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Neutrosophic deductive filters on BL-algebras
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Abstract. In this paper, we introduce the notions of neutrosophic deductive filter, Boolean neutrosophic deductive filter (BNDF)
and implicative neutrosophic deductive filter (INDF) on BL-algebras as generalizations of the fuzzy corresponding versions. We
also investigate some properties of these filters and drive some characterizations of them. The relation between BNDF and INDF is
investigated and it is proved that every BNDF is an INDF, but the converse is true when certain condition is satisfied. Furthermore,
we construct a quotient structure related to the neutrosophic deductive filter and prove certain isomorphism theorems.
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1. Introduction

Fuzzy set theory was introduced by Zadeh in 1965
[11]. A fuzzy subset A of a set X is a function µA :
X → [0, 1], where for each x ∈ X, µA(x) represents
the grade of membership of the element x ∈ X to A.
In [1], Atanassov introduced the intuitionistic fuzzy
sets as a generalization of fuzzy sets. The intuition-
istic fuzzy sets consider both membership degree and
nonmembership degree.

In 1998, neutrosophy has been proposed by Smaran-
dache [9] as a new branch of philosophy in order to
formally represent neutralities. The fundamental thesis
of neutrosophy is that every idea has not only a cer-
tain degree of truth and a certain degree of falsity but
also an indeterminacy degree that have to be consid-
ered independently from each other. In neutrosophic set
theory, indeterminacy is measured explicitly and inde-
pendently. This assumption is very important in many
applications such as information fusion in which we try
to combine the data from different sensors. As an exam-
ple, suppose there are 10 voters during a voting process.
One possible situation is that there are three yes votes,
two no votes and five undecided ones. We note that this
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example is beyond the scope of intuitionistic fuzzy set
theory.

In 1960 Abraham Robinson introduced non-standard
analysis as a formalization of analysis and a branch of
mathematical logic. In non-standard analysis a nonzero
number ε is said to be infinitely small, or infinitesi-
mal if and only if for all positive integers n, |ε| ≤ 1/n.
In this case the reciprocal δ = 1/ε will be infinitely
large, or simply infinite, meaning that for all positive
integers n, we have |δ| > n. The set of hyper-real num-
bers is an extension of the set of real numbers which
includes the class of infinite numbers and the class of
infinitesimal numbers. The non-standard unit interval
is ]0−, 1+[= 0− ∪ [0, 1] ∪ 1+. Here 0− is the set of all
hyper-real numbers 0 − ε, and 1+ is the set of all hyper-
real numbers 1 + λ, where ε and λ are infinitesimal.

If U is a set, a neutrosophic set defined on the
universe U assigns to each element x ∈ U, a triple
(T (x), I(x), F (x)), where T (x), I(x) and F (x) are stan-
dard or non-standard elements of ]0−, 1+[. T is the
degree of membership in the set U, I is the degree of
indeterminacy-membership in the set U and F is the
degree of nonmembership in the set U. In this paper
we work with special netrosophic sets that their neutro-
sophic elements are standard real numbers in [0,1].

Neutrosophy has laid the foundation for a whole fam-
ily of new mathematical theories, such as neutrosophic

1064-1246/14/$27.50 © 2014 – IOS Press and the authors. All rights reserved



2994 R.A. Borzooei et al. / Neutrosophic deductive filters on BL-algebras

set theory, neutrosophic probability, neutrosophic
statistics and neutrosophic logic. In recent years neutro-
sophic algebraic structures have been investigated (see
[3, 5]).
BL-algebras provide an algebraic semantics for

Hájek’s Basic Logic [2]. The main example of a BL-
algebra is the unit interval [0,1] endowed with the
structure induced by a continuous t-norm. MV-algebras,
Gödel algebras and Product algebras are the most
known classes of BL-algebras. Filter theory plays an
important rule in studying these algebras. From the
logical point of view, various filters correspond to var-
ious sets of provable formulas. In [4] and [7], the
notions of fuzzy prime filter, fuzzy Boolean filter, fuzzy
implicative filter and fuzzy positive implicative filter on
BL-algebras were introduced and some of their prop-
erties and characterizations were investigated.

In this paper we generalize the concept of fuzzy
filer on a BL-algebra and define the concept of neutro-
sophic deductive filter. We define Boolean neutrosophic
deductive filter and implicative neutrosophic deductive
filter and investigate some of their properties. We drive
several characterizations of these filters. Also, we inves-
tigate relation between BNDF and INDF and prove that
every BNDF is an INDF, but the converse may not be
true. Furthermore, the condition under which an INDF
is BNDF is established. Finally, we construct a quotient
structure related to the neutrosophic deductive filter and
prove some isomorphism theorems.

2. Preliminaries

In this section, we give some definitions and results
from the literature.

Definition 2.1. [9] Let X be a set. A neutrosophic sub-
set A of X is a triple (TA, IA, FA) where TA : X →
[0, 1] is the membership function, IA : X → [0, 1] is
the indeterminacy function and FA : X → [0, 1] is the
nonmembership function. Here for each x ∈ X, TA(x),
IA(x) and FA(x) are all standard real numbers in [0,1].

Note that there is no restrictions on the values of
TA(x), IA(x) and FA(x) and we only have the obvious
condition

0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Definition 2.2. [9] Let A and B be two neutrosophic
sets on X. Define A ≤ B if and only if

TA(x) ≤ TB(x), IA(x) ≥ IB(x), FA(x) ≥ FB(x).

for all x ∈ X.
Definition 2.3. [9] Let A and B be two neutrosophic
sets on X. Define

A ∧ B = (TA ∧ TB, IA ∨ IB, FA ∨ FB)

A ∨ B = (TA ∨ TB, IA ∧ IB, FA ∧ FB)

where, ∧ is the minimum and ∨ is the maximum
between real numbers.

Definition 2.4. [2] The axioms of propositional Haj́ek
Basic Logic in the Hilbert-style system are as the
following:

(A1) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ)),
(A2) (ϕ&ψ) → ϕ,
(A3) (ϕ&ψ) → (ψ&ϕ),
(A4) (ϕ&(ϕ → ψ)) → (ψ&(ψ → ϕ)),
(A5) (ϕ → (ψ → χ)) → ((ϕ&ψ) → χ

(A6) ((ϕ&ψ) → χ) → (ϕ → (ψ → χ)),
(A7) ((ϕ → ψ) → χ) → (((ψ → ϕ) → χ) → χ)
(A8) 0 → ϕ ,

The only inference rule is modus pones (MP). We show
the consequence relation of BL in the Hilbert-style
axiomatization by 	BL. If a formula ϕ is provable in
BL, we write 	BL ϕ.

Proposition 2.5. [2] In BL the following statements
hold:

(1) 	BL (ϕ → (ψ → ϕ)),
(2) 	BL (ϕ ∧ ψ → ψ ∧ ϕ),
(3) 	BL (ϕ ∧ ψ → ψ),
(4) 	BL ϕ → ¬¬ϕ,
(5) 	BL (ϕ → ψ) → (¬ψ → ¬ϕ),
(6) 	BL ¬ϕ → (ϕ → ψ),
(7) 	BL (ϕ → (ψ → χ)) ↔ (ψ → (ϕ → χ)),
(8) 	BL (ϕ → (ψ → χ)) ↔ ((ϕ&ψ) → χ)),
(9) 	BL (ϕ → ψ) → ((χ → ϕ) → (χ → ψ)),

(10) 	BL (ϕ → ψ) → ((ϕ → χ) → (ψ → χ)),
(11) 	BL ((ϕ → ¬ϕ) → ¬ϕ) ↔ (ϕ → ¬¬ϕ),
(12) 	BL [(ϕ ∨ ¬ϕ) → (ψ → ϕ)] ↔ [(ϕ → (ψ →

ϕ)) ∧ (¬ϕ → (ψ → ϕ))],
(13) 	BL ψ ⇒	BL (ϕ → (ϕ → ψ)),
(14) 	BL (ϕ → ψ), 	BL (χ → θ) ⇒	BL (ϕ&χ →

ψ&θ),

Definition 2.6. [2] A BL-algebra is an algebra
(L,∨,∧,�,→, 0, 1) of type (2,2,2,2,0,0) such that
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(BL1) (L,∨,∧, 0, 1) is a bounded lattice,
(BL2) (L,�, 1) is a commutative monoid,
(BL3) x� y ≤ z if and only if x ≤ y → z, for all

x, y, z ∈ L,
(BL4) x ∧ y = x� (x → y),
(BL5) (x → y) ∨ (y → x) = 1.

