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a b s t r a c t

In this paper, a new clustering algorithm, neutrosophic c-means (NCM), is introduced for uncertain data
clustering, which is inspired from fuzzy c-means and the neutrosophic set framework. To derive such a
structure, a novel suitable objective function is defined and minimized, and the clustering problem is
formulated as a constrained minimization problem, whose solution depends on the objective function. In
the objective function, two new types of rejection have been introduced: the ambiguity rejection which
concerns the patterns lying near the cluster boundaries, and the distance rejection dealing with patterns
that are far away from all the clusters. These measures are able to manage uncertainty due to imprecise
and/or incomplete definition of the clusters. We conducted several experiments with synthetic and real
data sets. The results are encouraging and compared favorably with results from other methods as FCM,
PCM and FPCM algorithms on the same data sets. Finally, the proposed method was applied into image
segmentation algorithm. The experimental results show that the proposed algorithm can be considered
as a promising tool for data clustering and image processing.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Data clustering or cluster analysis is an important field in pattern
recognition, machine intelligence and computer vision community,
which has a numerous of applications in the last three decades [1–4].
Generally, clustering term is known as grouping a set of N samples
into C clusters whose members are similar in some sense. This
similarity between different samples is either a suitable distance
based on numeric attributes, or directly in the form of pair-wise
similarity or dissimilarity measurements.

Clustering can classify similar samples into the same group. The
clustering process could be described as follows. Let X ¼ fxi; i¼
1;2;…;Ng be a data set, and xi be a sample in a d-dimensional
space. The problem of hard clustering is to find a partition
P ¼ fp1; p2; :::; pCg, which satisfies X ¼ [C

i ¼ 1 pi, piaΦ for i¼ 1;2
; :::;C, pi \ pj ¼Φ for i; j¼ 1;2; :::;C; ia j.

In literatures, most of the clustering algorithms can be roughly
classified into two types [5,6]: hard and fuzzy clustering methods.
In hard clustering methods, data are grouped so that if a certain
data point belongs to a cluster, then it cannot be included in other
clusters. On the contrary, with fuzzy partitioning, each object may
belong to several clusters with different degrees of membership.

The k-means type algorithms are one of the hard clustering
algorithms that widely used in real applications [7–9]. The main
advantages of these algorithms are its simplicity and speed, which
allow it to run on large datasets. However, it depends on the initial
assignments and might not yield the same result with each run.
Moreover, it tries to minimize intra-cluster variance, but does not
ensure that the result has a global minimum of variance. The
k-meansþþ is proposed as an approximation algorithm for a NP-
hard k-means problem, and used for choosing the initial values for
the k-means clustering algorithm [10]. The k-meansþþ algorithm
improves the poor clustering sometimes in the standard k-means
algorithm. Kang et al. [11] presented a variation of k-means
clustering, k-medians clustering, where it calculates the median
for each cluster to determine its centroid, instead of the mean value.
It has the effect of minimizing error over all clusters with respect to
the 1-norm distance metric, in contrast to the square of the 2-norm
distance metric. The k-medoids algorithm is also related to the
k-means algorithm [12]. It attempts to minimize squared error, the
distance between points labeled to be in a cluster and a point
designated as the center of that cluster. In contrast to the k-means
algorithm, k-medoids chooses data points as centers.

The fuzzy c-means algorithm (FCM) is one of the most popular
fuzzy clustering algorithms where the membership degrees of the
data are obtained through iterative minimization of a cost function,
subject to the constraint that the sum of membership degrees over
the clusters for each data be equal to 1. The FCM algorithm suffers
from several drawbacks: it also tries to minimize the intra-cluster
variance as well, and has the same problems as k-means algorithm;
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the minimum is a local minimum, and the results depend greatly on
the initializations [2]. In addition, the FCM algorithm is very sensitive
to the presence of noise. The membership of noise points might be
significantly high. The FCM algorithm cannot distinguish between
equally highly likely and equally highly unlikely [2,13,14], and is
sensitive to the selection of distance metric. To overcome these
problems, Krishnapuram and Keller [15] proposed a clustering model
named possibilistic c-means (PCM), where the constraint is relaxed.
In PCM, the membership is interpreted as the compatibilities of the
datum to the class typicality which corresponds to the intuitive
concept of degree of belonging or compatibility. However, PCM is
sensitive to initializations, and sometimes generates coincident
clusters. Moreover, the membership values to the clusters are also
sensitive to the choice of the additional parameters in PCM. To solve
the PCM coincident cluster problem, Pal et al. [16] combine PCM and
FCM, and took into account both relative and absolute resemblance
to cluster centers. Gustafson and Kessel [17] proposed a G–K
algorithm using the Mahalanobis distance as the metric in FCM.
They reported that the G–K algorithm is better than Euclidean
distance based algorithms when the shape of data is considered. A
robust clustering algorithm called noise clustering (NC) was pro-
posed by Dave [18]. The algorithm modified the objective of FCM to
make the parameter estimation more resistant to noise. So, the
inability of FCM algorithm to detect atypical data points can be
solved. NC has two major drawbacks. First, a single parameter is used
to describe the scale or resolution parameter. This is clearly insuffi-
cient in the general clustering problem where clusters are not
guaranteed to be of the same size or to have the same inlier bounds.
Second, the scale parameter needs to be known in advance, or pre-
estimated from the data. There also exist several fuzzy based
clustering approaches such as Roubens' fuzzy non-metric model
(FNM) model [19], the relational fuzzy c-means (RFCM) model [20]
and the assignment-prototype (AP) model [21]. The non-Euclidean
relational fuzzy c-means (NERFCM) model was later extended by
Hathaway and Bezdek [22] to cope with non-Euclidean dissimilarity
data. The robust versions of the FNM and RFCM algorithms were
then proposed by Dave [23]. More recently, various evidential
clustering algorithms, including ECM and RECM were proposed by
Masson and Denoeux [24,25]. The evidential clustering term gen-
eralizes existing concepts of hard, fuzzy (probabilistic) or possibilistic
partitions by allowing an object to belong to several subsets of
classes. An extension of the conventional FCM, type-2 FCM was
proposed by Rhee and Hwang [26]. In type-2 FCM, the membership
values for each sample are extended as type-2 fuzzy memberships by
assigning membership grades to the classical memberships. Another
type-2 FCM algorithm was proposed by Linda and Manic for
uncertain fuzzy clustering [27], which can be regarded as an
extension of the work in [26]. It focused on managing of uncertainty
associated with the parameters of fuzzy clustering algorithms. Rhee
introduced the uncertain fuzzy clustering and proposed several
insights and recommendations about it [28].

