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Abstract

This paper presents a new concept in neutrosophic sets (NS) called neutrosophic

structured element (NSE). Based on this concept, we define the operational laws,

score function, and some aggregation operators of NS. Finally, as an application of

this concept, we propose a decision-making method for a multi-attribute decision

making (MADM) problem under NSE information. The results indicate that this con-

cept is a useful tool for dealing with neutrosophic decision problems.
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1 | INTRODUCTION

The theory of uncertainty plays a tremendous role in modelling science and engineering issues. However, there may be an essential inquiry

regarding how we can easily define or use the concept of uncertainty inside our mathematical modelling. Worldwide researchers characterized

numerous ways to deal with describing them and have made recommendations on the use of the uncertainty theory.

Fuzzy logic is an approach to calculating the values based on “degrees of truth” instead of the usual Boolean “true or false” logic. Zadeh

(1965) first introduced the term fuzzy sets (FSs) against certain logic, where the membership degree (μ(x)) is indeed a real number on [0, 1]. After

this work, many researchers studied this topic; details of some researches can be observed in (Das, Mandal, & Edalatpanah, 2017a, 2017b; Finol,

Guo, & Jing, 2001; Hsu, Tsai, & Wu, 2009; Jain & Haynes 1983; Najafi & Edalatpanah, 2013a, 2013b; Najafi, Edalatpanah, & Dutta, 2016; Wang,

Lu, & Liu, 2014; Zadeh, 1977). However, fuzzy sets cannot handle some cases where the membership degree is hard to define by a specific value.

To tackle this knowledge shortage, Atanassov (1986), introduced an extension of the FSs that so-called intuitionistic fuzzy sets (IFSs).

Although the theory of IFSs can handle incomplete information in various real-world issues, it cannot address all types of uncertainty, such as

inconsistent and indeterminate information.

The neutrosophic set (NS) was therefore suggested by Smarandache (1999) as a great overall structure that generalizes the classical set, FSs

(Zadeh, 1965), IFSs (Atanassov, 1986), and their interval versions (Atanassov & Gargov, 1989; Turksen, 1986).

Neutrosophic set can deal with indeterminate, uncertain, and indistinguishable information where the indeterminacy is explicitly quantified

and also the truth, falsity and indeterminacy memberships are entirely independent (Smarandache, 2003). Moreover, some generalization of

neutrosophic sets, including interval neutrosophic set (Broumi & Smarandache, 2013; Gallego Lupiáñez, 2009; Garg, 2018b; Liu & Shi, 2015; Ye,

2014c), bipolar neutrosophic set (Broumi, Smarandache, Talea, & Bakali, 2016; Deli, Yusuf, Smarandache, & Ali, 2016; Uluçay, Deli, & Şahin,

2018), single-valued neutrosophic set (Abdel-Basset & Mohamed, 2018; Biswas, Pramanik, & Giri, 2016; Chakraborty et al., 2018; Edalatpanah,

2018; Liu & Wang, 2014; Şahin & Küçük, 2015; Ye, 2013, 2014a), simplified neutrosophic sets (Edalatpanah & Smarandache, 2019; Peng, Wang,

Wang, Zhang, & Chen, 2016; Ye, 2014b, 2015a), multi-valued neutrosophic set (Ji, Zhang, & Wang, 2018; Peng, Wang, Wu, Wang, & Chen, 2015;

Peng, Wang, & Yang, 2017), and neutrosophic linguistic set (Garg, 2018a; Ma et al., 2017; Tian, Wang, Wang, & Zhang, 2017; Wang, Yang, & Li,

2018a; Ye, 2015b) have been presented. There are also various neutrosophic decision-making models such as aggregation operator methods,

TOPSIS, projection method, α-cut set method, and so forth (see Abdel-Basset, Manogaran, Gamal, & Smarandache, 2019; Basha, Tharwat,

Abdalla, & Hassanien, 2019; Dhingra, Kumar, & Joshi, 2019; Guo & Cheng, 2009; Jha et al., 2019a; Jha, Kumar, Priyadarshini, Smarandache, &
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Long, 2019b; Kumar, Edalatpanah, Jha, Broumi, & Dey, 2018, 2019; Rivieccio, 2008; Sert & Avci, 2019; Smarandache & Ali, 2018; Smarandache &

Pramanik, 2016; Zhang, Zhang, & Cheng, 2010).

However, some methodologies precisely handle original neutrosophic information, which can easily lead to information loss and potentially

lead to biased results. In a strict sense, these methodologies have not drawn far from the traditional decision-making field. Furthermore, the calcu-

lation process is sometimes disturbed by parameter ergodicity problems. For instance, the α-cut set strategy requires that the parameter be set to

[0, 1], but it is actually not realistic. Furthermore, the comparison of neutrosophic numbers depend primarily on the relationship of truth, falsity,

and indeterminacy membership functions, but the formulas are complex. Besides, some approaches for comparing two neutrosophic numbers do

not satisfy the rational hypothesis of economic man.

It should be noted that these shortcomings also exist in the fuzzy decision-making methods, and there are three main problems during the

application of Zadeh's extension principle (Wang, Jin, Deng, & Wang, 2018b): (a) the combination operation process of subjective weight and

objective weight is very complicated. It is challenging to get fuzzy combination weights; (b) it is difficult to achieve the analytic expression of cal-

culation results among fuzzy numbers due to the inherent ergodicity problem of extension principle; (c) precise numbers rather than fuzzy num-

bers were obtained, which was not consistent with the actual situation.

To solve the shortcomings of the extension principle, Guo presented the theory of a fuzzy structured element (Guo, 2002a, 2002b, 2004).

The homeomorphic property between the space of fuzzy numbers and the group of bounded functions that have a similar monotone formal on

[−1, 1] is the main feature of a fuzzy structured element (Guo, 2009). This theory was applied to characterize fuzzy numbers and operations

among them, avoiding the ergodicity of the extension principle. Moreover, the fuzzy inheritance of the calculation process and the analytic

expression of calculation results can be realized. In recent years, the FSE applied in various problems (see Cui & Li, 2019; Deng, Zhou, & Wang,

2014; Dong & Zhu, 2009; Hu, Yang, & Guo, 2008; Li & Lei, 2017; Liu & Guo, 2012; Shu & Mo, 2016; Sun & Guo, 2009a, 2009b; Wang, Guo,

Bamakan, & Shi, 2015b; Wang, Guo, & Shi, 2015a; Wang, Jin, et al., 2018b; Wang, Wang, & Chen, 2016; Yan & Bao-fu, 2013; Yue & Yan, 2009;

Zhao, Yang, & Wan, 2010).