If aBL-algebra L satisfies ¬¬x = x, for each x ∈ L,
it is called an MV-algebra.

Proposition 2.7. [2, 6] In any BL-algebra L, the fol-
lowing properties hold:

(R1) x ≤ y ⇔ x → y = 1,
(R2) 1 → x = x, x → 1 = 1, x → x = 1, 0 →

x = 1, x → (y → x) = 1,
(R3) x ≤ y → z ⇔ y ≤ x → z,
(R4) x → (y → z) = (x� y) → z = y → (x →

z),
(R5) x ≤ y ⇒ (z → x ≤ z → y and y → z ≤

x → z),
(R6) z → y ≤ (x → z) → (x → y), z → y ≤

(y → x) → (z → x),
(R7) (x → y) � (y → z) ≤ x → z,
(R8) ¬x = ¬¬¬x, x ≤ ¬¬x, when ¬x = x → 0,
(R9) ¬x ∧ ¬y = ¬(x ∨ y),

(R10) x ∨ ¬x = 1 ⇒ x ∧ ¬x = 0,
(M1) x� y ≤ x ∧ y,
(M2) x ≤ y ⇒ x� z ≤ y � z,
(M3) y → z ≤ x ∨ y → x ∨ z,
(M4) ¬x ∨ ¬y = ¬(x ∧ y),
(M5) (x ∨ y) → z = (x → z) ∧ (y → z),
(M6) x ∨ y = ((x → y) → y) ∧ ((y → x) → x),
(M7) x → (y ∨ z) = (x → y) ∨ (x → z),
(M8) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(B1) ¬¬(x ∧ y) = (¬¬x ∧ ¬¬y), ¬¬(x ∨ y) =

(¬¬x ∨ ¬¬y), ¬¬(x� y) = (¬¬x� ¬¬y),
(B2) ¬(¬¬x → x) = 0, ¬¬(x → y) = (¬¬x →

¬¬y).

Definition 2.8. [2, 10] Let F be a nonempty subset of
a BL-algebra L such that 1 ∈ F . F is called:

(i) a filter on L, if

(∀x, y ∈ L)(x, y ∈ F ⇒ x� y ∈ F ) and

(∀x, y ∈ L)(x ∈ F, x ≤ y ⇒ y ∈ F ),

(ii) a Boolean filter on L, if it is a filter and moreover
we have

(∀x ∈ L)(x ∨ ¬x ∈ F ),

(iii) an implicative filter on L, if it is a filter and more-
over for all x, y, z ∈ L we have

[x → y, x → (y → z) ∈ F ⇒ (x → z) ∈ F ].

Proposition 2.9. [10] A nonempty subset F of a BL-
algebra L is a filter if and only if

(DS1) 1 ∈ F ,
(DS2) (∀x, y ∈ L)(x ∈ F, x → y ∈ F ⇒ y ∈ F ).

Theorem 2.10. [2] Let F be a filter on a BL-algebra L.
Define the binary relation ∼F on L by

x ∼F y ⇔ (x → y ∈ F and y → x ∈ F )

Then ∼F is a congruence on L, and the set of all congru-
ence classes L/F = {[x]F : x ∈ L} with the following
operations form a BL-algebra:

[x] • [y] = [x� y], [x] ⇀ [y] = [x → y],

[x] � [y] = [x ∨ y], [x] � [y] = [x ∧ y]

Lemma 2.11. [6] Let F1 and F2 be two filters on BL-
algebra L which F1 ⊆ F2. Then F1 is a filter on F2 and
F2/F1 is a filter on L/F1.

Definition 2.12. [6] The neutrosophic set F of a BL-
algebra L has Sup-Inf Property if for any nonempty
subset S of L, there exist x0, x1, x2 ∈ S, such that

sup
x∈S

TF (x) = TF (x0), inf
x∈S

IF (x) = IF (x1),

inf
x∈S

FF (x) = FF (x2).

From now on, we use the same notations for corre-
sponding logical and algebraic notions. Also, if there
is no confusion, we use ∧ and ∨ for minimum and
maximum for real numbers.

3. Neutrosophic deductive filters on
BL-algebras

In this section, we define the neutrosophic deductive
filters and prove some properties of them. Furthermore,
we characterize the neurosophic decuctive filter gener-
ated by a neutrosophic deductive set.

Definition 3.1. Suppose that 	 and
 be two subsets of
[0, 1]3. We define the relation |= as follows:

	 |= 
 ⇔ ∧ 	 ≤ ∧

If 	 = ∅, then we define ∧	 = (1, 0, 0), and if
 = ∅,
then we define ∧
 = (0, 1, 1).
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From now on, if	 |= 
 and
 |= 	, we write	 = 
.

Definition 3.2. Let L be a BL-algebra and 	 be a
consequence relation on the set of BL-formulas. A
neutrosophic subset F of L is called a neutrosophic
filter with respect to 	, if for each assignment v
into L and for every set 	 ∪ {ϕ} of BL-formulas, if
	 	 ϕ, then {F(v(	))} |= F(v(ϕ)), where F(v(	)) =
{F(v(γ)) : γ ∈ 	}.

In particular, if 	 is presented by a Hilbert-style sys-
tem, for example if 	 is 	BL, then it is enough to check
the above condition for the inference rules (	, ϕ) and
the axioms (∅, ϕ) of the proof system.

Definition 3.3. A neutrosophic subset F of a BL-algebra
L is called a neutrosophic deductive filter (briefly,
NDF), if F is a neutrosophic filter with respect to 	BL.

Lemma 3.4. A neutrosophic subset F of a BL-algebra L
is a NDF iff for all formulas ϕ,ψ and each assignment
v into L:

(NDF1) F(v(ϕ)) |= F(1),
(NDF2) {F(v(ϕ)), F(v(ϕ → ψ))} |= F(v(ψ)).

Proof. This can be easily obtained from the fact that in
a BL-algebra, all axioms of BL are evaluated to 1 under
all assignments and (MP) is the only inference rule.

Corollary 3.5. A neutrosophic subset F of a BL-algebra
L is a NDF iff

(NDF1) (∀a ∈ L)( F(a) |= F(1)),
(NDF2) (∀a, b ∈ L)( {F(a), F(a → b)} |= F(b)).

Corollary 3.6. Let F be a NDF. Then we have

(i) (∀a ∈ L)(F(a) ≤ F(1)),
(ii) (∀a, b ∈ L)(F(a) ∧ F(a → b) ≤ F(b)).

Example 3.7. Let L = {0, a, b, 1}. For all x, y ∈ L,
we define x ∧ y = min{x, y}, x ∨ y = max{x, y} and
� and → as follows:

� 0 a b 1

0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then (L,∧,∨,�,→, 0, 1) is a BL-algebra. The
neutrosophic subset F of L defined by F(0) = F(a) =
(t1, t3, t3), F(b) = (t2, t2, t2), F(1) = (t3, t1, t1), where
0 ≤ t1 < t2 < t3 ≤ 1 are three fixed real numbers in

[0,1], is a NDF.

Theorem 3.8. Let F be a neutrosophic subset of L.
Then F is a NDF if and only if for all formulas ϕ,ψ
and all assignment v into L, if 	BL (ϕ → (ψ → χ))
then {F(v(ϕ)), F(v(ψ))} |= F(v(χ)).