Neutrosophic set (NS), was proposed as a new branch of
philosophy dealing with the origin, nature and scope of neutral-
ities, and their interactions with different ideational spectra [29].
An element 〈E〉 in neutrosophic set is considered in relation to its
opposite, 〈Anti-E〉 and its neutrality 〈Neut-E〉, which is neither 〈E〉
nor 〈Anti-E〉, and three memberships are employed to measure the
degree of truth, indeterminacy and falsity of 〈E〉. Based on this
character, neutrosophic theory provides a powerful tool to deal
with the indeterminacy, and has found practical applications in a
variety of different fields, such as relational database systems,
semantic web services [30], financial dataset detection [31] and
new economies growth and decline analysis [32]. Moreover,
several image processing applications such as image de-noising
[33], thresholding [34], segmentation [35], and color texture image
segmentation [36] can be seen in the literature.

In this paper, based on neutrosophic set, we propose a new
clustering algorithm, neutrosophic c-means (NCM) clustering. NCM
calculates the degrees belonging to the determinant and indetermi-
nate clusters at the same time for each of the data points. While the
membership T can be considered as the membership degree to
determinant clusters, and two memberships I and F can be used to
determine two kinds of indeterminate clusters: an ambiguity cluster
and an outlier cluster for each data point, respectively. Ambiguity
cluster allows us to consider about the data points that are laying near
the clusters boundaries and outlier cluster allows us to reject
individual data points when they are very far from the centers of
each cluster. Both ambiguity and outlier clusters are introduced in the
clustering iterations and not in the decision processing. The member-
ship degrees to the ambiguity and outlier class of a data point are
explicit, and these values are learned in the iterative clustering
problem. So, the membership functions are more immune to noise
and they correspond more closely to the notion of compatibility. We
proposed a new objective function to make the parameter estimation
more resistant to noise and outliers, and derived the membership and
prototype update equations from the conditions for minimization of
our cost function. Therefore, the inability of FCM algorithm to detect
atypical data points can be solved.

The rest of the paper is organized as follows. Section 2 recalls the
necessary background about the FCM algorithm. Section 3 gives the
definition of the NCM algorithm and explains how to compute a
partition from data. The interpretation of an NCM is illustrated using
synthetic and real data sets in Section 4. In addition, the proposed
method was applied to image segmentation, and several experi-
ments were taken. Finally, Section 5 concludes the paper.

2. Fuzzy c-means algorithm

A typical FCM clustering can be described as follows. Let
X ¼ fxi; i¼ 1;2;…;Ng be a data set, and xi be a sample in a d-
dimensional space. Let C ð2rCrNÞ be the desired number of
classes. Each cluster is represented by a center ck. FCM finds a
partition of data by minimizing the objective function.

Jm ¼
XN
i ¼ 1

XC
j ¼ 1

ðμijÞm‖xi�cj‖2 ð1Þ

where m is any real number greater than 1, μij is the degree of
membership of xi in the cluster j, xi is the ith of d-dimensional
measured data, cj is the d-dimension center of the cluster, and ‖�‖
is a norm.

Fuzzy partitioning is carried out through an iterative optimiza-
tion of the objective function, and the membership μij and the
cluster centers cj are updated by

μij ¼
1PC

k ¼ 1 ‖xi�cj‖=‖xi�ck‖
� �2=m�1 ð2Þ

cj ¼
PN

i ¼ 1 ðμijÞm UxiPN
i ¼ 1 ðμijÞm

ð3Þ

The iteration will not stop until max
i;j

f μðkþ1Þ
ij �μðkÞij

��� ���goε, where ε is a
termination criterion between 0 and 1, and k is the iteration step.
This procedure converges to a local minimum or a saddle point of
Jm. Finally, each data is assigned into different class according to
the membership value.

3. Proposed method

In clustering analysis, the traditional methods only describe the
degree to every group. In fact, for some samples, especial for the
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samples on the boundary region between different groups, it is
difficult to determine which group they are belonged to and their
partitions are indeterminate. If a hard partition is made, it will
make the centers of different clusters inaccurate. The disadvantage
of traditional clustering algorithm, such as FCM, can be illustrated
using an example inspired from a classical diamond data set [21].
It is composed of 12 objects, which are represented in Fig. 1.
Objects 1–5, 7–11 are in two different diamond sets, whereas
object 6 is in the boundary region between two diamond sets, and
object 12 regards as an outlier or noise data.

The 12 objects in Fig. 1 are clustered into 2 clusters using FCM
algorithm. Each object is required to assign to an appropriate
cluster according to its membership value in Table 1. Tc1 and Tc2
indicate the memberships of each data point to c1 and c2 clusters.
In the FCM result, objects 1–6 are assigned to cluster 1, and objects
7–12 are in cluster 2. The cluster centers of c1 and c2 are (�2.63,
0.17) and (4.13, 1.17), respectively. Because of the objects 6 and 12,
the cluster centers are not exactly as same as the centers diamond
sets, which locate at (�3.34, 0) and (3.34 0). If we remove the
object 6 from cluster c1 and the object 12 from c2, the clusters
become compact and their centers are as same as the centers
diamond set.

In the proposed clustering algorithm, inspired by the neutro-
sophic set, we consider not only the degree belonging to determi-
nate clusters, but also the degree belonging to the indeterminate
clusters. A new unique set A has been proposed, which regards as
the union of the determinant clusters and indeterminate clusters.
Let A¼ Cj [ B [ R, j¼1, …, C. where Cj is an indeterminate cluster,
B regards the clusters in boundary regions, R is associated with

noisy data and [ is the union operation. B and R are two kinds of
indeterminate clusters. T is defined as the degree to determinant
clusters, I is the degree to the boundary clusters, and F is the
degree belonging to the noisy data set.

Considering clustering with indeterminacy, a new objective
function and membership are defined as

JðT ; I; F;CÞ ¼
XN
i ¼ 1

XC
j ¼ 1

ϖ1Tij
�m j jxi�cj j j 2

þ
XN
i ¼ 1

X
C
2

� �

j ¼ 1

ϖ2I2ij
�m j jxi�c2j j j 2

þ
XN
i ¼ 1

X
C

3

� �

j ¼ 1

ϖ3I3ij
�m j jxi�c3j j j 2

þ
XN
i ¼ 1

X
C

4

� �

j ¼ 1

ϖ4I4ij
�m j jxi�c4j j j 2þ :::

þ
XN
i ¼ 1

X
C

C

� �

j ¼ 1

ϖCICij
�m j j xi�cCj j j 2þ

XN
i ¼ 1

δ2ðϖCþ1FiÞ2 ð4Þ

where c2j is the mean of any two classes, cnj is the mean of any n
clusters, and cCj is the mean of all clusters. ϖi is the weight factor. δ
is used to control the number of objects considered as outliers. I2ij
is the degree to the data i to any two classes, and ICij is the
indeterminate degree to any C classes.