However, FSE cannot be able to define the dilemma, indeterminacy, and falsity details of a real-life problem. In these situations, some infor-

mation may also be uncertain, indeterminate, and inconsistent. Considering the truth, falsity, and indeterminacy membership functions for each

data in the neutrosophic sets help decision-makers to obtain a better interpretation of information. Moreover, by NS, we can obtain a better rep-

resentation of reality by considering all aspects of the decision-making process. So, in this study, we extend the theory of fuzzy structured ele-

ment for neutrosophic sets (NSs) and introduce the concept of neutrosophic structured element (NSE). Furthermore, we describe the ordering of

neutrosophic numbers using the NSE, which successfully overcame the above-raised challenges. Moreover, we define the operational laws, score

function, and some aggregation operators of NSs.

The paper unfolds as follows: some basic knowledge, concepts, and arithmetic operations on fuzzy structured element theory are discussed

in section 2. In section 3, we review some concepts of neutrosophic sets and single-valued neutrosophic. In section 4, we introduce the concept

of the neutrosophic structured element and define the operational laws, score function, and some aggregation operators of NSs by NSE. In

section 5, we propose a decision-making method for a multi-attribute decision making (MADM) problem under NSE information. Concluding

remarks and future directions are provided in section 6.

2 | FUZZY STRUCTURED ELEMENT THEORY

Here, a few fundamental concepts of the fuzzy structured element are reviewed (Deng et al., 2014; Guo, 2004; Wang, Wang, & Chen, 2016;

Wang, Jin, et al., 2018b).

Definition 2.1 A fuzzy set E in R (where R is the set of real numbers) is said to be a fuzzy structured element, if

1. μE(0) = 1, μE(1 + 0) = μE(−1 − 0) = 0,

2. μE(x) is a monotone increasing and right continuous function on [−1,0],

3. μE(x) is monotonic decreasing and left continuous on (0,1],

4. μE(x) = 0, 8 x ∈ (−∞, −1) [ (1, +∞),

where μE(x) is called the membership function of E.

Definition 2.2 E is said to be a regular fuzzy structured element, if 8 x ∈ (−1, 1), μE(x) > 0, and the membership function of E on [−1, 0] and (0, 1]

be strictly monotone increasing and decreasing, respectively.
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Definition 2.3 Suppose that f(x) be a continuous and strictly monotone function on [−1, 1], then with the fuzzy structured element E and its

membership function, f(E) is a bounded closed fuzzy number in R and the membership function of f(E) is μE(f
−1(x)).

Lemma 2.1 For any bounded closed fuzzy number �A and a given regular fuzzy structured element E, there always exists a monotone bounded

function f : [−1, 1]! [0, 1] such that �A= f Eð Þ.

Lemma 2.2 Consider the fuzzy structured element E with the following membership function:

μE xð Þ=
1+ x, −1≤ x≤0,

1−x, 0≤ x≤ 1,

0, others:

8><
>: ð1Þ

Then each triangular fuzzy number �A= a,b,cð Þ can be generated by E, with the following function:

f xð Þ=
b−að Þx+ b, −1≤ x≤0,

c−bð Þx+ b, 0≤ x≤1,

0, others:

8><
>: ð2Þ

So, it is easy to see that �A= f Eð Þ:

Lemma 2.3 For the fuzzy numbers �Ai = fi Eð Þ, i=1,2, the fuzzy arithmetic operations can be defined as

ið Þ �A1 + �A2 = f1 Eð Þ+ f2 Eð Þ,

iið Þ �A1− �A2 = f1 Eð Þ+ fτ2 Eð Þ,

iiið Þ k�A1 = kj jfτ1 Eð Þ,

when k ≥0, fτ1 Eð Þ= f1 Eð Þ, and fτ2 Eð Þ= f2 Eð Þ; when k <0, fτ1 Eð Þ= − f1 −Eð Þ, and fτ2 Eð Þ= − f2 −Eð Þ:

Definition 2.4 Suppose that E be a fuzzy structured element on X, and its membership function is μE(x). Then 8α ∈ (0, 1], the α-level set of E is

defined as Eα = xjμE xð Þ≥ αf g= e−α ,e
+
α

� �
, where e−α ∈ −1,0½ � and e+

α ∈ 0,1½ �:

Lemma 2.4 Suppose that �A= f Eð Þ: If f is a monotonic decreasing function, then for α∈ (0, 1], the α-level set of �A is a closed interval on R and it

can be denoted as �Aα = f e+
α

� �
, f e−α
� �� �

: If f is a monotonic increasing function, then �Aα = f e−α
� �

, f e+
α

� �� �
:

3 | NEUTROSOPHIC SETS

In this section, we recall some definitions and key concepts related to the neutrosophic sets and single-valued neutrosophic numbers that are cru-

cial to the comprehension of this paper.

Definition 3.1 Neutrosophic set (Smarandache, 1999, 2003). A neutrosophic set �U in X � R (where R is the set of real numbers) is a set such that

�U= x, < T�u xð Þ, I�u xð Þ,F�u xð Þ>ð Þjx∈Xf g,

where T�u xð Þ :X!�0− ,1+ ½, I�u xð Þ :X!�0− ,1+ ½, and F�u xð Þ :X!�0− ,1+ ½ is called the truth-membership function, indeterminacy-membership func-

tion, and falsity-membership function, respectively. Also,
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0− ≤ supT�u xð Þ+ supI�u xð Þ+ supF�u xð Þ≤3+ :

Definition 3.2 If the truth, indeterminacy, and falsity membership functions in Definition 3.1 are singleton subintervals/subsets in the real stan-

dard [0, 1], then we have a special class of NS that called the single-valued neutrosophic set (SVNS) which satisfies the condition 0 ≤ TA(x)

+ IA(x) + FA(x) ≤ 3 (Ye, 2013).

Definition 3.3 For SVSs A and B, A ⊆ B if and only if for every x in X : TA(x) ≤ TB(x), IA(x) ≥ IB(x), and FA(x) ≥ FB(x) (Ye, 2013).

Definition 3.4 Let A and B be two SVNSs. Then the arithmetic relations are given as (Liu & Wang, 2014):

ið Þ A�B= < TA xð Þ+ TB xð Þ−TA xð ÞTB xð Þ, IA xð ÞIB xð Þ,FA xð ÞFB xð Þ> , ð3Þ

iið Þ A�B= < TA xð ÞTB xð Þ, IA xð Þ+ IB xð Þ− IA xð Þ:IB xð Þ,FA xð Þ+ FB xð Þ−FA xð Þ:FB xð Þ> , ð4Þ

iiið Þ λA= <1− 1−TA xð Þð Þλ, IA xð Þð Þλ, FA xð Þð Þλ > ,λ>0: ð5Þ

ivð Þ Aλ = < Tλ
A xð Þ,1− 1− IA xð Þð Þλ,1− 1−FA xð Þð Þλ > , λ>0: ð6Þ

Definition 3.5 Triangular single valued neutrosophic number (TSVNN) is defined as Aℵ = h(a1, a2, a3), (b1, b2, b3), (c1, c2, c3)i, whose truth member-

ship function TAℵ xð Þ, indeterminacy-membership function IAℵ xð Þ, and falsity-membership function FAℵ xð Þ are given as follows (Chakraborty

et al., 2018):

TAℵ xð Þ=

x−a1ð Þ
a2−a1ð Þ a1 ≤ x< a2,

1 x= a2,
a3−xð Þ
a3−a2ð Þ a2 < x≤ a3,

0 otherwise:

8>>>>>>><
>>>>>>>:

IAℵ xð Þ=

b2−xð Þ
b2−b1ð Þ b1 ≤ x< b2,

0 x= b2,
x−b2ð Þ
b3−b2ð Þ b2 < x≤ b3,

1 otherwise:

8>>>>>>><
>>>>>>>:

FAℵ xð Þ=

c2−xð Þ
c2−c1ð Þ c1 ≤ x< c2,

0 x= c2,
x−c2ð Þ
c3−c2ð Þ c2 < x≤ c3,

1 otherwise:

8>>>>>>><
>>>>>>>:

where 0≤ TAℵ xð Þ+ IAℵ xð Þ+ FAℵ xð Þ≤3,x∈Aℵ.