Proof. Let F be a NDF on L, v be an assignment
into L and 	BL (ϕ → (ψ → χ)), for some for-
mulas ϕ,ψ. By Lemma 3.4, we have {F(v(ϕ →
(ψ → χ)), F(v(ϕ))} |= F(v(ψ → χ)) and {F(v(ψ
→ χ)), F(v(ψ))} |= F(v(χ)). Then {F(v(ϕ)),
F(v(ϕ → (ψ → χ))), F(v((ψ))} |= F(v(χ)). Now,
since	BL (ϕ → (ψ → χ)), soF(v(ϕ → (ψ → χ))) =
F(1). Thus, we obtain that {F(v(ϕ)), F(v(ψ))} |=
F(v(χ)).

Conversely, assume that the condition holds.
We know if 	BL ψ, then 	BL ϕ → (ϕ → ψ) and
so {F(v((ϕ)), F(v((ϕ))} |= F(v(ψ)) = F(1), there-
fore {F(v((ϕ))} |= F(1). Now, since 	BL ϕ → ((ϕ →
ψ) → ψ), by the condition we get {F(v(ϕ)), F(v(ϕ →
ψ))} |= F(v(ψ)), which completes the proof.

Corollary 3.9. Let F be a neutrosophic subset of L.
Then F is a NDF if and only if for all formulas ϕ,ψ
and all assignments v into L, if 	BL (ϕ&ψ) → χ, then
{F(v(ϕ)), F(v(ψ))} |= F(v(χ)).

Theorem 3.10. Let F be a neutrosophic subset of L.
Then F is a NDF if and only if for all formulas ϕ,ψ
and all assignments v into L

(i) 	BL (ϕ → ψ) ⇒ {F(v(ϕ))} |= F(v(ψ)),
(ii) {F(v(ϕ)), F(v(ψ))} |= F(v(ϕ&ψ)).

Proof. Suppose that F is a NDF. Since 	BL
(ϕ&ϕ → ϕ) and 	BL (ϕ → ψ), we have 	BL (ϕ&ϕ →
ψ). So, by Corollary 3.9, it follows that for all
assignments v, {F(v(ϕ)), F(v(ϕ))} |= F(v(ψ)), there-
fore {F(v(ϕ))} |= F(v(ψ)) which proves (i). Since
	BL (ϕ&ψ → ϕ&ψ), by Corollary 3.9 we have
{F(v(ϕ)), F(v(ψ))} |= F(v(ϕ&ψ)), proving (ii).

Conversely, assume that (i) and (ii) hold and 	BL
((ϕ&ψ) → χ), for some formulas ϕ,ψ, χ. Then by (i)
we have {F(v(ϕ&ψ))} |= F(v(χ)) and since by (ii)
we have {F(v(ϕ)), F(v(ψ))} |= F(v(ϕ&ψ)), we get
{F(v(ϕ)), F(v(ψ))} |= F(v(χ)). Therefore, the result
is obtained by Corollary 3.9.

By (NDF2), Theorem 3.10 and (R1)-(R6), we get the
following corollary.

Corollary 3.11. For a NDF F on L, we have:

(1) 	BL (ϕ → ψ) ⇒ {F(v(ϕ))} |= F(v(ϕ)),
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(2) |= F(v(ϕ → ψ)) ⇒ {F(v(ϕ))} |= F(v(ψ)),
(3) {F(v(ϕ&ψ))} = {F(v(ϕ)), F(v(ψ))},
(4) {F(v(ϕ ∧ ψ))} = {F(v(ϕ)), F(v(ψ))},
(5) {F(v(ϕn))} = F(v(ϕ)), where ϕn = ϕ&...&ϕ

(n times),
(6) {F(v(ϕ)),F(v(¬ϕ))} = (0, 1, 1),
(7) {F(v(ϕ → ψ))} |=F(v((χ →ϕ) → (χ → ψ))),
(8) {F(v(ϕ → ψ))} |=F(v((ψ →χ) → (ϕ → χ))),
(9) {F(v(ϕ → ψ))} |= F(v((ϕ&χ) → (ψ&χ))),

(10) {F(v(ϕ → ψ)), F(v(ψ → χ))} |= F(v(ϕ →
χ))),

(11) {F(v(ϕ → (ψ → χ))), F(v(ϕ → ψ))} |=
{F(v(ϕ → (ϕ → χ)))}.

Corollary 3.12. For a NDF F on L, the following hold:

(1) x ≤ y ⇒ F(x) ≤ F(y),
(2) F(x → y) = F(1) ⇒ F(x) ≤ F(y),
(3) F(x� y) = F(x) ∧ F(y),
(4) F(x ∧ y) = F(x) ∧ F(y),
(5) F(xn) = F(x), where xn = x� x...�

x (n times),
(6) F(x) ∧ F(¬x) = F(0) = (0, 1, 1),
(7) F(x → y) ≤ F((z → x) → (z → y)),
(8) F(x → y) ≤ F((y → z) → (x → z)),
(9) F(x → y) ≤ F(x� z → y � z),

(10) F(x → z) ≤ F(x → y) ∧ F(y → z),
(11) F(x → (y → z)) ∧ F(x → y) ≤ F(x →

(x → z)).

Proposition 3.13. Let � be a nonempty set and Fi be
a NDF, for each i ∈ �. Then

∧
i∈� Fi is a NDF.

Definition 3.14. Let F be a neutrosophic subset of L
and G be a NDF. G is said to be generated by F , if F ≤ G
and for any NDF H, F ≤ H implies that G ≤ H. The
NDF generated by F will be denoted by 〈F〉.
Theorem 3.15. Let F be a neutrosophic subset
of L. Then for each formula ψ and assign-
ment v we have 〈F〉(v(ψ)) = ∨{F(v(ϕ1)) ∧ ... ∧
F(v(ϕn)) | 	BL ((ϕ1&...&ϕn) → ψ), for some n ∈
N, ϕ1, ..., ϕn ∈ Fm}.
Proof. We first prove that 〈F〉 is a NDF. Obviously,
〈F〉(v(ψ)) |= F(1), for each formula ψ. Now, consid-
ering the formulas ϕ,ψ, we observe that if there exist
n,m ∈ N and formulas ϕ1, ..., ϕn, ψ1, ..., ψm such that
	BL (ϕ1&...&ϕn → ϕ), 	BL (ψ1&...&ψm → (ϕ →
ψ)), then we get 	BL (ϕ1&...&ϕn&ψ1&...&ψm →
(ϕ&(ϕ → ψ))). Hence, since by Proposition 2,

	BL ((ϕ&(ϕ → ψ)) → ψ), we get

	BL (ϕ1&...&ϕn&ψ1&...&ψm → ψ)

Thus
F(v(ϕ1)) ∧ ... ∧ F(v(ϕn)) ∧ F(v(ψ1)) ∧ ... ∧
F(v(ψm)) ≤ 〈F〉(v(ψ)),
and then

〈F〉(v(ϕ)) ∧ 〈F〉(v(ϕ → ψ))

= (∨{F(v(ϕ1)) ∧ ... ∧ F(v(ϕn)) | 	BL
((ϕ1&...&ϕn) → ϕ), for some n ∈ N,

ϕ1, ..., ϕn ∈ Fm})
∧(∨{F(v(ψ1)) ∧ ... ∧ F(v(ψm)) | 	BL

((ψ1&...&ψm) → (ϕ → ψ)), for some m ∈ N,

ψ1, ..., ψm ∈ Fm})
= (∨{F(v(ϕ1)) ∧ ... ∧ F(v(ϕn))

∧F(v(ψ1)) ∧ ... ∧ F(v(ψm))} |
	BL ((ϕ1&...&ϕn) → ϕ),

	BL ((ψ1&...&ψm) → (ϕ → ψ)),

for some n,m ∈ N, ϕ1, ..., ϕn, ψ1, ..., ψm∈Fm})
≤ 〈F〉(v(ψ))

Therefore, 〈F〉 is a NDF.
Now, Since 	BL (ϕ&ϕ) → ϕ, then by definition

of 〈F〉, it follows that 〈F〉(v(ϕ)) ≥ F(v(ϕ&ϕ)).
Also, F(v(ϕ&ϕ)) = {F(v(ϕ)),F(v(ϕ))} = F(v(ϕ)),
by Corollary 3.11. So, 〈F〉(v(ϕ)) ≥ F(v(ϕ)). There-
fore, F ≤ 〈F〉. Finally, suppose that H is a NDF such
that F ≤ H and ϕ is a formula. Then,

〈F〉(v(ϕ)) =
∨

{F(v(ϕ1)) ∧ ... ∧ F(v(ϕn)) |
	BL ((ϕ1&...&ϕn) → ϕ), n ∈ N,

ϕ1, ..., ϕn ∈ Fm}
≤

∨
{H(v(ϕ1)) ∧ ... ∧ H(v(ϕn)) |

	BL ((ϕ1&...&ϕn) → ϕ), n ∈ N,

ϕ1, ..., ϕn ∈ Fm}
≤

∨
{H(v(ϕ))} = H(v(ϕ)),

Therefore, 〈F〉 ≤ H, which completes the proof.