When the clustering number C is greater than 3, the objective
function in Eq. (4) is very complex and time consuming. In fact, the
indeterminate degree of each data greatly depends on the determi-
nate clusters close to it. In this situation, if we only consider the two
closest determinate clusters which have the biggest and the second
biggest membership values, the objective function will be simplified,
and computation cost will be reduced while the clustering accuracy is
not decreased greatly. This assumption will be justified in Section 4.1.
After this simplification, the objective function is rewritten as

JðT ; I; F;CÞ ¼
XN
i ¼ 1

XC
j ¼ 1

ðϖ1TijÞm j jxi�cj j j 2þ
XN
i ¼ 1

ðϖ2IiÞm j jxi�ci max j j 2

þ
XN
i ¼ 1

δ2ðϖ3FiÞm ð5Þ

ci max ¼
cpiþcqi

2
ð6Þ

pi ¼ arg max
j ¼ 1;2;⋯C

ðTijÞ ð7Þ

qi ¼ arg max
japi \ j ¼ 1;2;⋯C

ðTijÞ ð8Þ

where m is a constant. pi and qi are the cluster numbers with the
biggest and second biggest value of T. When the pi and qi are
identified, the ci max is calculated and its value is a constant number
for each data point i, and will not change anymore. T. Tij, Ii and Fi is
the membership values belonging to the determinate clusters,
boundary regions and noisy data set, 0oTij; Ii; Fio1, which satisfy
with the following formula:

XC
j ¼ 1

Tijþ IiþFi ¼ 1 ð9Þ

The objective function in Eq. (5) is derived from Eq. (1) whose
convergence has been discussed and proved [37]. In this condition,
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Fig. 1. Diamond data set.

Table 1
Clustering result using FCM on the diamond set.

Object Tc1 Tc2 arg max Tc1 ; Tc2f g Partition

1 0.9376 0.0624 Tc1 c1
2 0.9532 0.0468 Tc1 c1
3 0.9908 0.0092 Tc1 c1
4 0.9427 0.0573 Tc1 c1
5 0.9735 0.0265 Tc1 c1
6 0.7264 0.2736 Tc1 c1
7 0.2864 0.7136 Tc2 c2
8 0.1823 0.8177 Tc2 c2
9 0.0531 0.9469 Tc2 c2

10 0.0226 0.9774 Tc2 c2
11 0.0352 0.9648 Tc2 c2
12 0.3049 0.6951 Tc2 c2
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the convergence of Eq. (5) is achievable. According to the above
formula, the Lagrange objective function is constructed as

LðT ; I; F;C; λÞ ¼
XN
i ¼ 1

XC
j ¼ 1

ðϖ1TijÞm‖xi�cj‖2þ
XN
i ¼ 1

ðϖ2IiÞm‖xi�ci max‖2

þ
XN
i ¼ 1

δ2ðϖ3FiÞm�
XN
i ¼ 1

λið
XC
j ¼ 1

Tijþ IiþFi�1Þ ð10Þ

For each point i, the ci max is computed according to indexes of the
largest and second largest value of Tij which are obtained using a
comparison process.

To minimize the Lagrange objective function, we use the
following operations:

∂L
∂Tij

¼mðϖ1TijÞm�1‖xi�cj‖2�λi ð11Þ

∂L
∂Ii

¼mðϖ2IijÞm�1‖xi�ci max‖2�λi ð12Þ

∂L
∂Fi

¼ δ2mðϖ3FiÞm�1�λi ð13Þ

∂L
∂cj

¼ �2
XN
i ¼ 1

ðϖ1TijÞmðxi�cjÞ ð14Þ

The norm is specified as the Euclidean norm. Let ð∂L=∂TijÞ ¼ 0,
ð∂L=∂IiÞ ¼ 0, ð∂L=∂FiÞ ¼ 0, and ð∂L=∂ciÞ ¼ 0, then

Tij ¼
1
ϖ1

λi
m

� �1=m�1

xi�cj
� ��ð2=m�1Þ ð15Þ

Ii ¼
1
ϖ2

λi
m

� �1=m�1

xi�ci maxð Þ�ð2=m�1Þ ð16Þ

Fi ¼
1
ϖ3

λi
m

� �1=m�1

δ�ð2=m�1Þ ð17Þ

cj ¼
PN

i ¼ 1 ðϖ1TijÞmxiPN
i ¼ 1 ðϖ1TijÞm

ð18Þ

Let λi
m

� �1=m�1 ¼ K ,

XC
j ¼ 1

Tijþ IiþFi ¼ 1 ð19Þ

XC
j ¼ 1

K
ϖ1

xi�cj
� ��ð2=m�1Þ þ K

ϖ2
xi�ci maxð Þ�ð2=m�1Þ þ K

ϖ3
δ�ð2=m�1Þ ¼ 1

ð20Þ

K ¼ 1
ϖ1

XC
j ¼ 1

xi�cj
� ��ð2=m�1Þ þ 1

ϖ2
xi�ci maxð Þ�ð2=m�1Þ þ 1

ϖ3
δ�ð2=m�1Þ

2
4

3
5

�1

ð21Þ
Therefore,

Tij ¼
K
ϖ1

xi�cj
� ��ð2=m�1Þ ð22Þ

Ii ¼
K
ϖ2

xi�ci maxð Þ�ð2=m�1Þ ð23Þ

Fi ¼
K
ϖ3

δ�ð2=m�1Þ ð24Þ

The partitioning is carried out through an iterative optimization of
the objective function, and the membership Tij, Ii, Fi and the
cluster centers cj are updated by Eqs. (18), (22), (23) and (24) at

each iteration. The ci max is calculated according to indexes of the
largest and second largest value of Tij at each iteration. The
iteration will not stop until T ðkþ1Þ

ij �T ðkÞ
ij

��� ���oε, where ε is a termina-
tion criterion between 0 and 1, and k is the iteration step.

The above equations allow the formulation of NCM algorithm.
It can be summarized in the following steps:

Step 1 Initialize T ð0Þ, Ið0Þ, and F ð0Þ;
Step 2 Initialize the C ;m; δ; ε; ϖ1; ϖ2; ϖ3 parameters
Step 3 Calculate the centers vectors cðkÞ at k step using Eq.
(18);

Step 4 Compute the ci max according to indexes of the largest
and second largest value of T by a comparison process;

Step 5 Update T ðkÞ to T ðkþ1Þ using Eq. (22), IðkÞ to Iðkþ1Þ using

Eq. (23), and FðkÞ to F ðkþ1Þ using Eq. (24);

Step 6 If jT ðkþ1Þ �T ðkÞ joε then stop; otherwise return to Step
3.

Step 7 Assign each data into the class with the biggest TM¼
[T, I, F] value: xðiÞAkth class if k¼ arg max

j ¼ 1;2;:::;Cþ2
ðTMijÞ

4. Experimental results

In this section, we compare the proposed method with other
approaches by FCM [3], PCM [15] and FPCM [38] on Iris data [39]
and several simulated datasets to demonstrate their performance
in clustering.