Definition 3.6 An interval-valued neutrosophic set (IVNS) A in X can be defined as (Smarandache & Pramanik, 2016)

A= x, infTA xð Þ, supTA xð Þ½ �, infIA xð Þ,supIA xð Þ½ �, infFA xð Þ, supFA xð Þ½ �ð Þjx∈Xf g,
where
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TA xð Þ= infTA xð Þ, supTA xð Þ½ �⊆ 0,1½ �,
IA xð Þ= infIA xð Þ, supIA xð Þ½ �⊆ 0,1½ �,
FA xð Þ= infFA xð Þ, supFA xð Þ½ �⊆ 0,1½ �,

8><
>:

and also satisfies the condition 0 ≤ supTA(x) + supIA(x) + supFA(x) ≤ 3.

Definition 3.7 The operations between two IVNS of A = h[infTA(x), supTA(x)], [infIA(x), supIA(x)], [infFA(x), supFA(x)]i and B = h[infTB(x), supTB(x)],
[infIB(x), supIB(x)], [infFB(x), supFB(x)]i can be defined as follow (Ye, 2014c):

ðiÞ A�B= ½h infTA xð Þ+ infTb xð Þ− infTA xð Þ:infTb xð Þ, supTA xð Þ+ supTB xð Þ−supTA xð Þ:supTB xð Þ�,
infIA xð Þ:infIb xð Þ, supIA xð Þ:supIB xð Þ½ �,
½infFA xð Þ:infFb xð Þ, supFA xð Þ:supFB xð Þ�i,

ðiiÞ A�B= ½h infTA xð Þ:infTb xð Þ, supTA xð Þ:supTB xð Þ�,
infIA xð Þ+ infIb xð Þ− infIA xð Þ:infIb xð Þ, supIA xð Þ+ supIB xð Þ−supIA xð Þ:supIB xð Þ½ �,
½infFA xð Þ+ infFb xð Þ− infFA xð Þ:infFb xð Þ, supFA xð Þ+ supFB xð Þ−supFA xð Þ:supFB xð Þ�i,

ðiiiÞ λA= ½h 1− 1− infTA xð Þð Þλ,1− 1−supTA xð Þð Þλ�,
infIA xð Þð Þλ, supIA xð Þð Þλ

h i
, ½ infFA xð Þð Þλ, supFA xð Þð Þλ�i,λ>0,

ðivÞ Aλ = ½h infTA xð Þð Þλ, supTA xð Þð Þλ�,
1− 1− infIA xð Þð Þλ,1− 1−supIA xð Þð Þλ
h i

, ½1− 1− infFA xð Þð Þλ,1− 1−supFA xð Þð Þλ�i,λ>0:

4 | NEUTROSOPHIC STRUCTURED ELEMENT

Here, we extend the theory of fuzzy structured element for the single-valued neutrosophic set (SVNS) and introduce the concept of neutrosophic

structured element (NSE).

Definition 4.1 Consider the TSVNN of A= x,TAℵ xð Þ, IAℵ xð Þ,FAℵ xð Þ� �jx∈X� �
, where TAℵ xð Þ= a1,a2,a3ð Þ, IAℵ xð Þ= b1,b2,b3ð Þ, and FAℵ xð Þ= c1,c2,c3ð Þ:

Then from Lemma 2.2, for TAℵ xð Þ, IAℵ xð Þ, and FAℵ xð Þ , we can obtain three monotone bounded functions f, g, h : [−1, 1]! [0, 1], such that

TAℵ xð Þ= fx Eð Þ, IAℵ xð Þ= gx Eð Þ, and FAℵ xð Þ= hx Eð Þ.

We call that

fx Eð Þ=
a2−a1ð Þx+ a2, −1≤ x≤ 0,

a3−a2ð Þx+ a2, 0≤ x≤1,

0, others,

8><
>: ð7Þ

gx Eð Þ=
b2−b1ð Þx+ b2, −1≤ x≤ 0,

b3−b2ð Þx+ b2, 0≤ x≤1,

0, others,

8><
>: ð8Þ

hx Eð Þ=
c2−c1ð Þx+ c2, −1≤ x≤ 0,

c3−c2ð Þx+ c2, 0≤ x≤1,

0, others,

8><
>: ð9Þ

are the neutrosophic structured elements (NSEs). Also, A = hfA(E), gA(E), hA(E)i is the neutrosophic structured elements number (NSEN), and

A = {(x, fx(E), gx(E), hx(E))| x ∈ X} is the neutrosophic structured elements set (NSES).
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Definition 4.2 Suppose that A = {(x, fx(E), gx(E), hx(E))| x ∈ X} be an NSES on X, where the truth, indeterminacy, and falsity-membership functions

of fx(E), gx(E), and hx(E) are μE(x), γE(x), and ϑE(x), respectively. Then 8α ∈ (0, 1], we called the Aα = {(x, [fx(E)]α, [gx(E)]α, [hx(E)]α)| x ∈ X} as the

α-level set of A, where [fx(E)]α = {x| μE(x) ≥ α}, [gx(E)]α = {x| γE(x) ≥ α}, and [hx(E)]α = {x| ϑE(x) ≥ α}.

We can see that the α-level set of NSES A is an interval-valued neutrosophic set. Also, for the A= x, f 0x Eð Þ,g0x Eð Þ,h0x Eð Þ� �jx∈X� �
and

B= x, f00x Eð Þ,g00x Eð Þ,h00x Eð Þ� �jx∈X� �
, where f 0x Eð Þ, f00x Eð Þ, g0x Eð Þ, g00x Eð Þ, h0x Eð Þ, and h00x Eð Þ are the same monotone formal functions on [−1, 1] to

[0, 1], we have the following theorem.