Example 3.16. Suppose that (L,∧,∨,�,→, 0, 1) be
the BL-algebra defined in Example 3.7. Define the
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neutrosophic subset F of L by F(0) = (t1, t1, t1),
F(a) = F(b) = (t1, t2, t2), F(1) = (t2, t2, t2) (0 ≤ t1
< t2 ≤ 1) and the neutrosophic subset G of L by G(0) =
G(a) = G(b) = (t1, t1, t1), G(1) = (t2, t1, t1). One can
easily check that G = 〈F〉.

4. Boolean neutrosophic deductive filters

In this section we define and study the notion of
Boolean neutrosophic deductive filter on BL-algebras.

Definition 4.1. Let F be a NDF on L. F is called a
Boolean neutrosophic deductive filter (briefly, BNDF)
if F(1) |= F(v(ϕ ∨ ¬ϕ)), for all formula ϕ and all
assignments v.

Example 4.2. Let L = {0, a, b, 1} be a chain with
cayley tables as follow:

� 0 a b 1

0 0 0 0 0
a 0 a a a
b 0 a a b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a 0 1 1 1
b 0 b 1 1
1 0 a b 1

Define ∧ and ∨ on L as min and max, respec-
tively. Then (L,∧,∨,�,→, 0, 1) is a BL-algebra.
The neutrosophic subset F of L defined by F(0) =
(t1, t2, t2), F(a) = F(b) = F(1) = (t2, t1, t1), where
0 ≤ t1 < t2 ≤ 1 are two fixed real numbers in [0,1],
is a BNDF.

Proposition 4.3. Let F be a NDF on L. F is a BNDF
if and only if F(x ∨ ¬x) = F(1), for all x ∈ L.

Sinceϕ ∨ ψ = ((ϕ → ψ) → ψ) ∧ ((ψ → ϕ) → ϕ),
by Corollary 3.11, we have the following proposition.

Proposition 4.4. Let F be a NDF on L. Then, F is a
BNDF if and only if for all formula ϕ and all assign-
ments v:

F(v((ϕ → ¬ϕ) → ¬ϕ))) = F(v((¬ϕ → ϕ) → ϕ)))

= F(1).

Proposition 4.5. Let F be a NDF on L. Then, F is a
BNDF if and only if for all x ∈ L,

F((x → ¬x) → ¬x) = F((¬x → x) → x) = F(1).

Definition 4.6. Let F be a NDF on L. Then, for each
t ∈ [0, 1] we define Ft = (TFt , IFt , FFt ), where TF t =
{x ∈ L : TF ≥ t}, IF t = {x ∈ L : IF ≤ t}, FF t =
{x ∈ L : FF ≤ t}.

Theorem 4.7. Let F be a NDF on L. Then, F is a BNDF
if and only if for each t ∈ [0, 1], ∅ /= TF t , ∅ /= IF t ,
∅ /= FF t and all of them be Boolean filters on L.

Proof. Suppose that F is a BNDF, and ∅ /= TF t ,
∅ /= IF t and ∅ /= FF t , for some t ∈ [0, 1]. Then, there
exist x0 ∈ TF t , x1 ∈ IF t and x2 ∈ FF t . So, for each
x ∈ L, TF (x ∨ ¬x) = TF (1) ≥ TF (x0) ≥ t and hence
x ∨ ¬x ∈ TF t . Similarly, x ∨ ¬x ∈ IF t and x ∨ ¬x ∈
FF t . Thus, TF t , IF t and FF t are Boolean filters on L.

Conversely, suppose that ∅ /= TF t , ∅ /= IF t and
∅ /= FF t are Boolean filters on L, for each t ∈ [0, 1].
Then,TTF (1), IIF (1) andFFF (1) are Boolean filters and so
x ∨ ¬x ∈ TTF (1),x ∨ ¬x ∈ IIF (1) andx ∨ ¬x ∈ FFF (1).
This implies that F(x ∨ ¬x) = F(1), for all x ∈ L, and
then F is a BNDF, by Proposition 4.3.

Corollary 4.8. Let F be a NDF on L. Then F is a BNDF
if and only if TTF (1), IIF (1) and FFF (1) are Boolean
filters.

Theorem 4.9. Let F and G be two NDFs on L, which
F ≤ G, F(1) = G(1). If F is a BNDF, then G is a BNDF
too.

Proof. Use Definition 4.1.

Theorem 4.10. Let F be a NDF on L, ϕ,ψ, χ be for-
mulas and v be an assignment on L. Then the following
are equivalent:

(i) {F(v(ϕ → (¬χ → ψ))), F(v(ψ → χ)} |=
F(v(ϕ → χ)

(ii) {F(v(ϕ → (¬χ → χ)))} |= F(v(ϕ → χ))
(iii) F(v(ϕ → (¬χ → χ))) = F(v(ϕ → χ))
(iv) {F(v(ψ → (ϕ → (¬χ → χ)))), F(v(ψ))} |=

F(v(ϕ → χ))

Proof. (i) ⇒ (ii) It is enough to let ψ = χ in (i).
(ii) ⇒ (iii) It follows from 	BL (ϕ → χ) → (¬χ →

(ϕ → χ)), 	BL (¬χ → (ϕ → χ)) ↔ (ϕ → (¬χ →
χ)) and Theorem 3.10.

(iii) ⇒ (iv) Since F is a NDF, {F(v(ψ → (ϕ →
(¬χ → χ)))), F(v(ψ))} |= F(v(ϕ → (¬χ → χ))).
Then the result is obtained by F(ϕ → (¬χ → χ)) =
F(ϕ → χ).

(iv) ⇒ (i) By Corollary 3.11, we have {F(v(ϕ →
(¬χ → ψ))), F(v(ψ → χ))} = {F(v((ϕ� ¬χ) →
ψ)), F(v(ψ → χ))} |= F(v((ϕ� ¬χ) → χ)) and
since F(v((ϕ� ¬χ) → χ)) = F(v(ϕ → (¬χ → χ))),
we have {F(v(ϕ → (¬χ → ψ))), F(v(ψ → χ))} |=
F(v(ϕ → (¬χ → χ))).
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On the other hand for each BL-provable formula
ψ we have F(v(ϕ → (¬χ → χ))) = {F(v(ψ → (ϕ →
(¬χ → χ)))), F(v(ψ))} |= F(v(ϕ → χ)) by (iv). Thus
we get {F(v(ϕ → (¬χ → ψ))), F(v(ψ → χ))} |=
F(v(ϕ → χ)), which proves (i).

Definition 4.11. Let F be a NDF on L. We say F has
Implicative Property, if for all formulas ϕ,ψ, χ and all
assignments v, it satisfies:

{F(v(ϕ → (¬χ → ψ))), F(v(ψ → χ))}
|= F(v(ϕ → χ))

Theorem 4.12. A NDF F on L is a BNDF if and only
if it satisfies the Implicative Property.