In the experiments, the parameter m has the same meaning as
the fuzzification constant in the fuzzy clustering algorithms, and is
usually selected as 2. We assume that the number of cluster C is
known in advance. We selected ε¼10�5, δ¼1.4, and ϖ1 ¼ 0:8 ,
ϖ2 ¼ 0:1 and ϖ3 ¼ 0:1 for the experiments in Section 4.1, which
are tuned in our experiments. We will discuss the influence of
these parameters in Section 4.4.

In the experiments, no ambiguity has arisen in the experiments
in computing ci max, i.e., for each i, the second largest value among
Ti1,…,TiC is always different from the third largest value. When the
largest and the second largest values are same in some cases, to
make sure that ci max not change too much, the second largest
must be selected differently from the third largest one.

4.1. Experiment on the diamond data

We illustrate the performance of NCM using a first example
inspired from a classical diamond data set [29]. It is composed of
12 objects, which are represented in Fig. 1. Objects 1–11 are
normal data, whereas object 12 is an outlier. A 2-class partition
was imposed so that three membership set elements (T, I and F)
have been considered in the optimization process: c1, c2, indeter-
minacy set and the outlier set. The T, I and F are represented in
Fig. 2(d) which T, I and F are plotted against the point number.

It can be seen that the two natural clusters are correctly
clustered for points 1–11 where the high true set (T) values
obtained. Point 6 is assigned to indeterminacy set, which reveals
that this point is ambiguous, and it could be assigned either to c1
or c2. Point 12, which can be considered as an outlier, is logically
assigned to the falsity set.

Table 2 shows the T, I and F membership values and the last
column shows the neutrosophic cluster assignments for the
diamond data set points. Note that both classes are completely
indeterminate for data point 6.

We compared the results obtained with the FCM, PCM
and FPCM algorithms. The optimal parameters were used in
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experimental comparison for FCM, PCM and FPCM. These results
are given in Fig. 2(a), (b) and (c) respectively, which shows the
membership values obtained by the algorithms. Every algorithm
finds a reasonable partition of the data, but the ambiguous and the
outlier data points are assigned to the clusters. On the other hand,
NCM is the only algorithm able to detect atypical data point like
object 6 and object 12.

We further illustrate the performance of NCM using a more
complicated diamond data set, where three diamond class points
are used, and one diamond class is between the other diamond
two diamond clusters. In other words, the new diamond cluster's
center is located on the mean location of the rest diamond
clusters. It is composed of 18 objects, shown in Fig. 3. So there
are two ambiguous data points 6 and 12, and an outlier data point
18. Clustering results are given in Fig. 4. Again, the proposed NCM
algorithm correctly grouped the three natural clusters.

Points 6 and 12 are assigned to indeterminacy set, which reveals
that these points are ambiguous and finally the point 18, which can
be considered as an outlier, is logically assigned to the falsity set. We
again compared the results obtained with the FCM, PCM and FPCM
algorithms. The clustering capabilities of the compared algorithms
are given in Fig. 4(a), (b) and (c) respectively, which shows the
membership values by different algorithms. One more time every
algorithm finds a reasonable partition of the data, but the ambiguous
and the outlier data points are assigned to the clusters by all
compared methods. NCM is the only algorithm that can detect
atypical data point like object 6, 12 and object 18.

As it is indicated in Ref. [16], typicality is an important means
for alleviating the undesirable effects of outliers. For a fairly
comparison with the FPCM method, we also considered the

typicality in the FPCM [16]. We carried out an experiment on
X12 database that was used in [16] for evaluating FPCM perfor-
mance based on the typicality. The data points of the X12 database
are given in Fig. 5.

In the comparison, the FPCM model was run using the para-
meters in [40] and the obtained typicality degrees (TT

1 and TT
2) are

tabulated in Table 3. The NCM results (Tc1, Tc2 and I) are listed in
first four columns of Table 3. In the NCM results, it is obvious that
the data points 1, 2, 3, 4 and 5 were assigned to c1 cluster, data
point 6 is ambiguous, data points 7, 8, 9, 10 and 11 were assigned
c2 cluster and finally data point 12 was an outlier. In the FPCM
results, according to the typicality degrees, it is obvious that points
1–5 belong to the left cluster and 7–11 in the right cluster.
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Fig. 2. Clustering results on the diamond data set with two classes: (a) result of FCM; (b) result of PCM; (c) result of FPCM and (d) result of NCM.

Table 2
Various partitions obtained using NCM on the diamond data set with two classes.

Point Tc1 Tc2 I F arg max Tc1 ; Tc2; I; Ff g Neutrosophic
partition

1 0.8262 0.0294 0.0104 0.1339 Tc1 c1
2 0.7952 0.0451 0.0196 0.1401 Tc1 c1
3 0.9996 0.0001 0.0000 0.0003 Tc1 c1
4 0.7920 0.0456 0.0197 0.1426 Tc1 c1
5 0.6950 0.0799 0.0915 0.1336 Tc1 c1
6 0.0007 0.0007 0.9982 0.0005 I Ambiguous
7 0.0835 0.6802 0.0990 0.1373 Tc2 c2
8 0.0475 0.7854 0.0207 0.1464 Tc2 c2
9 0.0003 0.9987 0.0001 0.0008 Tc2 c2

10 0.0444 0.7994 0.0195 0.1367 Tc2 c2
11 0.0284 0.8334 0.0101 0.1280 Tc2 c2
12 0.0477 0.0938 0.0084 0.8502 F Outlier
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However, it is difficult to assign the data point 6 and 12 to proper
classes because of TT

1¼TT
2.

We also conducted another experiment to compare NCM and
FPCM using a three class dataset, which is illustrated in Fig. 6. In
Fig. 6, the data points 6 and 12 are ambiguous and data points 18 and
19 are outliers. The results of FPCM and NCM are tabulated in Table 4.

In Table 4, the belonging of each data point can be easily made
according the results of the NCM. The first five data points belong
to the first class because of their higher Tc1 values. Similar
observation can be inferred for the other classes (C2 and C3). Data
points 6 and 12 were ambiguous because of the high I values.
Finally, last two data points (18 and 19) were deduced as outlier.
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Fig. 3. Diamond dataset with three classes.
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Fig. 4. Clustering results on the diamond data set with three classes: (a) result of FCM; (b) result of PCM; (c) result of FPCM and (d) result of NCM.
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However, when the belonging is determined by the typicality
degrees in the FPCM, there is not an obvious judgment to
determine the true clusters, ambiguous data points and the

outliers. The experiment with the three class diamond dataset
shows the clustering ability of NCM clearly against the FPCM.