Theorem 4.1 For every two NSESs A= x, f 0x Eð Þ,g0x Eð Þ,h0x Eð Þ� �jx∈X� �
and B= fðx, f00x Eð Þ, f 00x Eð Þ,g00x Eð Þ,h00x Eð ÞÞ j x∈Xg, where f 0x Eð Þ, f 00x Eð Þ, g0x Eð Þ, g00x Eð Þ,

h0x Eð Þ, and h00x Eð Þ are the same monotone formal functions on [−1, 1] to [0, 1], we have:

ið Þ A⊆B if and only 8y∈ −1,1½ � : f 0x yð Þ≤ f 00x yð Þ,g0x yð Þ≥ g00x yð Þ, and h0x yð Þ≥ h00x yð Þ,

iið Þ A=B if and only A�B and A�B,

iiið Þ A\B= x, f 0x^ f 00x
� �

Eð Þ, g0x_g00x
� �

Eð Þ, h0x_h00x
� �

Eð Þ� �jx∈X� �
,

ivð Þ A[B= x, f0x_ f 00x
� �

Eð Þ, g0x^g00x
� �

Eð Þ, h0x^h00x
� �

Eð Þ� �jx∈X� �
,

vð Þ Ac = x,h0x Eð Þ,1−g0x Eð Þ, f 0x Eð Þ� � j x∈X� �
:

Proof From Lemma 2.4 and Definition 3.3, (i) is correct. Based on (i), it is evident that (ii) is correct. So, we will consider (iii).

Let f 0x Eð Þ, f 00x Eð Þ, g0x Eð Þ, g00x Eð Þ, h0x Eð Þ, and h00x Eð Þ are the same monotone increasing functions on [−1, 1] to [0, 1]. Then 8α∈ (0, 1], we have

min inf f 0x Eð Þ� �
α
, inf f 00x Eð Þ� �

α

� 	
=min inf f0x e−α

� �
, f0x e +

α

� �� �
, inf f 00x e−α

� �
, f 00x e+

α

� �� �� �
=

min f0x e−α
� �

, f00x e−α
� �� �

= f 0x e−α
� �^ f 00x e−α

� �
:

Also,

min sup f 0x Eð Þ� �
α
, sup f 00x Eð Þ� �

α

� 	
=min sup f 0x e−α

� �
, f 0x e+

α

� �� �
, sup f 00x e−α

� �
, f 00x e +

α

� �� �� �
=

min f 0x e+
α

� �
, f 00x e+

α

� �� �
= f0x e +

α

� �^ f 00x e +
α

� �
:

Therefore, 8α ∈ (0, 1], it follows that:

min inf f 0x Eð Þ� �
α
, inf f00x Eð Þ� �

α

� 	
,min sup f0x Eð Þ� �

α
, sup f 00x Eð Þ� �

α

� 	h 	
=

f0x e−α
� �^ f 00x e−α

� �
, f 0x e+

α

� �^ f 00x e+
α

� �� �
= f 0x Eð Þ^ f 00x Eð Þ� �

α
= f 0x^ f 00x
� �

Eαð Þ:

Similarly,

max inf g0x Eð Þ� �
α
, inf g00x Eð Þ� �

α

� 	
= g0x e−α

� �_g00x e−α
� �

,

max sup g0x Eð Þ� �
α
,sup g00x Eð Þ� �

α

� 	
= g0x e+

α

� �_g00x e+
α

� �
:

8><
>:

Therefore, 8α ∈ (0, 1], it follows that:
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max inf g0x Eð Þ� �
α
, inf g00x Eð Þ� �

α

� 	
,max sup g0x Eð Þ� �

α
,sup g00x Eð Þ� �

α

� 	h 	
=

g0x e−α
� �_g00x e−α

� �
,g0x e +

α

� �_g00xx e+
α

� �� �
= g0x Eð Þ_g00xx Eð Þ� �

α
= g0x_g00x
� �

Eαð Þ:

Analogously,

max inf h0x Eð Þ� �
α
, inf h00x Eð Þ� �

α

� 	
,max sup h0x Eð Þ� �

α
, sup h00x Eð Þ� �

α

� 	h 	
=

h0x e−α
� �_h00x e−α

� �
,h0x e +

α

� �_h00x e+
α

� �� �
= h0x Eð Þ_h00x Eð Þ� �

α
= h0x_h00x
� �

Eαð Þ:

So,

A\Bð Þα = x, f 0x^ f 00x
� �

Eð Þ, g0x_g00x
� �

Eð Þ, h0x_h00x
� �

Eð Þ� �jx∈X� �
:

Therefore, (iii) is correct. Furthermore, (iv) and (v) can prove similarly. □

Next, based on Definition 3.7, we give the corresponding operational laws of NSE.

Theorem 4.2 For every two NSESs A and B we have

ið Þ A�B= x, f 0x Eð Þ+ f 00x Eð Þ− f 0x Eð Þf 00x Eð Þ,g0x Eð Þg00x Eð Þ,h0x Eð Þh00x Eð Þ� �jx∈X� �
= x, f 0x + f

00
x − f0xf

00
x

� �
Eð Þ, g0xg

00
x

� �
Eð Þ, h0xh

00
x

� �
Eð Þ� �jx∈X� �

=

x, f 0x + f
00
x + f 0xf

00
x

� �τ� �
Eð Þ, g0xg

00
x

� �
Eð Þ, h0xh

00
x

� �
Eð Þ� �jx∈X� �

,

iið Þ A�B= x, f 0x Eð Þf 00x Eð Þ,g0x Eð Þ+ g00x Eð Þ−g0x Eð Þg00x Eð Þ,h0x Eð Þ+ h00x Eð Þ−h0x Eð Þh00x Eð Þ� �jx∈X� �
=

x, f 0xf
00
x

� �
Eð Þ, g0x + g

00
x −g0xg

00
x

� �
Eð Þ, h0x + h

00
x −h0xh

00
x

� �
Eð Þ� �jx∈X� �

=

x, f 0xf
00
x

� �
Eð Þ, g0x + g

00
x + g0xg

00
x

� �τ� �
Eð Þ, h0x + h

00
x + h0xh

00
x

� �τ� �
Eð Þ� �jx∈X� �

,

iiið Þ λA= x,1− 1− f 0x Eð Þ� �� �λ
, g0x Eð Þ� �λ

, h0x Eð Þ� �λ� 	
j x∈X

n o
,λ>0,

ivð Þ Aλ = x, f 0x Eð Þ� �λ
, 1− 1−g0x Eð Þ� �� �λ

, 1− 1−h0x Eð Þ� �� �λ� 	
jx∈X

n o
,λ>0:

Proof Suppose that the expression of NSE of two SVNSs A = {(x, TA(x), IA(x), FA(x) j x ∈ X} and B = {(x, TB(x), IB(x), FB(x))| x ∈ X}

beA= x, f 0x Eð Þ,g0x Eð Þ,h0x Eð Þ� �jx∈X� �
and B= x, f 00x Eð Þ,g00x Eð Þ,h00x Eð Þ� �jx∈X� �

