

n-Refined Neutrosophic Vector Spaces

Florentin Smarandache¹ and Mohammad Abobala²

Department of Mathematics and Science, University of New Mexico, Gallup, NM 87301, USA ² Tishreen University, Faculty of Science, Department of Mathematics, Lattakia, Syria ¹e-mail: smarand@unm.edu

²·e-mail: mohammadabobala777@gmail.com

Abstract

This paper introduces the concept of n-refined neutrosophic vector spaces as a generalization of neutrosophic vector spaces, and it studies elementary properties of them. Also, this work discusses some corresponding concepts such as weak/strong n-refined neutrosophic vector spaces, and n-refined neutrosophic homomorphisms.

Keywords: n-Refined weak neutrosophic vector space, n-Refined strong neutrosophic vector space, n-Refined neutrosophic homomorphism.

1.Introduction

Neutrosophy as a part of philosophy founded by F. Smarandache to study origin, nature, and indeterminacies became a strong tool in studying algebraic concepts. Neutrosophic algebraic structures were defined and studied such as neutrosophic modules, and neutrosophic vector spaces, etc. See [1,2,3,4,5,6,7,8,9]. In 2013 Smarandacheintroduceda perfect idea, when he extended the neutrosophic set to refined [n-valued] neutrosophic set, i.e. the truth value T is refined/split into types of sub-truths such as $(T_1, T_2, ...,)$ similarly indeterminacy I is refined/split into types of sub-indeterminacies $(I_1, I_2, ...,)$ and the falsehood F is refined/split into sub-falsehood $(F_1, F_2,...)$ [10,11]. Refined neutrosophic algebraic structures were studied such as refined neutrosophic rings, refined neutrosophic modules, and n-refined neutrosophic rings [4,12].

In this article authors try to define n-refined neutrosophic vector spaces, subspaces, and homomorphisms and to present some of their elementary properties.

For our purpose we use multiplication operation (defined in [12]) between indeterminacies $I_1, I_2, ..., I_n$ as follows:

$$I_m I_s = I_{\min(m,s)}.$$

This work is a continuation of the study on the n-refined neutrosophic structures that began in [12].

2. Preliminaries

DOI: 10.5281/zenodo.3876216

Received: March 25, 2020 Revised: May 05, 2020 Accepted: May 29, 2020

Definition 2.1: [12]

Let $(R, +, \times)$ be a ring and I_k ; $1 \le k \le n$ be n indeterminacies. We define $R_n(I) = \{a_0 + a_1I + \cdots + a_nI_n : a_i \in R\}$ to be an n-refined neutrosophic ring.

Definition 4.3: [12]

- (a) Let $R_n(I)$ be an n-refined neutrosophic ring and $P = \sum_{i=0}^n P_i I_i = \{a_0 + a_1 I + \dots + a_n I_n : a_i \in P_i\}$, where P_i is a subset of R, we define P to be an AH-subring if P_i is a subring of R for all . AHS-subring is defined by the condition $P_i = P_j$ for all i, j.
- (b) P is an AH-ideal if P_i are two-side ideals of R for all i, the AHS-ideal is defined by the condition $P_i = P_j$ for all i, j.
- (c) The AH-ideal P is said to be null if $P_i = Ror P_i = \{0\}$ for all *i*.

Definition 2.3:[5]

Let $(V, +, \cdot)$ be a vector space over the field K; then $(V(I), +, \cdot)$ is called a weak neutrosophic vector space over the field K, and it is called a strong neutrosophic vector space if it is a vector space over the neutrosophic field K(I).

Definition 2.4 : [5]

Let V(I) be a strong neutrosophic vector space over the neutrosophic field K(I) and W(I) be a non empty set of V(I) then W(I) is called a strong neutrosophic subspace if W(I) is itself a strong neutrosophic vector space.

Definition 2.6:[5]

Let U(I), W(I) be two strong neutrosophic subspaces of V(I) and let $f: V(I) \to W(I)$, we say that f is a neutrosophic vector space homomorphism if

- (a) f(I)=I,
- (b) f is a vector space homomorphism.