Finally, we conducted an experiment with a four clusters
diamond data set to justify the assumption about the simplifica-
tion from Eqs. (4) and (5). This dataset, shown in Fig. 7, is
composed of 24 data points with three ambiguous data points:
6, 12 and 18, and an outlier data point 24. There are four diamond
clusters (C¼4), whose centers are located on the data point: 3, 9,

15 and 20. We have
C

2

� �
¼ 6 combinations to compute the

centers of different two clusters (c2j),
C

3

� �
¼ 4 combinations to

compute the centers of different three clusters (c3j), and
C

4

� �
¼ 1

combination for all four clusters. In order to reduce the computa-
tion, we simplify the Eq. (4) into Eq. (5) considering only C-1 pairs,
which is based on the fact that the indeterminacy greatly depends
on the closest determinate clusters with high truth values. We
conducted a new experiment to justify this assumption, and the
results are listed in Fig. 8 and Table 5.

In this experiment, NCM was run with the same parameters
using objective functions of Eqs. (4) and (5). The clustering results
are shown in Fig. 8, and the cluster centers for both objective
functions are listed in Table 5.

The membership values for each data point are given in Fig. 8
for both equations. Fig. 8(a) shows T membership values of Eq. (4),
Fig. 8(b) shows the I (red line) and F (black line) membership
values of Eq. (4), and Fig. 8(c) shows all T, I and F membership
values of Eq. (5). As we are using the maximum value of [T, I, F] for
assigning the cluster label to the data point, from Fig. 8(c), we can
see that the simplified objective function achieve the correct
clustering result. Four classes are grouped correctly, and the
ambiguous data points and the outlier data point are correctly
determined. The clustering results were obtained according to the
membership values in Fig. 8 (a) and (b). The results show that the
points on the centers of (2, 2), (6, 2) and (14, 2) are clustered
correctly. There are 2 data points (13 and 15) wrongly clustered in
the diamond cluster that is located on (10, 2). Moreover, the
indeterminate data point 18 is assigned to the diamond cluster
that is located on (10, 2). So, totally 3 data points have false labels
according to this clustering. All I and F memberships are shown in
Fig. 8(b). I(1) shows the membership of c4j, I(2)–I(7) shows the
membership of different c2j, and I(8)–I(11) shows the membership
of different c3j. Moreover, for the clustering result centers in

Table 3
T, I and F values of NCM and typicality values for FPCM for two classes diamond
dataset.

Point NCM FPCM

Tc1 Tc2 I F TT
1 TT

2

1 0.8256 0.0298 0.0105 0.1341 0.0515 0.0034
2 0.8022 0.0439 0.0192 0.1348 0.1485 0.0052
3 0.9994 0.0001 0.0001 0.0004 0.5957 0.0053
4 0.7838 0.0478 0.0205 0.1478 0.0448 0.0048
5 0.6926 0.0810 0.0934 0.1330 0.1055 0.0098
6 0.0016 0.0016 0.9956 0.0012 0.0233 0.0233
7 0.0810 0.6926 0.0934 0.1330 0.0098 0.1055
8 0.0439 0.8022 0.0192 0.1348 0.0052 0.1485
9 0.0001 0.9994 0.0001 0.0004 0.0053 0.5957

10 0.0478 0.7838 0.0205 0.1478 0.0048 0.0448
11 0.0298 0.8256 0.0105 0.1341 0.0034 0.0515
12 0.1088 0.1088 0.0152 0.7673 0.0022 0.0022
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Fig. 6. Three classes diamond dataset.

Table 4
T, I and F values for NCM and typicality values for FPCM for three class diamond
dataset.

Point NCM FPCM

Tc1 Tc2 Tc3 I F TT
1 TT

2 TT
3

1 0.8900 0.0236 0.0070 0.0150 0.0645 0.1463 0.0011 0.0000
2 0.7759 0.0578 0.0144 0.0444 0.1076 0.0506 0.0014 0.0001
3 0.9880 0.0030 0.0007 0.0029 0.0053 0.4965 0.0014 0.0001
4 0.8393 0.0411 0.0103 0.0332 0.0762 0.1895 0.0014 0.0001
5 0.5816 0.0928 0.0161 0.2182 0.0913 0.0550 0.0018 0.0001
6 0.0124 0.0149 0.0016 0.9646 0.0065 0.0181 0.0024 0.0003
7 0.0689 0.7032 0.0261 0.1249 0.0769 0.0088 0.0034 0.0011
8 0.0434 0.7920 0.0434 0.0317 0.0894 0.0048 0.0048 0.0010
9 0.0000 0.9999 0.0000 0.0000 0.0000 0.0052 0.0052 0.9943

10 0.0421 0.7996 0.0421 0.0315 0.0847 0.0051 0.0051 0.0012
11 0.0261 0.7032 0.0689 0.1249 0.0769 0.0034 0.0088 0.0011
12 0.0016 0.0149 0.0124 0.9646 0.0065 0.0024 0.0181 0.0003
13 0.0161 0.0928 0.5816 0.2182 0.0913 0.0018 0.0550 0.0001
14 0.0144 0.0578 0.7759 0.0444 0.1076 0.0014 0.0506 0.0001
15 0.0007 0.0030 0.9880 0.0029 0.0053 0.0014 0.4965 0.0001
16 0.0103 0.0411 0.8393 0.0332 0.0762 0.0014 0.1895 0.0001
17 0.0070 0.0236 0.8900 0.0150 0.0645 0.0011 0.1463 0.0000
18 0.0370 0.0854 0.3046 0.0324 0.5406 0.0007 0.0066 0.0000
19 0.3046 0.0854 0.0370 0.0324 0.5406 0.0066 0.0007 0.0000
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Fig. 7. Diamond dataset with four classes.
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Table 5, both objective functions produced almost the same values,
and few deviations can be seen in the obtained cluster centers.
This experiment clearly shows that the simplified objective func-
tion given in Eq. (5) can achieve the same cluster ability as the
objective function in Eq. (4) while the cluster performance is not
affected.

We also investigate the effect of simplification regards to total
number of clusters around the boundary region. For this purpose, we
construct a database where 3 clusters are overlapped. There are 300
data points (each cluster have equal number of data) and their
centroids are located on the (10, 10), (15, 15) and (20, 10). Fig. 9
(a) shows the data points and the corresponding cluster centers.
Fig. 9(b) shows the obtained clustering results with the following
parameters: ε¼10�5, δ¼15, and ϖ1 ¼ 0:7 , ϖ2 ¼ 0:2 and ϖ3 ¼ 0:1.
Cyan, green and blue colors show the clustered data points and the

black color show indeterminate data points. Visually, the indetermi-
nate data points are all in the overlapped region. The proposed
simplification produces reasonable clustering results. The center
difference error between the ground truth and the clustered centers
is calculated based on the Euclidean distance. The total error is 2.18.