Proof. Suppose that F is a BNDF on L. From 	BL
(χ ∨ ¬χ) → (ϕ → χ) ↔ (χ → (ϕ → χ)) ∧ (¬χ →
(ϕ → χ)) ↔ ¬χ → (ϕ → χ) ↔ ϕ → (¬χ → χ), it
follows that

F(v(ϕ → (¬χ → χ))) = F(v((χ ∨ ¬χ) → (ϕ → χ)))

= {F(v((χ ∨ ¬χ) → (ϕ → χ))), F(v(χ ∨ ¬χ))}
|= F(v(ϕ → χ))

which proves that F satisfies the Implicative Property,
by Theorem 4.10 (i), (ii).

Conversely, suppose that F satisfies the Implica-
tive Property. By Theorem 4.10 (iii), replacing ϕ by
¬ϕ → ϕ andχ by ϕ, we have F(v((¬ϕ → ϕ) → ϕ)) =
F(v((¬ϕ → ϕ) → (¬ϕ → ϕ))) = F(1)

and replacing ϕ by ϕ → ¬ϕ and χ by ¬ϕ, we get
F(v((ϕ → ¬ϕ) → ¬ϕ)) = F(v((ϕ → ¬ϕ) →

(¬¬ϕ → ¬ϕ))) = F(v((ϕ → ¬ϕ) → (ϕ → ¬ϕ))) =
F(1). Then F(v(ϕ ∨ ¬ϕ)) = {F(v((ϕ → ¬ϕ) →
¬ϕ)), F(v((¬ϕ → ϕ) → ϕ))} = F(1). Thus F is a
BNDF on L.

Theorem 4.13. Let F be a NDF on L, ϕ,ψ, χ be for-
mulas and v be an assignment on L. Then the following
are equivalent:

(i) F is a BNDF,
(ii) F(v(ϕ)) = F(v(¬ϕ → ϕ)),

(iii) F(v((ϕ → ψ) → ϕ)) |= F(v(ϕ)),
(iv) F(v((ϕ → ψ) → ϕ)) = F(v(ϕ)),
(v) {F(v(χ→ ((ϕ→ψ)→ϕ))),F(v(χ))} |=F(v(ϕ)).

Proof. (i) ⇒ (ii) Since 	BL ϕ → (¬ϕ → ϕ), then by
Corollary 3.11 we have F(v(ϕ)) |= F(v(¬ϕ → ϕ)).
The other direction follows from Theorem 4.12, replac-
ing ϕ by a BL-provable formulas and ψ, χ by ϕ in
Definition 4.11.

(ii) ⇒ (iii) From 	BL ¬ϕ → (ϕ → ψ), we get
	BL ((ϕ → ψ) → ϕ) → (¬ϕ → ϕ). Thus, F(v((ϕ →
ψ) → ϕ)) |= F(v(¬ϕ → ϕ)) = F(v(ϕ)).

(iii) ⇒ (iv) It is enough to prove that F(v(ϕ)) |=
F(v((ϕ → ψ) → ϕ)) and this follows from 	BL ϕ →
((ϕ → ψ) → ϕ).

(iv) ⇒ (v) Since F is a NDF, then
{F(v(χ → ((ϕ → ψ) → ϕ))), F(v(χ))} |= F(v((ϕ →
ψ) → ϕ)) = F(v(ϕ)).

(v) ⇒ (i) Let F be a NDF. In order to verify that F
is a BNDF, by Theorems 4.10 and 4.12, it is enough
to prove that F(v(ϕ → (¬χ → χ))) |= F(v(ϕ → χ)),
for all formulas ϕ, χ and all assignments v. Since,
	BL χ → (ϕ → χ) we have 	BL (¬(ϕ → χ)) → ¬χ
and then 	BL (¬χ → (ϕ → χ)) → (¬(ϕ → χ) →
(ϕ → χ)). From (v), replacing ϕ by ϕ → χ, χ by a
BL-provable formula θ andψ by a contradiction (In this
case the formulaϕ → ψ is equivalent to ¬(ϕ → χ)), we
get F(v(ϕ → (¬χ→χ)))=F(v(¬χ→ (ϕ→χ))) |=
F(v(¬(ϕ → χ) → (ϕ→χ)))={F(v(θ → (¬(ϕ → χ)
→ (ϕ → χ)))),F(v(θ))} |= F(v(ϕ → χ)).

Therefore, F is a BNDF on L.

5. Implicative neutrosophic deductive filters

In this section we define and study the notion of
implicative deductive filter on BL-algebras. Also, we
investigate some relations between BNDFs and INDFs.

Definition 5.1. A neutrosophic subset F of L is called
an implicative neutrosophic deductive filter (briefly,
INDF) if for all formulas ϕ,ψ, χ and all asignments v

{F(v(ϕ → (ψ → χ))),

F(v(ϕ → ψ))} |= F(v(ϕ → χ)).

As an immediate result we have:

Theorem 5.2. Every INDF is a NDF.

Proof. Let F be an INDF on L. Then for each
BL-provable formula θ, we have {F(v(θ → (ψ →
χ))), F(v(θ → ψ))} |= F(v(θ → χ)), so {F(v(θ) →
v(ψ → χ))), F(v(θ) → v(ψ))} |= F(v(θ) → v(χ)),
then {F(1 → v(ψ → χ))), F(1 → v(ψ))} |= F(1 →
v(χ)), which implies that

{F(v(ψ → χ))), F(v(ψ))} |= F(v(χ))

Thus F is a NDF on L.

Proposition 5.3. A neutrosophic subset F of L is a
INDF if and only if for all x, y, z ∈ L
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F(x → z) ≥ F(x → (y → z)) ∧ F(x → y).

Proof. It can be easily verified by Definition 5.1.

Theorem 5.4. Let F be a NDF on L, then the following
statements are equivalent:

(i) F is an INDF,
(ii) F(v(ϕ → (ϕ → ψ))) |= F(v(ϕ → ψ)),

(iii) F(v(ϕ → ψ)) = F(v(ϕ → (ϕ → ψ))),
(iv) F(v(ϕ → (ψ → χ))) |= F(v((ϕ → ψ) →

(ϕ → χ))),
(v) F(v(ϕ → (ψ → χ))) = F(v((ϕ → ψ) → (ϕ →

χ))),
(vi) F(v((ϕ� ψ) → χ)) = F(v((ϕ ∧ ψ) → χ)).

Proof. (i) ⇒ (ii) It is enough to put ψ = ϕ and χ = ψ,
in the definition.

(ii) ⇒ (iii) It follows from 	BL (ϕ → ψ) → (ϕ →
(ϕ → ψ)).

(iii) ⇒ (i) Using Corollary 3.11, we have
{F(v(ϕ → (ψ → χ))), F(v(ϕ → ψ))} |= {F(v(ϕ →
(ϕ → χ)))} = F(v(ϕ → χ))

(i) ⇒ (iv) Suppose that F is an INDF on L.
Then, {F(v(ϕ → (ψ → χ))), F(v(ϕ → ((ψ →
χ) → ((ϕ → ψ) → χ))))} |= {F(v(ϕ → ((ϕ →
ψ) → χ)))} = {F(v((ϕ → ψ) → (ϕ → χ)))}. Since
	BL (ψ → χ) → ((ϕ → ψ) → (ϕ → χ)), then
{F(v(ϕ → (ψ → χ))), F(1)} |= {F(v((ϕ → ψ) →
(ϕ → χ)))}. Therefore, F(v(ϕ → (ψ → χ))) |=
{F(v((ϕ → ψ) → (ϕ → χ)))}.

(iv) ⇒ (v) It is easy.
(v) ⇒ (vi) We have F(v(ϕ&ψ → χ)) =

F(v(ϕ → (ψ → χ))) = F(v((ϕ → ψ) → (ϕ →
χ))) = F(v(((ϕ → ψ)&ϕ) → χ)) = F(v((ϕ&(ϕ →
ψ)) → χ)) = F(v(ϕ ∧ ψ → χ)).