We define the kernel of f by $Ker(f) = \{ x \in V(I); f(x) = 0_{W(I)} \}.$

Definition 2.7:[5]

Let $v_1, v_2, v_s \in V(I)$ and $x \in V(I)$; we say that x is a linear combination of $\{v_i; i = 1, ..., s\}$ if

 $x = a_1 v_1 + \cdots + a_s v_s$ such that $a_i \in K(I)$.

The set $\{v_i; i=1,...,s\}$ is called linearly independent if $a_1v_1+\cdots+a_sv_s=0$ implies $a_i=0$ for all i.

3. Main concepts and results

Definition 3.1:

Let $(K,+,\cdot)$ be a field, we say that $K_n(I) = K + KI_1 + \cdots + KI_n = \{a_0 + a_1I_1 + \cdots + a_nI_n; a_i \in K\}$ is an n-refined neutrosophic field.

It is clear that $K_n(I)$ is an n-refined neutrosophic field, but not a field in the classical meaning.

DOI: 10.5281/zenodo.3876216

Example 3.2:

Let K = Q be the field of rationals. The corresponding 3-refined neutrosophic field is

$$Q_3(I) = \{a + bI_1 + cI_2 + dI_3; a, b, c, d \in Q\}.$$

Definition 3.3:

Let $(V,+,\cdot)$ be a vector space over the field K. Then we say that $V_n(I) = V + VI_1 + \cdots + VI_n = \{x_0 + x_1I_1 + \cdots + x_nI_n; x_i \in V\}$ is a weak n-refined neutrosophic vector space over the field K. Elements of $V_n(I)$ are called n-refined neutrosophic vectors, elements of K are called scalars.

If we take scalars from the n-refined neutrosophic field $K_n(I)$, we say that $V_n(I)$ is a strong n-refined neutrosophic vector space over the n-refined neutrosophic field $K_n(I)$. Elements of $K_n(I)$ are called n-refined neutrosophic scalars.

Remark 3.4:

If we take n=1 we get the classical neutrosophic vector space.

Addition on $V_n(I)$ is defined as:

$$\sum_{i=0}^{n} a_i I_i + \sum_{i=0}^{n} b_i I_i = \sum_{i=0}^{n} (a_i + b_i) I_i.$$

Multiplication by a scalar $m \in K$ is defined as:

$$m \cdot \sum_{i=0}^{n} a_i I_i = \sum_{i=0}^{n} (m, a_i) I_i$$

Multiplication by an n-refined neutrosophic scalar $m = \sum_{i=0}^{n} m_i I_i \in K_n(I)$ is defined as:

$$(\sum_{i=0}^{n} m_i I_i) \cdot (\sum_{i=0}^{n} a_i I_i) = \sum_{i,j=0}^{n} (m_i, a_j) I_i I_j$$

where $a_i \in V$, $m_i \in K$, $I_i I_j = I_{\min(i,j)}$.

Theorem 3.5:

Let $(V,+,\cdot)$ be a vector space over the field K. Then a weak n-refined neutrosophic vector space $V_n(I)$ is a vector space over the field K. A strong n-refined neutrosophic vector space is not a vector space but a module over the n-refinedneutrosophic field $K_n(I)$.

Proof:

It is similar to that of Theorem 2.3 in [5].

Example 3.6:

Let $V = Z_2$ be the finite vector space of integers modulo 2 over itself:

(a) The corresponding weak 2-refined neutrosophic vector space over the field Z_2 is

$$V_n(I) = \{0,1,I_1,I_2,I_1+I_2,1+I_1+I_2,1+I_1,1+I_2\}.$$

Definition 3.7:

Let $V_n(I)$ be a weak n-refined neutrosophic vector space over the field K; a nonempty subset $W_n(I)$ is called a weak n-refined neutrosophic subspace of $V_n(I)$ if $W_n(I)$ is a subspace of $V_n(I)$ itself.

Definition 3.8:

Let $V_n(I)$ be a strong n-refined neutrosophic vector space over the n-refined neutrosophic field $K_n(I)$; a nonempty subset $W_n(I)$ is called a strong n-refined neutrosophic subspace of $V_n(I)$ if $W_n(I)$ is a submodule of $V_n(I)$ itself.

Theorem 3.9:

Let $V_n(I)$ be a weak n-refined neutrosophic vector space over the field K, $W_n(I)$ be a nonempty subset of $V_n(I)$. Then $W_n(I)$ is a weak n-refined neutrosophic subspace if and only if:

$$x + y \in W_n(I), m \cdot x \in W_n(I)$$
 for all $x, y \in W_n(I), m \in K$.