, where f 0x Eð Þ, f 00x Eð Þ, g0x Eð Þ, g00x Eð Þ, h0x Eð Þ, and h00x Eð Þ are the same

monotone increasing functions on [−1, 1] to [0, 1]. Then from Definition 4.2, 8α∈ (0, 1], we get,

f 0x Eð Þ� �
α
= f0x Eαð Þ= f 0x e−α

� �
, f 0x e +

α

� �� �
, f 00x Eð Þ� �

α
= f00x Eαð Þ= f 00x e−α

� �
, f 00x e +

α

� �� �
,

g0x Eð Þ� �
α
= g0x Eαð Þ= g0x e−α

� �
,g0x e +

α

� �� �
, g00x Eð Þ� �

α
= g00x Eαð Þ= g00x e−α

� �
,g00x e+

α

� �� �
,

h0x Eð Þ� �
α
= h0x Eαð Þ= h0x e−α

� �
,h0x e +

α

� �� �
, h00x Eð Þ� �

α
= h00x Eαð Þ= h00x e−α

� �
,h00x e+

α

� �� �
:

8><
>: ð10Þ

Then,

inff 0x Eαð Þ= f0x e−α
� �

,supf 0x Eαð Þ= f 0x e+
α

� �
, inff 00x Eαð Þ= f 00x e−α

� �
, supf 00x Eαð Þ= f 00x e+

α

� �
,

infg0x Eαð Þ= g0x e−α
� �

,supg0x Eαð Þ= g0x e+
α

� �
, infg00x Eαð Þ= g00x e−α

� �
, supg00x Eαð Þ= g00x e+

α

� �
,

infh0x Eαð Þ= h0x e−α
� �

,suph0x Eαð Þ= h0x e+
α

� �
, infh00x Eαð Þ= h00x e−α

� �
, suph00x Eαð Þ= h00x e+

α

� �
:

8><
>: ð11Þ

From Equation (11) and Definition 3.7 (i),
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inf TA xð Þ½ �α + inf TB xð Þ½ �α− inf TA xð Þ½ �αinf TB xð Þ½ �α =
inff0x Eαð Þ+ inff 00x Eαð Þ− inff 0x Eαð Þinff00x Eαð Þ= f 0x e−α

� �
+ f00x e−α
� �

− f 0x e−α
� �

f 00x e−α
� �

,

(

and

sup TA xð Þ½ �α + sup TB xð Þ½ �α−sup TA xð Þ½ �αsup TB xð Þ½ �α =
supf0x Eαð Þ+ supf 00x Eαð Þ−supf 0x Eαð Þsupf00x Eαð Þ= f 0x e+

α

� �
+ f00x e +

α

� �
− f 0x e+

α

� �
f00x e+

α

� �
:

(

So, according to Lemmas 2.3 and 2.4, we have

inf TA xð Þ½ �α + inf TB xð Þ½ �α− inf TA xð Þ½ �αinf TB xð Þ½ �α, sup TA xð Þ½ �α + sup TB xð Þ½ �α−sup TA xð Þ½ �αsup TB xð Þ½ �α
� �

=

inff 0x Eαð Þ+ inff 00x Eαð Þ− inff 0x Eαð Þ+ inff00x Eαð Þ, supf 0x Eαð Þ+ supf 00x Eαð Þ−supf0x Eαð Þsupf 00x Eαð Þ� �
=

f 0x e−α
� �

+ f 00x e−α
� �

− f0x e−α
� �

+ f 00x e−α
� �

, f 0x e+
α

� �
+ f00x e+

α

� �
− f 0x e+

α

� �
f00x e+

α

� �� �
=

f 0x Eð Þ+ f 00x Eð Þ− f0x Eð Þf 00x Eð Þ� �
α
= f 0x + f

00
x + f 0xf

00
x

� �τ� �
Eð Þα:

Analogously,

inf IA xð Þ½ �αinf IB xð Þ½ �α, sup IA xð Þ½ �αsup IB xð Þ½ �α
� �
infg0x Eαð Þinfg00x Eαð Þ, supg0x Eαð Þsupg00x Eαð Þ� �

= g0x e−α
� �

g00x e−α
� �

,g0x e+
α

� �
g00x e+

α

� �� �
=

g0x Eð Þ+ g00x Eð Þ� �
α
= g0xg

00
x

� �
Eð Þα,

and

inf FA xð Þ½ �αinf FB xð Þ½ �α, sup FA xð Þ½ �αsup FB xð Þ½ �α
� �
infh0x Eαð Þinfh00x Eαð Þ, suph0x Eαð Þsuph00xx Eαð Þ� �

= h0x e−α
� �

h00x e−α
� �

,h0x e +
α

� �
h00xx e+

α

� �� �
=

h0xx Eð Þ+ h00x Eð Þ� �
α
= h0xh

00
x

� �
Eð Þα:

Therefore, 8α ∈ (0, 1], it follows that:

A�Bð Þα = x, f0x + f
00
x + f 0xf

00
x

� �τ� �
Eαð Þ, g0xg

00
x

� �
Eαð Þ, h0xh

00
x

� �
Eαð Þ� �jx∈X� �

:

Therefor (i) is correct. The proof of Equations (ii), (iii), and (iv) are similar to (i). □

Theorem 4.3 Let A= x, f 0x Eð Þ,g0x Eð Þ,h0x Eð Þ� �jx∈X� �
and B= x, f 00x Eð Þ,g00x Eð Þ,h00x Eð Þ� �jx∈X� �

, be two NSESs, where f 0x Eð Þ, f 00x Eð Þ, g0x Eð Þ, g00x Eð Þ, h0x Eð Þ, and
h00x Eð Þ are the same monotone increasing functions on [−1, 1] to [0, 1]. Then:

1ð Þ A\B=B\A,

2ð Þ A[B=B[A,

3ð Þ A�B=B�A,

4ð Þ A�B=B�A,

5ð Þ λ A�Bð Þ= λA�λB,λ> 0,

6ð Þ A�Bð Þλ =Aλ�Bλ,λ>0,

7ð Þ λ1A�λ2A= λ1 + λ2ð ÞA,λ1,λ2 > 0,

8ð Þ Aλ1�Aλ2 =A λ1 + λ2ð Þ,λ1,λ2 > 0:
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Proof From Theorem 4.1, it is evident that that (1) and (2) are true.

For (3), from Theorem 4.2:

A�B= x, f 0x + f
00
x + f 0xf

00
x

� �τ� �
Eð Þ, g0xg

00
x

� �
Eð Þ, h0xh

00
x

� �
Eð Þ� �jx∈X� �

= x, f 00x + f
0
x + f00x f

0
x

� �τ� �
Eð Þ, g00xg

0
x

� �
Eð Þ, h00xh

0
x

� �
Eð Þ� �jx∈X� �

=B�A: ð12Þ

Proof (4) is similar to the proof (3).