(vi) ⇒ (i) By Corollary 3.11, we have F(v(ϕ →
χ)) = F(v((ϕ ∧ ϕ) → χ)) = F(v((ϕ&ϕ) → χ)) =
F(v(ϕ → (ϕ → χ))), also by Corollary 3.11
{F(v(ϕ → ψ)), F(v(ϕ → (ψ → χ)))} = {F(v(ϕ →
ψ)), F(v(ψ → (ϕ → χ)))} |= F(v(ϕ → (ϕ → χ))),
therefore {F(v(ϕ → ψ)), F(v(ϕ → (ψ → χ)))} |=
F(v(ϕ → (ϕ → χ))). Hence, F is an INDF on L.

Theorem 5.5. A NDF F on L is an INDF if and only if
for each t ∈ [0, 1], ∅ /= TF t , ∅ /= IF t , ∅ /= FF t and all
of them are implicative filters on L.

Proof. Suppose that F is an INDF, ∅ /= TF t , ∅ /= IF t
and ∅ /= FF t , for some t ∈ [0, 1]. Let x0 ∈ TF t , x1 ∈
IF t and x2 ∈ FF t . Then, TF (x0) ≥ t, IF (x1) ≤ t and
FF (x1) ≤ t.

Since F is an INDF, TF (1) ≥ TF (x0) ≥ t, IF (1) ≤
IF (x1) ≤ t and FF (1) ≤ FF (x2) ≤ t, i.e. 1 ∈ TF t , 1 ∈
IF t and 1 ∈ FF t . Now, suppose that x → y, x →
(y → z) ∈ TF t , x → y, x → (y → z) ∈ IF t and x →
y, x → (y → z) ∈ FF t , for some x, y, z ∈ L. Then,

F(x → z) ≥ F(x → y) ∧ F(x → (y → z)) ≥ t

Thus x → z ∈ TF t , x → z ∈ IF t and x → z ∈ FF t .
This implies thatTF t , IF t andFF t are implicative filters
on L.

Conversely, suppose that for each t ∈ [0, 1],
∅ /= TF t , ∅ /= IF t and ∅ /= FF t are implicative
filters on L. Obviously, ∅ /= TTF (x), ∅ /= IIF (x) and
∅ /= FFF (x), for any x ∈ L. Then, TTF (x), IIF (x) and
FFF (x) are implicative filters on L and so 1 ∈ TTF (x),
1 ∈ IIF (x) and 1 ∈ FFF (x), i.e. F(1) ≥ F(x). Let t0 =
TF (x → y) ∧ TF (x → (y → z)), t1 = IF (x → y) ∨
IF (x → (y → z)) and t2 = FF (x → y) ∨ FF (x →
(y → z)), for some x, y, z ∈ L. Then, x → y, x →
(y → z) ∈ TF t0 , x → y, x → (y → z) ∈ IF t1 and
x → y, x → (y → z) ∈ FF t2 and so x → z ∈ TF t0 ,
x → z ∈ IF t1 and x → z ∈ FF t2 . Hence,

TF (x → z) ≥ t0

= TF (x → (y → z)) ∧ TF (x → y),

IF (x → z) ≤ t1

= IF (x → (y → z)) ∨ IF (x → y),

FF (x → z) ≤ t2

= FF (x → (y → z)) ∨ FF (x → y).

Thus, F is an INDF on L.

Theorem 5.6. Every BNDF is an INDF.

Proof. Let F be a BNDF on L. From 	BL
((ϕ ∨ ¬ϕ) → (ϕ → χ)) ↔ [((ϕ → (ϕ → χ)) ∧ (¬ϕ
→ (ϕ → χ)))] ↔ (ϕ → (ϕ → χ)) it follows that
{F(v(ϕ → (ϕ → χ)))} = {F(v((ϕ ∨ ¬ϕ) → (ϕ →
χ)))} = {F(v((ϕ ∨ ¬ϕ) → (ϕ → χ))),F(v(ϕ ∨ ¬ϕ))}
|= F(v(ϕ → χ)). Therefore, F is an INDF on L, by
Theorem 5.4 (ii).

Example 5.7. Let L = {0, a, b, 1} be a chain with
cayley tables as follows:

� 0 a b 1

0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1

0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1
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Define ∧ and ∨ on L as min and max, respectively.
Then (L,∧,∨,�,→, 0, 1) is a BL-algebra. The neu-
trosophic subset F of L defined by F(0) = F(a) =
F(b) = (t1, t2, t2), F(1) = (t2, t1, t1), where 0 ≤ t1 <

t2 ≤ 1 are two fixed real numbers in [0,1], is an INDF,
but it is not a BNDF.

Theorem 5.8. Let F be an INDF on L. F is a BNDF
if and only if for all formulas ϕ,ψ and all assignments
v:

F(v((ϕ → ψ) → ψ)) = F(v((ψ → ϕ) → ϕ)) (5.1)

Proof. Suppose that F is a BNDF. From 	BL ϕ →
((ψ → ϕ) → ϕ), it follows that 	BL (¬((ψ →
ϕ) → ϕ)) → ¬ϕ and since by Proposi-
tion 2, 	BL ¬ϕ → (ϕ → ψ)), then we have
	BL (¬((ψ → ϕ) → ϕ)) → (ϕ → ψ)), so 	BL ((ϕ →
ψ) → ψ) → (¬((ψ → ϕ) → ϕ) → ψ). In addition,
since 	BL ψ → (ϕ ∨ ψ) and 	BL (ϕ ∨ ψ) → ((ψ →
ϕ) → ϕ) we have 	BL ψ → ((ψ → ϕ) → ϕ). Thus
	BL (¬((ψ → ϕ) → ϕ) → ψ) → (¬((ψ → ϕ) → ϕ)
→ ((ψ → ϕ) → ϕ)). Therefore, 	BL ((ϕ → ψ) →
ψ) → (¬((ψ → ϕ) → ϕ) → ((ψ → ϕ) → ϕ)) and
hence F(v((ϕ → ψ) → ψ)) |= F(v(¬((ψ → ϕ) →
ϕ) → ((ψ → ϕ) → ϕ))), by Corollary 3.11.

Since by Theorem 4.13 (ii), F(v((ψ → ϕ) → ϕ))
= F(v(¬((ψ → ϕ) → ϕ) → ((ψ → ϕ) → ϕ))), then
F(v((ϕ → ψ) → ψ)) |= F(v((ψ → ϕ) → ϕ)). Simi-
larly, we can prove that F(v((ψ → ϕ) → ϕ)) |=
F(v((ϕ → ψ) → ψ)). Then, F(v((ϕ → ψ) → ψ)) =
F(v((ψ → ϕ) → ϕ)).

Conversely, Let F be an INDF on L and (5.1) holds.
Then, in order to prove that F is a BNDF, it is enough
to show that F(v((ϕ → ¬ϕ) → ¬ϕ)) = F(1), by
Proposition 2. Since by Proposition 4.4, 	BL ((ϕ →
¬ϕ) → ¬ϕ) ↔ (ϕ → ¬¬ϕ) and 	BL ϕ → ¬¬ϕ,
then it follows that F(v((ϕ → ¬ϕ) → ¬ϕ)) =
F(v(ϕ → ¬¬ϕ)) = F(1), which completes the
proof.

Theorem 5.9. Let F be an INDF on L. F is a BNDF if
and only if F(v(¬¬ϕ)) = F(v(ϕ)), for each formula ϕ
and each assignment v.

Proof. Assume that F(v(¬¬ϕ)) = F(v(ϕ)). Then,
F(v(¬ϕ → ¬¬ϕ)) = F(v(¬¬ϕ)), by Theorem 5.4
(iii). Also we have F(v(¬ϕ → ϕ)) |= F(v(¬ϕ →
¬¬ϕ)). Hence F(v(¬ϕ → ϕ)) |= F(v(ϕ)). Obviously,
F(v(ϕ)) |= F(v(¬ϕ → ϕ)). Thus F is a BNDF on L,
, by Theorem 4.13. The converse is obtained by using
Theorem 5.8.