Proof:

It holds directly from the condition of subspace.

Theorem 3.10:

Let $V_n(I)$ be a strong n-refined neutrosophic vector space over an n-refined neutrosophic field $K_n(I)$, $W_n(I)$ be a nonempty subset of $V_n(I)$. Then $W_n(I)$ is a strong n-refined neutrosophic subspace if and only if:

$$x + y \in W_n(I), m \cdot x \in W_n(I)$$
 for all $x, y \in W_n(I), m \in K_n(I)$.

Proof:

It holds directly from the condition of submodule.

Example 3.11:

Let $V = R^2$ be a vector space over the field R, W = <(0,1) > is a subspace of V, $R_2^2(I) = \{(a,b) + (m,s)I_1 + (k,t)I_2; a,b,m,s,k,t \in R\}$ is the corresponding weak/strong 2-refined neutrosophic vector space.

 $W_2(I) = \{a_0 + a_1I_1 + a_2I_2\} = \{(0, x) + (0, y)I_1 + (0, z)I_2; x, y, z \in R\}$ is a weak 2-refined neutrosophic subspace of the weak 2-refined neutrosophic vector space $R_2^2(I)$ over the field R.

 $W_2(I) = \{a_0 + a_1I_1 + a_2I_2\} = \{(0, x) + (0, y)I_1 + (0, z)I_2; x, y, z \in R\}$ is a strong 2-refined neutrosophic subspace of the strong 2-refined neutrosophic vector space $R_2^2(I)$ over the n-refined neutrosophic field $R_2(I)$.

Definition 3.12:

Let $V_n(I)$ be a weak n-refined neutrosophic vector space over the field K, x be an arbitrary element of $V_n(I)$, we say that x is a linear combination of $\{x_1, x_2, ..., x_m\} \subseteq V_n(I)$, or $x = a_1x_1 + a_2x_2 + \cdots + a_mx_m$: $a_i \in K$, $x_i \in V_n(I)$.

Example 3.13:

Consider the weak 2-refined neutrosophic vector space in Example 3.11,

 $x = (0,2) + (1,3)I \in R_2^2(I)$, $x = 2(0,1) + 1(1,0)I_1 + 3(0,1)I_2$, i.e x is a linear combination of the set $\{(0,1), (1,0)I_1, (0,1)I_2\}$ over the field R.

Definition 3.14:

Let $V_n(I)$ be a strong n-refined neutrosophic vector space over an n-refined neutrosophic field $K_n(I)$, x be an arbitrary element of $V_n(I)$, we say that x is a linear combination of $\{x_1, x_2, ..., x_m\} \subseteq V_n(I)$ is $x = a_1x_1 + a_2x_2 + ... + a_mx_m$: $a_i \in K_n(I), x_i \in V_n(I)$.

Example 3.15:

Consider the strong 2-refined neutrosophic vector space $R_2^2(I) = \{(a,b) + (m,s)I_1 + (k,t)I_2; a,b,m,s,k,t \in R\}$ over the 2-refined neutrosophic field $R_2(I)$,

 $x = (0,2) + (3,3)I_1 + (-1,0)I_2 = (2 + I_1) \cdot (0,1) + (1 + I_2) \cdot (1,1)I_1 + (I_1 - I_2) \cdot (1,0)I_2$, hence x is a linear combination of the set $\{(0,1), (1,1)I_1, (1,0)I_2\}$ over the 2-refined neutrosophic field $R_2(I)$.

Definition 3.16:

Let $X = \{x_1, ..., x_m\}$ be a subset of a weak n-refined neutrosophic vector space $V_n(I)$ over the field K, X is a weak linearly independent set if $\sum_{i=0}^m a_i x_i = 0$ implies $a_i = 0$; $a_i \in K$.

Definition 3.17:

Let $X = \{x_1, ..., x_m\}$ be a subset of a strong n-refined neutrosophic vector space $V_n(I)$ over the n-refined neutrosophic field $K_n(I)$, X is a weak linearly independent set if $\sum_{i=0}^m a_i x_i = 0$ implies $a_i = 0$; $a_i \in K_n(I)$.