For (5), from Theorem 4.2:

λA= x,1− 1− f 0x Eð Þ� �� �λ
, g0x Eð Þ� �λ

, h0x Eð Þ� �λ� 	
j x∈X

n o
,λ>0,

λB= x,1− 1− f00x Eð Þ� �� �λ
, g00x Eð Þ� �λ

, h00x Eð Þ� �λ� 	
j x∈X

n o
,λ>0:

Then, from (12):

λ A�Bð Þ= x, 1− 1− f 0x + f
00
x + f 0xf

00
x

� �τ
Eð Þ� �� �� �λ

, g0x Eð Þ� �λ
g00x Eð Þ� �λ

, h0x Eð Þ� �λ
h00x Eð Þ� �λ� 	

j x∈X
n o

:

Also,

λA�λB= fðx,1− 1− f0x Eð Þ� �� �λ
+1− 1− f 00x Eð Þ� �� �λ− 1− 1− f0x Eð Þ� �� �λ� 	

1− 1− f00x Eð Þ� �� �λ� 	
,

g0x Eð Þ� �λ
g00x Eð Þ� �λ

, h0x Eð Þ� �λ
h00x Eð Þ� �λÞ j x∈Xg=

x,1− 1− f 0x Eð Þ� �� �λ
1− f 00x Eð Þ� �� �λ

, g0x Eð Þ� �λ
g00x Eð Þ� �λ

, h0x Eð Þ� �λ
h00x Eð Þ� �λ� 	

j x∈X
n o

=

x,1− 1− f 0x Eð Þ− f00x Eð Þ+ f 0x Eð Þf 00x Eð Þ� �� �λ
, g0x Eð Þ� �λ

g00x Eð Þ� �λ
, h0x Eð Þ� �λ

h00x Eð Þ� �λ� 	
j x∈X

n o
=

x, 1− 1− f 0x + f
00
x + f0xf

00
x

� �τ
Eð Þ� �� �� �λ

, g0x Eð Þ� �λ
g00x Eð Þ� �λ

, h0x Eð Þ� �λ
h00x Eð Þ� �λ� 	

j x∈X
n o

:

Therefore,

λ A�Bð Þ= λA�λB:

Proof (6) is similar to the proof (5).

For (7), 8λ1, λ2 > 0:

λ1A= x,1− 1− f 0x Eð Þ� �� �λ1 , g0x Eð Þ� �λ1 , h0x Eð Þ� �λ1� 	
j x∈X

n o
,

λ2A= x,1− 1− f 0x Eð Þ� �� �λ2 , g0x Eð Þ� �λ2 , h0x Eð Þ� �λ2� 	
j x∈X

n o
:

Then,

λ1A�λ2A= fðx,1− 1− f 0x Eð Þ� �� �λ1 + 1− 1− f 0x Eð Þ� �� �λ2 − 1− 1− f 0x Eð Þ� �� �λ1� 	
1− 1− f 0x Eð Þ� �� �λ2� 	

,

g0x Eð Þ� �λ1 g0x Eð Þ� �λ2 , h0x Eð Þ� �λ1 h0x Eð Þ� �λ2 Þ j x∈Xg=
x,1− 1− f 0x Eð Þ� �� �λ1 1− f 0x Eð Þ� �� �λ2 , g0x Eð Þ� � λ1 + λ2ð Þ

, h0x Eð Þ� � λ1 + λ2ð Þ� 	
j x∈X

n o
=

x,1− 1− f 0x Eð Þ� �� � λ1 + λ2ð Þ
, g0x Eð Þ� � λ1 + λ2ð Þ

, h0x Eð Þ� � λ1 + λ2ð Þ� 	
j x∈X

n o
= λ1 + λ2ð ÞA:

So,

λ1A�λ2A= λ1 + λ2ð ÞA,8λ1,λ2 > 0:
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Proof (8) is similar to the proof (7), and the proof is complete. □

For convenience, an NSE number A = {(x, fx(E), gx(E), hx(E))| x ∈ X} is denoted by A = hfA(E), gA(E), hA(E)i.

Example 4.1 Consider two TSVNNs as follow:

A= 0:5,0:6,0:7ð Þ, 0:1,0:2,0:3ð Þ, 0:3,0:4,0:5ð Þh i,

B= 0:4,0:5,0:6ð Þ, 0:2,0:3,0:4ð Þ, 0:5,0:6,0:7ð Þh i:

First, based on Equations (7)–(9), we convert these numbers into the NSE numbers. For −1 ≤ x ≤ 1, we get,

A= 0:1x+0:6ð Þ, 0:1x+0:2ð Þ, 0:1x+0:4ð Þh i,

B= 0:1x+0:5ð Þ, 0:1x+ 0:3ð Þ, 0:1x+ 0:6ð Þh i:

Figures 1 and 2 show the graphical representation of these two TSVNNs and the related NSENs.

Next, we test the operational laws of these two NSENs. So,

A�B= −
1

100
x2−9x−80
� �

,
1

100
x2 + 5x6
� �

,
1

500
x+ 6ð Þ 5x+2ð Þ


 �
,

A�B=
1

100
x+5ð Þ x+6ð Þ,− 1

100
x2−15x−44
� �

,−
1

500
5x2−68x−308
� �
 �

,

2A= −
1

100
x+6ð Þ x−14ð Þ, 1

100
x+2ð Þ2, 1

2500
5x+2ð Þ2


 �
,

F IGURE 1 TSVNN and the related NSEN A = < (0.5, 0.6, 0.7), (0.1, 0.2, 0.3), (0.3, 0.4, 0.5) >
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A2 =
1

100
x+ 6ð Þ2,− 1

100
x+2ð Þ x−18ð Þ,− 1

2500
5x+2ð Þ 5x−98ð Þ


 �
:

Next, we characterize a strategy to compare two NSE numbers based on the score function and the accuracy function.

Definition 4.3 Let P = < fA(E), gA(E), hA(E)> be an NSE number, then we call

S Pð Þ= 1
9

ð1
−1

E xð Þ 2+ fA xð Þ−gA xð Þ−hA xð Þð Þdx, ð13Þ

and

A Pð Þ= 1
9

ð1
−1

E xð Þ 2+ fA xð Þ−gA xð Þ+ hA xð Þð Þdx, ð14Þ

as the score and accuracy function of P, respectively.

Example 4.2 Let P = < (0.1x + 0.6), (0.1x + 0.2), (0.1x + 0.4) > , be an NSE number. Then,

S Pð Þ= 1
9

ð1
−1

E xð Þ 2+ fA xð Þ−gA xð Þ−hA xð Þð Þdx=

1
9

ð0
−1

1−xð Þ −
x
10

+
59
25

� 

dx

� 

+
ð1
0
1 + xð Þ −

x
10

+
59
25

� 

dx

� 
� �
=
59
75

,

F IGURE 2 TSVNN and the related NSEN B = < (0.4, 0.5, 0.6), (0.2, 0.3, 0.4), (0.5, 0.6, 0.7)>
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A Pð Þ= 1
9

ð1
−1

E xð Þ 2+ fA xð Þ−gA xð Þ+ hA xð Þð Þdx=

1
9

ð0
−1

1−xð Þ x
10

+
61
25

� 

dx

� 

+
ð1
0
1 + xð Þ x

10
+
61
25

� 

dx

� 
� �
=
61
75

:

Definition 4.4 Let P and Q be two NSE numbers.