4.2. Experiment on IRIS data

We have also tested our method using the famous IRIS dataset
[39], which has extensively been used in clustering algorithms'
testing. The IRIS dataset contains three classes, i.e., three varieties
of Iris flowers, namely, Iris Setosa, Iris Versicolor and Iris Virginica
consisting of 50 samples each. Each sample has four features,
namely, sepal length (SL), sepal width (SW), petal length (PL) and
petal width (PW). One of the three clusters is clearly separated
from the other two, while these two classes admit some overlap.
The following parameters ε¼10�3, δ¼50, and ϖ1 ¼ 0:7, ϖ2 ¼ 0:15
and ϖ3 ¼ 0:15 are chosen for IRIS dataset. The results of NCM are
given in Table 6. Iris Setosa is clustered with a 100% correct
clustering rate, and in other clusters (Versicolor and Virginica),
there are 10 misclassified data points. 6 data points determined as
indeterminate. The data points in the indeterminate set are the
78th, 124th, 127th, 128th, 134th and 147th points, which are in the
overlap region between the Iris Versicolor and Iris Virginica
classes.
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Fig. 8. Clustering results on the diamond data set with four classes: (a) and (b) result of NCM using Eq. (4) and (c) result of NCM using Eq. (5). (For interpretation of the
references to color in this figure, the reader is referred to the web version of this article.)

Table 5
Center of clusters for diamond dataset with four classes.

Clustering centers using Eq. (4) Clustering centers using Eq. (5)

x1 x2 x1 x2

1.9489 2.0005 1.8975 2.0005
5.8058 2.0008 6.0035 2.0018
11.0010 2.0087 10.0611 2.0083
14.2491 2.0838 14.2248 2.0788
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The resubstitution error is an important metric to measure the
clustering results [24,38]. This error notated asEðHðUÞÞ hardened
label matrices, where U is the membership values, and H shows
the hardening of the matrix argument by either maximum
memberships (MM) or maximum typicalities (MT).

We evaluated the clustering results using the resubstitution
error. Table 7 shows the evaluation results of FPCM, FCM and PCM
[9,38] on IRIS dataset. The fuzziness parameter m and the η
constant are set to 2 for the FPCM, FCM and PCM algorithms. As
shown in Table 7, NCM yielded the minimum resubstitution error
compared with other clustering methods, and achieved better
clustering performance on IRIS dataset. The improvement of
classification ability in NCM is that it uses I and F subsets to
describe the indeterminacy and the outliers in clustering. In IRIS
data, the third cluster has four outliers [40]. NCM is quite effective
to deal with indeterminacy and the outliers in clustering. The
experimental results also show that the NCM found several out-
liers in the Iris dataset and yielded less error.

4.3. Application to image segmentation

In image segmentation process, each pixel's intensity can be
employed as the input for clustering algorithm, and the clustering

result can be labeled as the segmentation result. In this situation,
image segmentation problem is transformed into data clustering
problem, which can be solved using NCM. In this section, we applied
NCM into image segmentation, and compared with the existing image
segmentation algorithm. A number of images with difference noise
levels were employed to test the NCM's ability to cluster the fuzzy and
indistinct data.

In NCM, because the membership functions (T, I and F) do not
contain any spatial information, it is not proper to be directly applied
into the image segmentation applications [6]. In addition, the correct
determination of the pixel labels derived from membership functions
might yield segmentation errors. To reduce the influence of undesired
factors on the final determination of membership functions, the spatial
neighborhood is taken into account.

Let p(i,j) be the pixel at the spatial position (i,j) in the image,
and S be its neighborhood pixels. g(i,j) is the gray level of p(i,j). For
p(i,j), its membership degree is associated to the membership
degrees of all its neighboring pixels in S such that the resulting
membership function contains spatial information. Table 8 shows
a nine-neighborhood. The membership functions, designated by T
(i,j), I(i,j) and F(i,j) of the central pixel p(i,j), is obtained by
combining the membership degrees of all the pixels belonging to
this neighborhood.

In this application, the average of its neighboring pixels is used
as the central pixel's final membership value, and all pixels are
assigned into different determinate clusters with the value of T
membership. In the simple hypothesis cases, the calculation of the
averaged membership function of the gray level at the current
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Fig. 9. NCM performance on three clusters overlap: (a) original data and (b) NCM clustering result. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

Table 6
NCM clustering results of the IRIS dataset.

Clustered Actual

Setosa Versicolor Virginica

Setosa 50 0 0
Versicolor 0 47 8
Virginica 0 2 37

Table 7
Resubstitution errors on the IRIS data using FPcM and FcM.

E(HMT(T)) E(HMM(U)) E(HMM(U)) E(HMM(T)) E(HMM(T))
FPCM FPCM FCM PCM NCM

14 13 16 50 10

Table 8
3�3 Spatial neighborhoods.

Tði�1; j�1Þ
Iði�1; j�1Þ
Fði�1; j�1Þ

Tði�1; jÞ
Iði�1; jÞ
Fði�1; jÞ

Tði�1; jþ1Þ
Iði�1; jþ1Þ
Fði�1; jþ1Þ

Tði; j�1Þ
Iði; j�1Þ
Fði; j�1Þ

Tði;1Þ
Iði;1Þ
Fði;1Þ

Tði; jþ1Þ
Iði; jþ1Þ
Fði; jþ1Þ

Tðiþ1; j�1Þ
Iðiþ1; j�1Þ
Fðiþ1; j�1Þ

Tðiþ1; jÞ
Iðiþ1; jÞ
Fðiþ1; jÞ

Tðiþ1; jþ1Þ
Iðiþ1; jþ1Þ
Fðiþ1; jþ1Þ
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position (i,j) is done according to the following formula [41]:

Tði; jÞ ¼ 1
z2

P
m;nAS

Tðm;nÞ

Iði; jÞ ¼ 1
z2

P
m;nAS

Iðm;nÞ

Fði; jÞ ¼ 1
z2

P
m;nA S

Fðm;nÞ
ð25Þ

where z is the size of S, and it is equal to 3 in the present case.
After associating with the spatial information, the NCM algo-

rithm was tested on two simulated images (Fig. 10(a) and (b)) to
evaluate the proposed approach. Fig. 10(1) shows a synthesized
image with four classes, and the corresponding gray values are 50
(upper left, UL), 100 (upper right, UR), 150 (low left, LL) and 200
(low right, LR) respectively. Each cluster (sub-image) contains
64�64 pixels. The image is degraded by the Gaussian noise
(μ¼0, σ¼25.5). Fig. 10(2) shows another synthesized image that
contains three regions: two equal sized rectangular on a uniform
background and the corresponding gray values 20 (upper step),
100 (lower step) and 255 (background). Gaussian noise with
0 mean and 25.5 variance is also added to the synthesized image.

