.2,0.2), (0.4,0.5,0.6,0.7)), ((0.1,0.1,0.1,0.1), (0.3,0.4,0.5,0.6)), ((0.5,0.6,0.7,0.8), (0.5,0.6,0.7,0.8)))
{((0.0,0.1,0.2,0.3), (0.3,0.4,0.5,0.6)), ((0.0,0.1,0.2,0.3), (0.4,0.5,0.6,0.7)), (0.2,0.3,0.4,0.5), (0.3, 0.4, 0.5,0.6))
€((0.2,0.3,0.4,0.5), (0.6,0.7,0.8,0.9)), ((0.0,0.1,0.2,0.3), (0.5,0.6,0.7,0.8)), ((0.0,0.1,0.2,0.3), (0.4, 0.5, 0.6,0.7))
€((0.0,0.1,0.1,0.2), (0.5,0.6,0.7,0.8)), ((0.0,0.1,0.2,0.3), (0.5,0.6,0.6,0.7)), ((0.3,0.4,0.5,0.6), (0.3,0.4,0.5,0.6)))
{((0.4,0.5,0.6,0.7), (0.5,0.6,0.7,0.8)), ((0.1,0.1,0.1,0.1), (0.6,0.7,0.7,0.8)), ((0.0,0.1,0.2,0.2), (0.5, 0.6,0.7,0.8)))
(((0.4,0.4,0.4,0.4), (0.3,0.4,0.5,0.6)), ((0.0,0.1,0.2,0.3), (0.4,0.5,0.6,0.7)), ((0.0,0.1,0.2,0.3), (0.5, 0.6,0.7,0.8)))
(((0.3,0.4,0.5,0.6), (0.4,0.5,0.6,0.7)), ((0.0,0.1,0.2,0.3), (0.4,0.5,0.5,0.6)), ((0.1,0.1,0.1,0.1), (0.4, 0.5, 0.5, 0.6)))
{((0.0,0.1,0.1,0.2), (0.5,0.6,0.7,0.8)), ((0.1,0.1,0.1,0.1), (0.4,0.5,0.6,0.7)), ((0.5,0.6,0.7,0.8), (0.3,0.4,0.5,0.6)))
(((0.2,0.3,0.4,0.5), (0.3,0.4,0.5,0.6)), ((0.0,0.1,0.2,0.3), (0.5,0.6,0.7,0.8)), ((0.1,0.2,0.2,0.3), (0.4,0.5,0.6,0.7)))
{((0.2,0.3,0.4,0.5), (0.5,0.6,0.6,0.7)), ((0.0,0.1,0.2,0.3), (0.5,0.6,0.7,0.8)), ((0.1,0.2,0.3,0.3), (0.3,0.4,0.5,0.6)))
{((0.6,0.7,0.7,0.8), (0.5,0.5,0.5,0.5)), ((0.1,0.1,0.1,0.1), (0.5,0.6,0.7,0.8)), ((0.0,0.1,0.1,0.2), (0.4, 0.5, 0.5, 0.6))
(((0.3,0.4,0.5,0.6), (0.3,0.4,0.5,0.6)), ((0.1,0.1,0.1,0.1), (0.4,0.5,0.6,0.7)), ((0.1,0.2,0.3,0.4), (0.5, 0.6, 0.6,0.7)))
(((0.3,0.4,0.5,0.5), (0.5,0.6,0.6,0.7)), ((0.0,0.1,0.2,0.3), (0.3,0.4, 0.5, 0.6)), ((0.0,0.1,0.1,0.2), (0.4, 0.5, 0.6,0.7))
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((0.1,0.2,0.3,0.4), (0.6,0.7,0.8,0.9)), ((0.1,0.1,0.1,0.1), (0.5,0.6,0.7,0.8)), ((0.3,0.4,0.5,0.6), (0.4,0.5,0.6,0.7))) |

((0.1,0.2,0.3,0.4), (0.5,0.6,0.7,0.8)), ((0.1,0.1,0.1, 0.1), (0.4,0.5,0.5,0.6)), ((0.4,0.5,0.6,0.6), (0.3,0.4,0.5,0.6)))
((0.1,0.2,0.3,0.3), (0.4,0.5,0.6,0.7)), ((0.1,0.2,0.3,0.4), (0.4,0.5,0.5,0.6)), ((0.2,0.3,0.4,0.5), (0.4,0.5,0.6,0.7)))

Thus, we utilize the established MDM approach to obtain
the most suitable software system(s), which can be depicted
by the following decision process.