Corollary 5.10. Let L be a MV-Algebra and F be
a NDF on L. Then, the following statements are
equivalent:

(i) F is a BNDF on L,
(ii) F is an INDF,

(iii) F(v(ϕ → χ)) = F(v(ϕ → (ϕ → χ))),
(iv) F(v(ϕ → χ)) = F(v(ϕ → (¬χ → χ))),
(v) F(v((ϕ → ψ) → ϕ)) = F(v(ϕ)),

(vi) F(v(ϕ → (ψ → χ))) = F(v((ϕ → ψ) →
(ϕ → χ))),

(vii) F(v((ϕ� ψ) → χ)) = F(v((ϕ ∧ ψ) → χ)).

6. Quotient structures

In this section we define the quotient structure for
neutrosophic deductive filters and study some of its
properties.

Let F be a NDF on L and x ∈ L. The neu-
trosophic set Fx : L → [0, 1]3 which is defined by
Fx(y) = (TFx (y), IFx (y), FFx (y)), for any y ∈ L,
where TFx (y) = TF (x → y) ∧ TF (y → x), IFx (y) =
IF (x → y) ∨ IF (y → x) and FFx (y) = FF (x → y) ∨
FF (y → x), is called the neutrosophic coset (briefly,
NC) of F . Denote the set of all NCs of F by L/F .

Now, we have the following lemma.

Lemma 6.1. Let F be a NDF on L. Then, Fx = Fy if
and only if F(x → y) = F(y → x) = F(1).

Proof. Assume that Fx = Fy, for some x, y ∈ L.
Then (TFx (x), IFx (x), FFx (x)) = Fx(x) = Fy(x) =
(TFy (x), IFy (x), FFy (x)), so, TFx (x) = TFy (x), IFx (x)
= IFy (x) and FFx (x) = FFy (x). Hence, TF (1) =
TF (x → x) = TF (y → x) ∧ TF (x → y), IF (1) =
IF (x → x) = IF (y → x) ∨ IF (x → y) and FF (1) =
FF (x → x) = FF (y → x) ∨ FF (x → y) which
implies that TF (y → x) = TF (x → y) =
TF (1), IF (y → x) = IF (x → y) = IF (1) and
FF (y → x) = FF (x → y) = FF (1). Then,
F(x → y) = (TF (x → y), IF (x → y), FF (x →
y)) = (TF (1), IF (1), FF (1)) = F(1) and similarly,
F(y → x) = F(1).

Conversely, assume that F(x → y) = F(y →
x) = F(1). Then, TF (x → y) = TF (y → x) = TF (1),
IF (x → y) = IF (y → x) = IF (1) and FF (x →
y) = FF (y → x) = FF (1). Thus, by Corollary 3.12,
for each x, y, z ∈ L, we obtains that F(z → x) ≥
F(z → y) ∧ F(y → x) = F(z → y) and F(x → z)
≥ F(x → y) ∧ F(y → z) = F(y → z), hence Fx(z)
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= F(z → x) ∧ F(x → z) ≥ F(z → y) ∧ F(y →
z) = Fy(z). Similarly, Fy(z) ≥ Fx(z), therefore,
Fx = Fy.

Suppose that F be a NDF on L. Let FF(1) = {x ∈
L : F(x) = F(1)}, then it is easy to verify that FF(1) =
TT (1) ∩ II(1) ∩ FF (1). Hence FF(1) is a filter on L.

Corollary 6.2. Let F be a NDF on L. Then, Fx = Fy

if and only if x ∼FF(1) y, where

x ∼FF(1) y ⇔ x → y ∈ FF(1), y → x ∈ FF(1).

Let F be a NDF on L. For any Fx,Fy ∈ L/F ,
define Fx ∧ Fy = Fx∧y, Fx ∨ Fy = Fx∨y, Fx �
Fy = Fx�y, and Fx → Fy = Fx→y.

Now, we get the following lemma.

Lemma 6.3. Let F be a NDF on L, Fx = Fz

and Fy = Fw, for some x, y, z, w ∈ L. Then, Fx ∨
Fy = Fz ∨ Fw, Fx ∧ Fy = Fz ∧ Fw, Fx � Fy =
Fz � Fw, and Fx → Fy = Fz → Fw.

Proof. Assume that Fx = Fz and Fy = Fw, for
some x, y, z, w ∈ L. By Corollary 6.2, x ∼FF(1) z and
y ∼FF(1) w. Since, by Theorem 2, ∼FF(1) is a con-
gruence on L, then x ∧ y ∼FF(1) z ∧ w, x ∨ y ∼FF(1)

z ∨ w, x� y ∼FF(1) z� w and x → y ∼FF(1) z → w.

This implies that Fx ∧ Fy = Fx∧y = Fz∧w = Fz ∧
Fw and similarly, Fx ∨ Fy = Fz ∨ Fw, Fx � Fy =
Fz � Fw and Fx → Fy = Fz → Fw.

We note that the lattice order ≤ on L/F is defined
by Fx ≤ Fy if and only if Fx ∨ Fy = Fy.

Lemma 6.4. Let F be a NDF on L. Then, Fx ≤ Fy if
and only if F(x → y) = F(1).

Proof. Let x, y ∈ L. Then,

Fx ≤ Fy ⇔ Fx∨y = Fx ∨ Fy = Fy ⇔
TFx∨y = TFy , IFx∨y = IFy , FFx∨y = FFy

⇔ TF (1) = TF (y → (x ∨ y)) = TF (x ∨ y →y),

IF (1) = IF (y → (x ∨ y)) = IF (x ∨ y → y),

FF (1) = FF (y → (x ∨ y)) = FF (x ∨ y →y)

⇔ TF (x → y) = TF (1), IF (x → y) = IF (1),

FF (x → y) = FF (1)

⇔ F(x → y)

= (TF (x → y), IF (x → y), FF (x → y))

= (TF (1), IF (1), FF (1)) = F(1).

Theorem 6.5. Let F be a NDF on L. Then
(L/F,∧,∨,�,→,F1,F0) is a BL-algebra.

Proof. By Lemma 6.3, the operations ∧, ∨, � and
→ on L/F are well-defined. We only need to prove
L/F satisfies the axioms of BL-algebras. The axioms
(BL1), (BL2), (BL4) and (BL5) can be easily proved.
Let Fx,Fy,Fz ∈ L/F , then by Corollary 6.4

(Fx � Fy ≤ Fz) ⇔ (Fx�y ≤ Fz)

⇔ F((x� y) → z) = F(1)

⇔ F(x → (y → z)) = F(1)

⇔ Fx ≤ Fy→z

⇔ Fx ≤ Fy → Fz.

7. Isomorphism theorems

In this section we prove three isomorphism theorems
concerning quotients of neutrosophic deductive filters.

We note that, since FF(1) is a filter on L, then by
Theorem 2.10, L/FF(1) is a BL-algebra.

Theorem 7.1. Let F be a NDF on L. Then L/F �
L/FF(1).

Proof. Define a map 
 : L/F −→ L/FF(1) by

(Fx) = [x]FF(1) . We prove that 
 is an iso-
morphism. Suppose that Fx,Fy ∈ L/F . Then
Fx = Fy if and only if x ∼FF(1) y if and only if
[x]FF(1) = [y]FF(1) , which implies that 
 is an one-
to-one function. Obviously, 
 is surjective. Now,

(Fx � Fy) = 
(Fx�y) = [x� y]FF(1) = [x]FF(1) •
[y]FF(1) = 
(Fx) •
(Fy). Similarly, it can be
obtained that 
(Fx → Fy) = 
(Fx) ⇀ 
(Fy).
Thus,
 is an isomorphism and hence L/F � L/FF(1).

Corollary 7.2. Let f : L −→ L′ be a homomorphism
of BL-algebras and F be a NDF on L which kerf =
FF(1). Then, L/F � f (L).