1. If S(P) < S(Q), then P is smaller than Q, denoted by P ≺ Q.

2. If S(P) = S(Q).

a. If A(P) < A(Q), then P is smaller than Q, denoted by P ≺ Q.

b. If A(P) = A(Q), then P and Q are the same, denoted by P = Q.

Example 4.3 Consider the two NSE numbers of Example 4.1. Since S Að Þ= 59
75 and S Bð Þ= 40

75 , then B is smaller than A, and therefore, A fB.

Definition 4.5 Let Aj = < fAj Eð Þ,gAj
Eð Þ,hAj Eð Þ> ( j = 1, 2,…, n) be an NSE set. The arithmetic average operator is as follows:

Fω A1,…,Anð Þ=
Xn
j=1

ωjAj, ð15Þ

where W = (ω1, ω2, …, ωn) is the weight vector of Aj, ωj ∈ [0, 1] and
Pn
j=1

ωj =1:.

Theorem 4.4 For the NSE weighted arithmetic average operator, the aggregated result is as follows:

Fω A1,…,Anð Þ= 1−
Yn
j=1

1− fAj Eð Þ� �ωj

*
,
Yn
j=1

gAj
Eð Þ

� 	ωj

,
Yn
j=1

hAj Eð Þ� �ωj

+
: ð16Þ

Proof We proof Equation (16) by using mathematical induction.

1. When n = 2, then,

ω1A1 = 1− 1− fA1 Eð Þð Þ½ �ω1 , gA1
Eð Þ� �ω1 , hA1 Eð Þ½ �ω1

� �
,

ω2A2 = 1− 1− fA2 Eð Þð Þ½ �ω2 , gA2
Eð Þ� �ω2 , hA2 Eð Þ½ �ω2

� �
:

Thus from Theorem 4.2, we obtain

Fω A1,A2ð Þ=ω1A1�ω2A2

= 1− 1− fA1 Eð Þð Þ½ �ω1 , gA1
Eð Þ� �ω1 , hA1 Eð Þ½ �ω1

� �� 1− 1− fA2 Eð Þð Þ½ �ω2 , gA2
Eð Þ� �ω2 , hA2 Eð Þ½ �ω2

� �
,

= 1h − 1− fA1 Eð Þð Þ½ �ω1 + 1− 1− fA2 Eð Þð Þ½ �ω2 − 1− 1− fA1 Eð Þð Þ½ �ω1ð Þ 1− 1− fA2 Eð Þð Þ½ �ω2ð Þ,
gA1

Eð Þ� �ω1 gA2
Eð Þ� �ω2 , hA1 Eð Þ½ �ω1 hA2 Eð Þ½ �ω2 i

= 1h − 1− fA1 Eð Þð Þ½ �ω1 1− fA2 Eð Þð Þ½ �ω2 , gA1
Eð Þ� �ω1 gA2

Eð Þ� �ω2 , hA1 Eð Þ½ �ω1 hA2 Eð Þ½ �ω2 i

= 1−
Y2
j=1

1− fAj
Eð Þ� �ωj

*
,
Y2
j=1

gAj
Eð Þ

� 	ωj

,
Y2
j=1

hAj
Eð Þ� �ωj

+
:

2. If n = k, by applying Equation (16), we get
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Fω A1,…,Akð Þ= 1−
Yk
j=1

1− fAj
Eð Þ� �ωj

*
,
Yk
j=1

gAj
Eð Þ

� 	ωj

,
Yk
j=1

hAj
Eð Þ� �ωj

+
: ð17Þ

3. When n = k + 1, by applying Equation (17) and Theorem 4.2 we can get

Fω A1,…,Ak ,Ak +1ð Þ= 1h −
Yk
j=1

1− fAj Eð Þ� �ωj ,
Yk
j=1

gAj
Eð Þ

� 	ωj

,
Yk
j=1

hAj Eð Þ� �
ωj i� 1h − 1− fA1 Eð Þð Þ½ �ωk +1 , gA1

Eð Þ� �ωk + 1 , hA1 Eð Þ½ �ωk +1 i

= ðh 1−
Yk
j=1

1− fAj
Eð Þ� �ωj Þ+ 1− 1− fA1 Eð Þð Þ½ �ωk +1ð Þ− 1−

Yk
j=1

1− fAj
Eð Þ� �ωj

 !
1− 1− fA1 Eð Þð Þ½ �ωk + 1ð Þ,

Yk +1
j=1

gAj
Eð Þ

� 	ωj

,
Yk +1
j=1

hAj
Eð Þ� �

ωj i

= ðh 1−
Yk +1
j=1

1− fAj
Eð Þ� �ωj Þ,

Yk +1
j=1

gAj
Eð Þ

� 	ωj

,
Yk +1
j=1

hAj
Eð Þ� �

ωj i:

Hence, from the above results, we can conclude that for any n, the Equation (16) is true. □

Definition 4.6 Let Aj = < fAj
Eð Þ,gAj

Eð Þ,hAj
Eð Þ> ( j = 1, 2,…, n) be an NSE set. The weighted geometric average operator is defined as

Gω A1,…,Anð Þ=
Yn
j=1

A
ωj

j , ð18Þ

where W = (ω1, ω2, …, ωn) is the weight vector of Aj, ωj ∈ [0, 1] and
Pn
j=1

ωj =1:

Theorem 4.5 For the NSE weighted geometric average operator, the aggregated result is as follows:

Gω A1,…,Anð Þ=
Yn
j=1

fAj Eð Þ� �ωj

*
,1−

Yn
j=1

1−gAj
Eð Þ

� 	ωj

,1−
Yn
j=1

1−hAj Eð Þ� �ωj

+
: ð19Þ

Proof The proof is similar to the proof process of Theorem 4.4. □

5 | APPLICATIONS TO MULTI-ATTRIBUTE DECISION MAKING

Here, we investigate a decision-making method under NSE information using two mentioned aggregation operators and the score function. For it,

consider a multi-attribute decision-making problem with “m” different alternatives denoted by Ai(i = 1, …, m) and are evaluated under the set of

“n” different attributes Cj( j = 1, …, n) with weight vector is W = (ω1, ω2, …, ωn) such that ωj ∈ [0, 1] and
Pn
j=1

ωj =1:.

An expert has evaluated these alternatives and gives their preferences as triangular single-valued neutrosophic numbers (TSVNNs)

�βij = < a1ij ,a
2
ij ,a

3
ij

� 	
, b1ij ,b

2
ij ,b

3
ij

� 	
, c1ij ,c

2
ij ,c

3
ij

� 	
> : First, we convert �βij into the related NSE numbers βij = < fij(E), gij(E), hij(E)>. Then the collection informa-

tion of all the alternatives are summarized in decision-matrix ψ as

ψ = βij
� �

m× n
= < fij Eð Þ,gij Eð Þ,hij Eð Þ>� �

m× n:

Then, by applying Equations (16) or (19) according to each row in the decision matrix ψ = (βij)m × n, the aggregating NSE value βi for Ai(i = 1,

…, m) is βi = < fi(E), gi(E), hi(E) > = Fiω(βi1, …, βin) or βi = < fi(E), gi(E), hi(E) > = Giω(βi1, …, βin). To rank alternatives in the decision-making process, we

use score function (13) and Definition 4.4. So, the ranking order of all alternatives can be established, and the best one can be easily determined

as well.
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Therefore, the decision-making method for the proposed method can be obtained as follows:

Algorithm

(1) Convert the TSVNNs �βij into the related NSE numbers βij.