First, by equation (19) or equation (20), we obtain the
following aggregated TrNZNs z; (i=1, 2, 3, 4, 5):

Z,= <((0.2636, 0.3656, 0.4682, 0.5719), (0.3569, 0.4572,
0.5577, 0.6585)), ((0, 0.1000, 0.1741, 0.2408), (0.3722,
0.4729, 0.5428, 0.6431)), ((0.1189, 0.1512, 0.1762,
0.1973), (0.3622, 0.4638, 0.5186, 0.6188))>

Z,= <((0.1945, 0.2958, 0.3758, 0.4243), (0.5271, 0.6278,
0.7129, 0.8176)), ((0, 0.1189, 0.1798, 0.2319), (0.3993,
0.5005, 0.6012, 0.7018)), ((0, 0.1712, 0.2132, 0.2821),
(0.3880, 0.4894, 0.5904, 0.6911))>

Z,= <((0.1081, 0.1848, 0.2421, 0.3245), (0.4710, 0.5735,
0.6776, 0.7856)), ((0, 0.1000, 0.1464, 0.1830), (0.5233,
0.6236, 0.6964, 0.7969)), ((0.2566, 0.3737, 0.4272,
0.5393), (0.3936, 0.4949, 0.5958, 0.6964))>

Z,= <((0.4035, 0.4652, 0.5298, 0.5983), (0.4767, 0.5771,
0.6486, 0.7500)), ((0, 0.1000, 0.1464, 0.1830), (0.4733,
0.5745, 0.6297, 0.7305)), ((0, 0.1699, 0.2366, 0.2366),
(0.3409, 0.4427, 0.5439, 0.6447))>

Zs= <((0.3454, 0.4287, 0.4599, 0.5218), (0.4096, 0.4767,
0.5478, 0.6242)), ((0, 0.1149, 0.1481, 0.1737), (0.3980,
0.4995, 0.5789, 0.6798)), ((0, 0.1950, 0.2552, 0.3760),
(0.4472, 0.5477, 0.6136, 0.7145))>

Or we obtain the following aggregated TrNZNs Z; (i=1,
2,3, 4, 5):

Z,= <((0, 0.2991, 0.4162, 0.5244), (0.3514, 0.4522,
0.5527, 0.6531)), ((0.0209, 0.1000, 0.1809, 0.2639),
(0.3764, 0.4767, 0.5478, 0.6486)), ((0.1261, 0.1745,
0.2266, 0.2835), (0.3751, 0.4762, 0.5218, 0.6224))>

(21)

zZ,= <((0, 0.2456, 0.2918, 0.3798), (0.5233, 0.6236,
0.7018, 0.8022)), ((0.0563, 0.1261, 0.1984, 0.2737),
(0.4088, 0.5096, 0.6108, 0.7129)), ((0.1877, 0.2944,
0.3715, 0.4743), (0.3996, 0.5005, 0.6020, 0.7045))>

Z;= <((0, 0.1597, 0.1888, 0.2543), (0.4449, 0.5479,
0.6499, 0.7513)), ((0.0463, 0.1000, 0.1565, 0.2162),
(0.5271, 0.6278, 0.7087, 0.8139)), ((0.3437, 0.4500,
0.5422, 0.6655), (0.4042, 0.5051, 0.6064, 0.7087))>

Z,= <((0.2832, 0.3885, 0.4807, 0.5658), (0.4729, 0.5733,
0.6431, 0.7434)), ((0.0463, 0.1000, 0.1565, 0.2162),
(0.4867, 0.5884, 0.6430, 0.7458)), ((0.1480, 0.2276,
0.3109, 0.3109), (0.3565, 0.4578, 0.5599, 0.6636))>

Zs= <((0, 0.2912, 0.3756, 0.3910), (0.3980, 0.4729,
0.5428, 0.6089)), ((0.0760, 0.1210, 0.1690, 0.2206),
(0.4096, 0.5106, 0.5943, 0.6976)), ((0.1958, 0.3012,
0.3877, 0.5020), (0.4523, 0.5528, 0.6296, 0.7330))>

Then, the results of the MDM approach based on the
TINZNWAA and TrNNWGA operators and the score
function are shown in Table 1.

From the results of Table 1, the ranking orders based on
the TTINZNWAA and TrNZNWGA operators are identical
and the best one indicates the same selection as the software
system Q.