Definition 7.3. Let L1 and L2 beBL-algebras and f be
a map from L1 into L2. Also let F be a neutrosophic
subset of L1. The neutrosophic subset f (F) of L2 is
defined by

f (F)(l2)

=
{

(Tf (F)(l2), If (F)(l2), Ff (F)(l2)), f−1(l2) /= ∅
(0, 1, 1), otherwise
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for any l2 ∈ L2, where

Tf (F)(l2) = ∨{TF (l1) : l1 ∈ L1, f (l1) = l2},
If (F)(l2) = ∧{IF (l1) : l1 ∈ L1, f (l1) = l2},
Ff (F)(l2) = ∧{FF (l1) : l1 ∈ L1, f (l1) = l2}.

Let L1 and L2 be BL-algebras and F1 and F2
be neutrosophic sets of L1 and L2, respectively. A
homomorphism f of L1 onto L2 is called weak homo-
morphism of F1 into F2, if f (F1) ≤ F2. In this case,
we say that F1 is weakly homomorphic to F2 and we
write F1 ∼f F2 or simply F1 ∼ F2. If f is bijective,
we say that F1 is weakly isomorphic to F2 and we write
F1 �f F2 or simply F1 � F2. A homomorphism f of
L1 onto L2 is called a homomorphism of F1 into F2, if
f (F1) = F2. In this case, we say that F1 is homomor-
phic to F2 and we write F1 ≈f F2 or simply F1 ≈ F2.
If f is bijective, we say that F1 is isomorphic to F2 and
we write F1 ∼=f F2 or simply F1 ∼= F2(See [8]).

For a neutrosophic subset F of L, define F∗ = {x ∈
L, TF (x) > 0, IF (x) < 1, FF (x) < 1}.
Lemma 7.4. Let F be a NDF on L, TF (1) > 0, IF (1) <
1 and FF (1) < 1. Then F∗ is a filter on L.

Proof. The proof is easy.

Recall that F1 ≤ F2 means that TF1 (x) ≤ TF2 (x),
IF1 (x) ≥ IF2 (x) and FF1 (x) ≥ FF2 (x), for any
x ∈ L. Now, if F1 ≤ F2 and x ∈ F1

∗, then
0 < TF1 (x) ≤ TF2 (x), 1 > IF1 (x) ≥ IF2 (x) and
1 > FF1 (x) ≥ FF2 (x) and so x ∈ F2

∗, which implies
that F∗

1 ⊆ F∗
2 . Hence F∗

1 is a filter on F∗
2 and F∗

2 /F∗
1

is a BL-algebra, by Lemma 2.11.

Theorem 7.5. Let F1 and F2 be two NDFs on L,
F1 ≤ F2 and F2 has Sup-Inf property. Define ξ :
F2

∗/F1
∗ �−→ [0, 1] by

ξ([x]F∗
1
) = (Tξ([x]F∗

1
), Iξ([x]F∗

1
), Fξ([x]F∗

1
))

where Tξ([x]F∗
1
) = ∨{TF2 (y)| y ∈ [x]F∗

1
}, Iξ([x]F∗

1
) =

∧{IF2 (y)| y ∈ [x]F∗
1
} and Fξ([x]F∗

1
) = ∧{FF2 (y)| y ∈

[x]F∗
1
}, for all [x]F∗

1
∈ F2

∗/F1
∗. Then ξ is a neutro-

sophic set.

Proof. Since, F2 has Sup-Inf property, there exist
y0, y1, y2 ∈ [x]F∗

1
such that Tξ([x]F∗

1
) = TF2 (y0),

Iξ([x]F∗
1
) = IF2 (y1) and Fξ([x]F∗

1
) = FF2 (y2). Obvi-

ously, ξ([x]F∗
1
) = (TF2 (y0), IF2 (y1), FF2 (y2)) is a neu-

trosophic set, which completes the proof. We call the

neutrosophic set ξ defined in Theorem 7.5, the quotient
neutrosophic set on F2 relative to F1 and denote it by
F2/F1.

Theorem 7.6. Let F1 and F2 be two NDFs on L, F1 ≤
F2 and F2 has Sup-Inf property. Then

F2 |F∗
2
≈ F2/F1.

Proof. Let f : F∗
2 −→ F∗

2 /F∗
1 be the natural epimor-

phism and [x]F∗
1

∈ F∗
2 /F∗

1 . Then f (F2 |F∗
2
)([x]F∗

1
)

= (∨{TF2 (z)|z ∈ F∗
2 , f (z)= [x]F∗

1
},∧{IF2 (z)|z ∈ F∗

2 ,

f (z) = [x]F∗
1
},∧{FF2 (z)|z ∈ F∗

2 , f (z) = [x]F∗
1
})= (∨

{TF2 (y)|y ∈ [x]F∗
1
},∧{IF2 (y)|y ∈ [x]F∗

1
},∧{FF2 (y)|y

∈ [x]F∗
1
}) = (F2/F1)([x]F∗

1
). Therefore, F2 |F∗

2≈ F2/F1.

Theorem 7.7. Let F1 and F2 be two NDFs on BL-
algebras L1 and L2, respectively, F1 ≈ F2 and F1 has
Sup-Inf property. Then there exists a NDF F3 such that
F3 ≤ F1 and F1/F3 ∼= F2 |F∗

2
.

Proof. Since F1 ≈ F2, there is an homomorphism f

from L1 onto L2 such that f (F1) = F2. Define the
neutrosophic set F3 as follows:

F3(x) =
{

(TF1 (x), IF1 (x), FF1 (x)), x ∈ ker(f )

(0, 1, 1), otherwise

for any x ∈ L1. It is easy to show that F3 is a NDF on
L1. Since F1 ≈ F2, then f (F∗

1 ) = F∗
2 . Let g = f |F∗

1
,

then g is a homomorphism from F∗
1 onto F∗

2 and
ker(g) = F∗

3 . Thus, by the first isomorphism theorem,
there exists an isomorphism h : F1

∗/F3
∗ −→ F∗

2 such
that h([x]F∗

3
) = g(x) = f (x), for any x ∈ F1

∗. Now,
h(F1/F3)(z) = (∨{TF1/F3 ([x]F∗

3
) | x ∈ F1

∗,
h([x]F∗

3
) = z},∧{IF1/F3 ([x]F∗

3
) | x ∈ F1

∗, h([x]F∗
3
) =

z},∧{FF1/F3 ([x]F∗
3
) | x ∈ F1

∗, h([x]F∗
3
) = z})= (∨{∨

{TF1 (y) : y∈ [x]F∗
3
} |x ∈ F1

∗, g(x) = z},∧{∧{IF1 (y) :
y ∈ [x]F∗

3
} | x ∈ F1

∗, g(x) = z},∧{∧{FF1 (y) : y ∈
[x]F∗

3
} | x ∈ F1

∗, g(x) = z}) = (∨{TF1 (y)|y ∈ F1
∗,

g(y) = z},∧{IF1 (y)|y ∈ F1
∗, g(y)=z},∧{FF1 (y)|y ∈

F1
∗, g(y) = z}) = (∨{TF1 (y)|y ∈ L1, f (y) = z},∧

{IF1 (y)|y ∈ L1, f (y) = z},∧{FF1 (y)|y ∈ L1, f (y) =
z}) = F2(z) for any z ∈ F2

∗. Therefore F1/F3∼= F2 |F∗
2
.

Lemma 7.8. Let F1 and F2 be two NDFs on L such
that F1 ≤ F2. Then F∗

2 /F∗
1 = (F2/F1)∗.

Proof. The proof is easy.
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Lemma 7.9. Let F1, F2 and F3 be NDFs on L,
F1 ≤ F2 ≤ F3 and F2,F3 have Sup-Inf property. Then
(F2/F1) and (F3/F1) are neurosophic subsets of L
such that (F2/F1) ≤ (F3/F1).

Proof. Use Theorem 7.5.

Theorem 7.10. Let F1, F2 and F3 be NDFs on L, F1 ≤
F2 ≤ F3 and F2,F3 have Sup-Inf property, such that
F3/F1, F2/F1 are NDFs. Then

(F3/F1)/(F2/F1) ≈ F3/F2.

Proof. It can be proved by using Theorem 2 and
Lemmas 7.8, 7.9.
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