The segmentation results are presented in column (c) of Fig. 10.
The NCM algorithm archived good homogeneity in the segmented
regions. The boundaries are smooth and only several misclassified
pixels can be seen in the boundary of the homogenous regions.
While 53 misclassified pixels were observed for Fig. 10(1), 15
misclassified pixels were observed for Fig. 10(2).

This experiment also compared the NCM algorithm with the
FCM–AWA algorithm [11] on image segmentation. FCM–AWA
algorithm performs quite well in segmenting the images that are
degraded by noise. The FCM–AWA was realized by modifying the
objective function in the conventional FCM algorithm, and incor-
porating the spatial neighborhood information. An adaptive
weighted averaging (AWA) filter was given to indicate the spatial
influence of the neighboring pixels on the central pixel. The
parameters of control template are automatically determined in
the implementation of the weighted averaging image by a pre-
defined nonlinear function.

The FCM–AWA was tested on same images with the default
settings: m¼2, α¼50, ε¼10�5, r¼2, k0¼0.45 and k1¼0.65. The
results can be seen in column (b) of Fig. 10. FCM–AWA also
produced good homogeneity in the segmented regions but there
are a lot of misclassified pixels observed in the boundary transition
regions. While 418 misclassified pixels are produced by the FCM–

AWA for Fig. 10(1), 235 misclassified pixels are countered for
Fig. 10(2). Table 9 is also given to present the misclassified pixels
for both NCM and FCM–AWA methods. The results indicate the
superiority of the proposed NCM approach.

We also compare the NCM method with FCM–AWA on real
images. Fig. 11 shows four images: “rice”, “eight”, “hand” and
“woman” with various sizes. In order to evaluate the methods'
performance on noisy image, the images were degraded by the
Gaussian noise (μ¼0, σ¼2.25) as shown in Fig. 11(a). Fig. 11(b) and
(c) is the segmentation results of the degraded images by FCM–

AWA and NCM algorithms respectively. FCM–AWA algorithm is
run with parameters m¼2, α¼50, ε¼10�3, r¼1, k0¼0.45 and
k1¼0.65. Visually, Fig. 11(b) and (c) indicates that NCM performs
more efficient than FCM–AWA in removing of Gaussian noise. NCM
produced more homogenous segmented regions than FCM–AWA
does. Moreover, Fig. 11(c) shows that the NCM performs more
efficient in preserving the edge information in the image than
FCM–AWA does, as shown in Fig. 11(b).

With the aim of achieving robust and accurate segmentation in
case of mixed noise, [40] incorporated spatial information with the
clustering algorithm, which is called adaptive spatial information
theoretic clustering algorithm (ASIC). ASIC's objective function has
a new dissimilarity measure, and the weighting factor for neigh-
borhood effect is fully adaptive to the image content. It enhances

Fig. 10. Comparison of NCM and FCM–AWA segmentation results on synthetic images degraded by Gaussian noise: (a) original images; (b) FCM–AWA segmentation results
and (c) NCM segmentation results.

Table 9
Number of misclassified pixels.

NCM FCM–AWA

Fig. 10(1) 70 418
Fig. 10(2) 15 235
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the smoothness towards piecewise-homogeneous segmentation
and reduces the edge blurring effect. Furthermore, a unique
characteristic of the segmentation algorithm is that it has the
capabilities to eliminate outliers at different stages of the ASIC
algorithm.

We also compare the performance of our algorithm through the
same simulated images and real images with the ASIC algorithm [40].

In the experiments, the cooling factor α is selected as 0.95 [42] for the
ASIC algorithm. We use the same synthetic test images that are
degraded by the Gaussian noise (μ¼0, σ¼2.25) as shown in Fig. 12
(a). The results can be seen in Fig. 12(b). ASIC produced good
homogeneity in the segmented regions but there are a lot of
misclassified pixels observed in the boundary regions. While 144
misclassified pixels are produced by the ASIC for Fig. 12(1), 47
misclassified pixels are counted for Fig. 12(2). Table 10 presents the
misclassified pixels for both NCM and ASIC methods. The results
indicate the better performance of the proposed NCM approach on
synthetic images.

We further compared the performance of our algorithm with
ASIC on the real images that are degraded by Gaussian noise. The
contaminated images are shown in Fig. 13(a). From Fig. 13(b) and
(c), we can see that our proposal gives a much better segmentation

Table 10
Number of misclassified pixels.

NCM ASIC

Fig. 12(1) 70 144
Fig. 12(2) 15 47

Fig. 11. Comparison of segmentation results on “rice”, “eight”, “hand” and “woman” images degraded by Gaussian noise: (a) the images degraded by Gaussian noise;
(b) using FCM–AWA and (c) using NCM.
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than the ASIC. ASIC did not segment the background exactly for
“rice” and “hand” images, many background pixels classified as
foreground wrongly. For “eight” image, the segmented coin
patterns are not homogenous. There are also many misclassified
regions in the “woman” image. On the other hand, for the results
of NCM, the background and the foreground objects are segmen-
ted well. The segmented regions are homogenous and the object
boundaries are smooth. The superiority of the NCM algorithm is
apparent in the comparison.

For further evaluation of the NCM's performance in image
segmentation quantitatively, a measurement, namely F-measure
[40] is used to evaluate the performance of different methods. The
F-measure is a measure to evaluate the segmentation accuracy. It
considers both the precision P and the recall R of the segmentation
result, and is defined as follows [43]:

F ¼ P UR
ξUPþð1�ξÞUR ð26Þ

P ¼ TP
TPþFP

ð27Þ

R¼ TP
TPþFN

ð28Þ

where ξ is a constant number and selected as 0.5 in [40]. P is
precision, and R is recall rate. TP is the number of correct results,
FP is the number of false segmented pixels, and FN is the number
of the missed pixels in the result. The F-measure value is in the
range of [0, 1], and a larger F-Measure value indicates a higher
segmentation accuracy.

In Table 11, we tabulate the F-measure values for each method
on the images in Fig. 13. The NCM produces higher F-measure
values than the other methods. The F-measure values demonstrate
the better performance of NCM method than the FCM–AWA and
ASIC methods. The experimental results show the NCM yields
more reasonable segmentations than the compared methods on
both the visual and quantitative results.

It is also worth to mentioning that the NCM method produces
smoother segmentation than the compared methods. It is because
the mean value of T, F and I are calculated within a 3�3 local
neighborhood in Eq. (25). This process can be considered as a kind
of mean filtering, which yields smoother results. Although, the
mean filtering process may cause to lose some details in the final
segmentation results, the qualitative and quantitative evaluation
results indicate that the NCM's segmentation results are still more
reasonable than other methods.