(2) Calculate the weighted arithmetic average values by using Equation (16) or the weighted geometric average values by using Equation (19).

(3) Calculate the score degree of all alternatives by using Equation (13).

(4) Give the ranking order of the alternatives from Definition 4.4 and chose the best alternative(s).

(5) End.

Example 5.1 Consider a multi-attribute decision-making problem with four alternatives Ai(i = 1, …, 4) and three attributes Cj( j = 1, 2, 3) that the

weight vector of the attributes is given by W = (0.35, 0.30, 0.35) and the related decision-matrix is as follows:

�ψ =

< 0:7,0:8,0:9ð Þ, 0:1,0:2,0:3ð Þ, 0:3,0:4,0:5ð Þ> < 0:3,0:4,0:5ð Þ, 0:2,0:3,0:4ð Þ, 0:3,0:5,0:7ð Þ> < 0:2,0:4,0:6ð Þ, 0:2,0:3,0:4ð Þ, 0:5,0:7,0:9ð Þ>
< 0:4,0:5,0:6ð Þ, 0:1,0:3,0:5ð Þ, 0:2,0:4,0:6ð Þ> < 0:3,0:5,0:7ð Þ, 0:0,0:2,0:4ð Þ, 0:6,0:7,0:8ð Þ> < 0:7,0:8,0:9ð Þ, 0:6,0:7,0:8ð Þ, 0:5,0:6,0:7ð Þ>
< 0:6,0:7,0:8ð Þ, 0:1,0:1,0:1ð Þ, 0:2,0:3,0:4ð Þ> < 0:5,0:6,0:7ð Þ, 0:3,0:4,0:5ð Þ, 0:4,0:6,0:8ð Þ> < 0:1,0:3,0:5ð Þ, 0:0,0:1,0:2ð Þ, 0:3,0:5,0:7ð Þ>

< 0:5,0:6,0:7ð Þ, 0:0,0:1,0:2ð Þ, 0:15,0:3,0:45ð Þ> < 0:7,0:8,0:9ð Þ, 0:0,0:4,0:8ð Þ, 0:7,0:8,0:9ð Þ> < 0:2,0:3,0:4ð Þ, 0:1,0:2,0:3ð Þ, 0:3,0:4,0:5ð Þ>

2
6664

3
7775:

First, we convert the TSVNNs �ψ into the related NSE numbers ψ :

ψ =

<0:1x+0:8,0:1x+0:2,0:1x+0:4Þ> <0:1x+0:4,0:1x+0:3,0:2x+0:5> <0:2x+0:4,0:1x+0:3,0:2x+0:7>

<0:1x+0:5,0:2x+0:3,0:2x+0:4> <0:2x+0:5,0:2x+0:2,0:1x+0:7> <0:1x+0:8,0:1x+0:7,0:1x+0:6>

<0:1x+0:7,0:1,0:1x+0:3> <0:1x+0:6,0:1x+0:4,0:2x+0:6> <0:2x+0:3,0:1x+0:1,0:2x+0:5>

<0:1x+0:6,0:1x+ 0:1,0:15x+0:3> <0:1x+0:8,0:4x+0:4,0:1x+0:8> <0:1x+0:3,0:1x+0:2,0:2x+0:4>

2
6664

3
7775:

Now, if we calculate the weighted arithmetic average values by using Equation (16), we get,

β1 = 1−
3−x
5

� 
0:35 2−x
10

� 
0:35 6−x
10

� 
0:3

,
1 + x
5

� 
0:35 3 + x
10

� 
0:65

,
5 + 2x
10

� 
0:3 4 + x
10

� 
0:35 7 +2x
10

� 
0:35
* +

,

β2 = 1−
5−2x
10

� 
0:3 5−x
10

� 
0:35 2−x
10

� 
0:35

,
1 + x
5

� 
0:3 3 +2x
10

� 
0:35 7 + x
10

� 
0:35

,
2 + x
5

� 
0:35 6 + x
10

� 
0:35 7 + x
10

� 
0:3
* +

,

β3 = 1−
4−x
10

� 
0:3 7−2x
10

� 
0:35 3−x
10

� 
0:35

,0:4467
4+ x
10

� 
0:3 1 + x
10

� 
0:35

,
5 + 2x
10

� 
0:35 3 + x
5

� 
0:3 3 + x
10

� 
0:35
* +

,

β4 = 1−
2−x
10

� 
0:3 4−x
10

� 
0:35 7−x
10

� 
0:35

,
2 + 2x
5

� 
0:3 2 + x
10

� 
0:35 1 + x
10

� 
0:35

,
2 + x
5

� 
0:35 8 + x
10

� 
0:3 6 + 3x
20

� 
0:35
* +

:

Then by applying Equation (13), we compute the score degree of all alternative:

S β1ð Þ=0:6074,S β2ð Þ=0:5840,S β3ð Þ=0:6585,S β4ð Þ=0:6582:

Hence, the ranking order of the above alternatives is A3 > A4 > A1 > A2.

As a result, we can see that the alternative A3 is the most excellent choice among all the alternatives. On the other hand, if we calculate the

weighted geometric average values by using Equation (19), we have

S β1ð Þ=0:5605,S β2ð Þ=0:5174,S β3ð Þ=0:6033,S β4ð Þ=0:5734:

Therefore, the ranking order of four alternatives is A3 > A4 > A1 > A2.

We can also see that the above two kinds of ranking orders and the best alternative are the same.
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6 | CONCLUSIONS AND FUTURE WORK

This paper introduced the concept of NSE, which solved the problem of the complex operations of neutrosophic numbers. Then, we proposed

operational laws, score function, and some aggregation operators of NSE sets. Finally, as an application of this concept, we proposed a decision-

making method for a multi-attribute decision making (MADM) problem under NSE information. The proposed concept has produced promising

results from computing efficiency and performance aspects.

The proposed study has some limitations: The indeterminacy, uncertainty, and vagueness in the present study are limited to triangular single-

valued neutrosophic numbers, but the other forms of neutrosophic sets such as bipolar neutrosophic set, and interval-valued neutrosophic num-

bers can also be used to represent variables characterizing neutrosophic essence in real-world problems. Developing the model based on bipolar

and interval-valued neutrosophic data is a topic for further studies. Moreover, although the NSE, arithmetic operations, and results presented here

demonstrate the effectiveness of this concept, it could also be considered in other decision-making problems. As future researches, we intend to

study these problems by NSE information.
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