Definition 3.18:

Let $V_n(I)$, $W_n(I)$ be two strong n-refined neutrosophic vector space over the n-refined neutrosophic field $K_n(I)$, let $f: V_n(I) \to U_n(I)$ be a well defined map. It is called a strong n-refined neutrosophic homomorphism if:

$$f(a.x + b.y) = a.f(x) + b.f(y)$$
 for all $x, y \in V_n(I)$, $a, b \in K_n(I)$.

A weak n-refined neutrosophic homomorphism can be defined as the same.

We can understand the strong n-refined homomorphism as a module homomorphism, weak n-refined neutrosophic homomorphism can be understood as a vector space homomorphism.

Remark:

The previous definition of n-refined homomorphism between two strong/weak n-refined vector spaces is a classical homomorphism between two modules/spaces. We can not add a similar condition to the concept of neutrosophic homomorphism $(f(I_i) = I_i)$, since I_i is not supposed to be an element of $V_n(I)$ if V has more than one dimension for example. According to our definition, Ker(f) will be a subspace (which is different from classical neutrosophic vector space case) sicne f was defined as a classical homomorphism without any additional condition.

Definition 3.19:

Let $f: V_n(I) \to U_n(I)$ be a weak/strong n-refined neutrosophic homomorphism, we define:

(a)
$$Ker(f) = \{x \in V_n(I); f(x) = 0\}.$$

(b) $Im(f) = \{ y \in U_n(I); \exists x \in V_n(I) \text{ and } y = f(x) \}.$

Theorem 3.20:

Let $f: V_n(I) \to U_n(I)$ be a weak n-refined neutrosophic homomorphism. Then

- (a) Ker(f) is a weak n-refined neutrosophic subspace of $V_n(I)$.
- (b) Im(f) is a weak n-refined neutrosophic subspace of $U_n(I)$.

Proof:

- (a) f is a vector space homomorphism since $V_n(I)$, $U_n(I)$ are vector spaces, hence Ker(f) is a subspace of the vector space $V_n(I)$, thus Ker(f) is a weak n-refined neutrosophic subspace of $V_n(I)$.
- (b) It holds by similar argument.

Theorem 3.21:

Let $f: V_n(I) \to U_n(I)$ be a strong n-refined neutrosophic homomorphism. Then

- (a) Ker(f) is a strong n-refined neutrosophic subspace of $V_n(I)$.
- (b) Im(f) is a strong n-refined neutrosophic subspace of $U_n(I)$.

Proof:

- (a) f is a module homomorphism since $V_n(I)$, $U_n(I)$ are modules over the n-refined neutrosophic field $K_n(I)$, hence Ker(f) is a submodule of the vector space $V_n(I)$, thus Ker(f) is a strong n-refined neutrosophic subspace of $V_n(I)$.
- (b) Holds by similar argument.

Example 3.22:

Let $R_2^2(I) = \{x_0 + x_1I_1 + x_2I_2; x_0, x_1, x_2 \in R^2\}$, $R_2^3(I) = \{y_0 + y_1I_1 + y_2I_2; y_0, y_1, y_2 \in R^3\}$ be two weak 2-refined neutrosophic vector space over the field R. Consider $f: R_2^2(I) \to R_2^3(I)$, where

 $f[(a,b) + (m,n)I_1 + (k,s)I_2] = (a,0,0) + (m,0,0)I_1 + (k,0,0)I_2$, f is a weak 2-refined neutrosophic homomorphism over the field R.

$$Ker(f) = \{(0,b) + (0,n)I_1 + (0,s)I_2; b,n,s \in R\}.$$

$$Im(f) = \{(a, 0, 0) + (m, 0, 0)I_1 + (k, 0, 0)I_2; a, m, k \in R\}.$$

Example 3.23:

Let $W_2(I) = \langle (0,0,1)I_1 \rangle = \{q.(0,0,\alpha)I_1; \alpha \in R, q \in R_2(I)\}, U_2(I) = \langle (0,1,0)I_1 \rangle = \{q.(0,\alpha,0)I_1; \alpha \in R; q \in R_2(I)\}$ be two strong 2-refined neutrosophic subspaces of the strong 2-refined neutrosophic vector space $R_2^3(I)$ over 2-refined neutrosophic field $R_2(I)$. Define $f: W_2(I) \to U_2(I); f[q(0,0,\alpha)I_1] = q(0,\alpha,0)I_1; q \in R_2(I)$.