In summary, from the comparisons with the existing image
segmentation algorithm using clustering method, we can see that
the segmentation method based on NCM yielded better segmen-
tation results both on the synthesized noisy images and the real
images with the noise, and NCM demonstrates better ability to
cluster the obscure data. We also found the NCM improved the
classification and clustering ability in the real data application. The
reason of improving the classification ability is that NCM can
detect and describe outliers in real data. Real data sets generally
contain outliers and ambiguous data, such as noise on the real
images. Those noise data might make the performance of classi-
fiers worse. To improve the performance of a classifier, these
outliers should be detected and described. NCM improves the
classification and clustering ability because of its ability to deter-
mine the outliers and noise data points, which has been proved
using the experiments on many datasets.

4.4. Initialization of parameters

In this section, the influence of various parameters such as δ,w1,
w2 and w3 on the performance of the NCM algorithm are
investigated. In all experiments, the values of T(0), I(0), F(0) are
initialized randomly. This section will also employ experiments to
show the influence of the parameters' initialization. Two diamond
dataset as shown in Fig. 14(a) and (b) were used. While Fig. 14
(a) shows the X10 dataset Fig. 14(b) illustrates the X12 dataset. It is
obvious that X12 dataset is obtained from X10 dataset by adding

Fig. 12. Comparison of NCM and ASIC segmentation results on synthetic images degraded by Gaussian noise: (a) original images; (b) ASIC segmentation results and (c) NCM
segmentation results.
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two new data points: the point 6 at (0,0) and the point 12 at (0,10),
respectively.

Table 12 shows the results of the NCM on the X10 dataset for
different values of δ,w1, w2 and w3. The ground truth centroid
of two clusters V1 and V2 are (�3.34, 0) and (3.34, 0). The

experimental results in Table 12 demonstrate that if we vary δ
from 0.5 to 50, keeping all other parameters fixed (w1 ¼ 0:8,
w2 ¼ 0:1 and w3 ¼ 0:1), the clustering results of NCM are not
much changed. When the δ is fixed as 0.5 and assign the 0.33 to all
weighting parameters in the row 7, and in the row 8, the δ is still
0.5 and the weighting parameters are assign as 0.3, 0.4 and 0.4, the
performance of the clustering are degraded. The cluster centers
move toward to grand mean of the data plane, and are close to the
5th and 7th points. The typicality values are high for only a few
points close to the 5th and 7th objects. The T membership reveals
that there is only one point in each cluster: the 5th in the left
cluster and the 7th in the right cluster, and their typicality is close
to 1.0. For other points in the same clusters their typicality values
are very small. In the row 9, the δ is increased from 0.5 to 1.2, and

Fig. 13. Comparison of segmentation results on different images with Gaussian noise: (a) images degraded by Gaussian noise; (b) result of ASIC and (c) result of NCM.

Table 11
F-measure values for NCM, FCM–AWA and ASIC methods.

Image NCM FCM–AWA ASIC

“rice” 0.8166 0.7802 0.7312
“eight” 0.8627 0.8307 0.7988
“hand” 0.6801 0.5642 0.4936
“woman” 0.8384 0.7978 0.7345
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the clustering results are better than those in the rows 7 and 8 and
the centroids are close to the ground truth. In the row 10, we
ignore the w1 þw2 þw3 ¼ 1 constrain and assign to all weighting
parameters 1 and the δ parameter is fixed to 1.2. The obtained
centroids are quite similar to those obtained in the first 6 rows. But
when we check the typicality of the points, we see that only few
points close to the centroids have high typicality values.

We also carried out the experiments on the X12 data set using
the different initial values for parameters. The obtained centroids
can be seen in Table 13. There is not any change in the prototypes
when δ was increased keeping all other parameters fixed for the
X10 data set, and the centroids are also not changed essentially. In
the row 7, the results are not good. The centroids are very close to
each other which yielded coincident clusters. In the rows 8 and 10,
the obtained results are similar to those obtained on X10 database.

From the above experiments, one can infer that there is a
balance between the δ and the weighting parameters. If the
weighting parameters adjusted optimally, the influence of the δ
is reduced and if the weighting parameters are not chosen
properly, the δ value can be adapted for obtaining the more proper
results. The w1 should be selected bigger than w2 and w3 for

giving more weights to the typicality for reducing the effect of
outliers.

5. Conclusions

In this paper, an efficient clustering algorithm, neutrosophic c-
means clustering algorithm (NCM), has been presented to parti-
tion the data, especially the fuzzy and indistinct data. The tradi-
tional methods only describe the degree to every group. For some
samples in the border between different groups, it is difficult
determine which group it belongs to. Moreover, if a membership is
calculated, it makes the centers of groups inaccurate. NCM is
designed to handle these disadvantages of the traditional parti-
tioning approaches.

The efficiency of the proposed NCM algorithm is tested on both
data clustering and image segmentation applications. We used the
popular data sets and images that are synthetically produced and
degraded with noise for the experimental works. Experimental
results show that the performance of our algorithm is more
efficient than performances of FCM, PCM and FPCM. Moreover,
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Fig. 14. (a) X10 dataset and (b) X12 dataset.

Table 12
Results produced by NCM for different values of the parameters on X10 dataset.

δ V1 V2

0.5 0.8 0.1 0.1 �3.34 3.34
0.00 0.00

0.8 0.8 0.1 0.1 �3.40 3.40
0.00 0.00

1.4 0.8 0.1 0.1 �3.42 3.42
0.00 0.00

2 0.8 0.1 0.1 �3.42 3.42
0.00 0.00

10 0.8 0.1 0.1 �3.42 3.42
0.00 0.00

50 0.8 0.1 0.1 �3.42 3.42
0.00 0.00

0.5 0.33 0.33 0.33 �1.68 1.68
0.00 0.00

0.5 0.3 0.4 0.4 �1.68 1.68
0.00 0.00

1.2 0.3 0.4 0.4 �3.39 3.39
0.00 0.00

1.2 1 1 1 �3.41 3.41
0.00 0.00

Table 13
Results produced by NCM for different values of the parameters with X10 dataset.

δ w1 w2 w3 V1 V2

0.5 0.8 0.1 0.1 �3.36 3.36
0.00 0.00

0.8 0.8 0.1 0.1 �3.40 3.40
0.00 0.00

1.4 0.8 0.1 0.1 �3.40 3.40
0.00 0.00

2 0.8 0.1 0.1 �3.38 3.38
0.10 0.10

10 0.8 0.1 0.1 �3.23 3.23
0.49 0.49

50 0.8 0.1 0.1 �3.21 3.21
0.54 0.54

0.5 0.33 0.33 0.33 �1.69 0.01
0.00 0.00

0.5 0.3 0.4 0.4 �1.67 1.67
0.00 0.00

1.2 0.3 0.4 0.4 0.21 3.40
0.00 0.00

1.2 1 1 1 �3.40 3.40
0.00 0.00
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experimental results also show that the performance of our
algorithm is more efficient than performance of the FCM–AWA
and ASIC algorithms on image segmentation. In addition, we plan
to apply the NCM to the more complex data in our future works.
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