6.2. Comparison with Existing MDM Approaches. For con-
venient comparison with existing MDM approach in the
setting of TrNN’s [9], we may ignore the reliability measures
in TrNZNs and only contain the decision matrix of TrNNs in
the MDM example as its special case. Thus, existing MDM
approach in the setting of TrNNs [9] can be used for the
special case of the MDM example. In this case, the decision
results based on the TINNWAA and TTNNWGA operators
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TaBLE 1: Results of the MDM approach based on the TINZNWAA
and TrNZNWGA operators and the score function.

Aggregation Score value Ranking
operator
0.6892, 0.6845, 0.6154, Q4 > Q1 > Q2 >
TINZNWAA 0.7207, 0.6824 Q5 > Q3
0.6607, 0.6257, 0.5750, Q4 > Ql > Q2 >
TINZNWGA 0.6848, 0.6158 Q5 > Q3

TABLE 2: Results of the MDM approach based on the TINNWAA
and T'NNWGA operators and the score function [9].

Aggregation Score value Ranking
operator
0.7092, 0.6744, 0.5694, Q4 > Ql > Q5 >
TINNWAA 0.7437, 0.7077 Q2 > Q3
0.6553, 0.5779, 0.5069, Q4 > Ql > Q5 >
TINNWGA 0.6835, 0.5904 Q2 > Q3

(equations (2) and (3)) and the score function of TrNNs
(equation (4)) are introduced from [9], which are shown in
Table 2.

Based on the decision results in Tables 1 and 2, we can see
that the ranking orders based on the established MDM
approach and the existing MDM approach [9] reveal their
difference, but the best alternative Q, (the best software
system) is identical. Then, the reason for their ranking
difference is that decision information in the existing MDM
approach [9] only contains TrNNs without considering the
reliability measures of TrNNs in this MDM example, while
decision information in the established MDM approach
contains both TrNNs and their reliability measures. Hence,
different decision information can result in different ranking
results. It is obvious that the reliability measures in this
example can affect the ranking order of alternatives, which
shows the efficiency and rationality of the established MDM
approach under the environment of TrNZNs.

However, the different decision information and deci-
sion methods can have an impact on the ranking of alter-
natives in the MDM problem, which reveals their
importance in MDM applications. Thus, existing MDM
methods [11-14, 23] only contain the TrNN or NZN in-
formation without considering the reliability measures in
TrNNs or continuous Z-numbers in NZNs; they may lose
some useful decision information so as to result in decision
distortion/unreasonable decision results, which reveal some
insufficiencies, while the new established approach can
contain much more information than existing MDM
methods and overcome the insufficiencies. Furthermore,
existing methods [11-14, 23] also cannot deal with such
MDM problems with TrNZNss.

Based on the above comparative analysis, the new
established approach in setting of TrNZNs not only makes
assessment information of TrNNs more reliable but also
strengthens the effectiveness and continuity of decision
information by comparison with existing MDM methods
with TrNN and NZN information [9, 11-14, 23], which
reveals the highlighting advantages of the new established
approach in the information representation and MDM
applications. Therefore, the new established approach not
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only extends existing methods but also demonstrates its
superiority over them.

7. Conclusion

To make TrNN reliable, this paper presented a TrNZN set
based on the truth, falsity, and indeterminacy trapezoidal
Z-numbers as the generalization of the Z-number concept
and then defined basic operations of TrNZNs, score and
accuracy functions of TrNZNs, and ranking laws of TrNZNs.
Next, the TTNZNWAA and TrNZNWGA operators were
proposed to aggregate the TrNZN information. Further-
more, an MDM approach based on the two aggregation
operators and score and accuracy functions was established
in the setting of TrNZNs, in which the assessment values of
alternatives over the criteria take the form of TrNZNs
containing TrNNs and their reliability measures. Finally, an
MDM example of software selection was provided to reveal
the suitability and efficiency of the established MDM ap-
proach in the setting of TrNZNss.

The main advantage of this study is that the established
method not only makes assessment information of TrNNs
more reliable but also strengthens the decision rationality
and efficiency in solving MDM problems with TrNZN in-
formation. However, the established method only uses the
basic aggregation algorithms of TrNZNWAA and
TrINZNWGA for MDM problems without considering the
interactions of some evaluation criteria with each other,
which implies the limitation of the proposed method in
MDM applications. For capturing these relationships, the
future study is to develop other aggregation algorithms and
to use them for some other MDM problems including slope
design schemes, energy and environmental managements,
and medicine options.
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