f is a strong 2-refined neutrosophic homomorphism:

Let
$$A = q_1(0,0,a)I_1$$
, $B = q_2(0,0,b)I_1 \in W_2(I)$; $q_1,q_2 \in R_2(I)$, we have

$$A + B = (q_1 + q_2)(0,0,a+b)I_1, f(A+B) = (q_1 + q_2).(0,a+b,0)I_1 = f(A) + f(B).$$

Let $m = c + dI_1 + eI_2 \in R_2(I)$ be a 2-refined neutrosophic scalar, we have

$$m \cdot A = c \cdot q_1(0,0,a)I_1 + d \cdot q_1(0,0,a)I_1I_1 + e \cdot q_1(0,0,a)I_2I_1 = q_1(0,0,c.a+d.a+e.a)I_1$$

 $f(m.A) = q_1(0, c.a + d.a + e.a, 0)I_1 = m \cdot f(A)$, hence f is a strong 2-refined neutrosophic homomorphism.

$$Ker(f) = (0,0,0) + (0,0,0)I_1 + (0,0,0)I_2.$$

$$Im(f) = U_2(I)$$
.

Remark 3.24:

A union of two n-refined neutrosophic vector spaces $V_n(I)$ and $W_n(I)$ is not supposed to be an n-refined neutrosophic vector space, since the addition operation can not be defined. For example consider $V = R^3$, $W = R^2$, n = 2.

5. Conclusion

In this paper we have introduced the concept of weak/strong n-refined neutrosophic vector space. Also, some related concepts such as weak/strong n-refined neutrosophic subspace, weak/strong n-refined neutrosophic homomorphism have been presented and studied.

Future research

Authors hope that some corresponding notions will be studied in future such as weak/strong n-refined neutrosophic basis, and AH-subspaces.

Funding:: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest

References

[1] Abobala, M., "On Some Special Substructures of Neutrosophic Rings and Their Properties", International Journal of Neutrosophic Science", Vol 4, pp.72-81, 2020.

[2] Abobala, M., "On Some Special Substructures of Refined Neutrosophic Rings", International Journal of Neutrosophic Science, Vol 5, pp.59-66, 2020.

[3] Abobala, M,. "Classical Homomorphisms Between Refined Neutrosophic Rings and Neutrosophic Rings", International Journal of Neutrosophic Science, Vol 5, pp.72-75, 2020.

[4] Adeleke, E.O., Agboola, A.A.A., and Smarandache, F., "Refined Neutrosophic Rings I", International Journal of Neutrosophic Science, Vol 2, pp.77-81, 2020.

[5] Agboola, A.A.A, and Akinleye, S.A., "Neutrosophic Vector Spaces", Neutrosophic Sets and Systems, Vol 4,pp 9-17, 2014.

[6] Agboola, A.A.A., Akwu, A.D., and Oyebo, Y.T., "Neutrosophic Groups and Subgroups", International .J .Math.Combin, Vol 3, pp.1-9, 2012.

[7]Agboola, A.A.A., Akinola, A.D., and Oyebola, O.Y.," NeutrosophicRings I ", International J.Mathcombin, Vol 4,pp.1-14, 2011.

[8]Kandasamy, V.W.B., andSmarandache, F., "Some Neutrosophic Algebraic Structures and Neutrosophic N-Algebraic Structures", Hexis, Phonex, Arizona 2006.

[9]Olgan, N., and Khatib, A., "Neutrosophic Modules", Journal of Biostatistic and Biometric Application", Vol 3, 2018.

[10] Smarandache, F., "Symbolic Neutrosophic Theory", Europa Novaasbl, Bruxelles, 2015.

[11]Smarandache, F., *n-Valued Refined Neutrosophic Logic and Its Applications in Physics*, Progress in Physics, pp.143-146, Vol. 4, 2013.

[12]Smarandache, F., and Abobala, M., "n-RefinedNeutrosophic Rings", International Journal of Neutrosophic Science, Vol. 5, pp.83-90, 2020.

DOI: 10.5281/zenodo.3876216