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ABSTRACT: Graphs allows us to study the different patterns of inside the data by making a mental image. The aim of this paper is to 

develop neutrosophic cubic graph structure which is the extension of neutrosophic cubic graphs. As neutrosophic cubic graphs are 

defined for one set of edges between vertices while neutrosophic cubic graphs structures are defined for more than one set of edges. 

Further, we defined some basic operations such as Cartesian product, composition, union, join, cross product, strong product and 

lexicographic product of two neutrosophic cubic graph structures. Several types of other interesting properties of neutrosophic cubic 

graph structures are discussed in this paper. Finally, a decision-making algorithm based on the idea of neutrosophic cubic graph structures 

is constructed. The proposed decision-making algorithm is applied in a decision-making problem to check the validity. 

INDEX TERMS: Neutrosophic Cubic Set, Neutrosophic Cubic graphs structures, application.  

I. INTRODUCTION 

Fuzzy sets: The extension of classical set theory in the form of fuzzy sets 
was given by Zadeh in 1965 in his seminal paper [1]. Further he introduced 

the interval-valued fuzzy sets in 1975 [2]. Atanassov use the notion of 
membership and non-membership of an element in a set X and gave the idea 

of intuitionistic fuzzy sets. Use of intuitionistic fuzzy sets is helpful in the 

introduction of additional degrees of freedom (non-membership and 
hesitation margins) into set description and is extensively use as a tool of 

intensive research by scholars and scientists from over the so many years. 

Various theories like theory of probability, fuzzy set theory, intutionistic 
fuzzy sets, rough set theory etc., are consistently being used as powerful 

constructive tools to deal with multiform uncertainties and imprecision 

enclosed in complex systems. But all these above theories do not model 
undetermined information adequately. Therefore, due to the existence of 

indeterminacy in various world problems, neutrosophy founds its way into 

the modern research. Neutrosophy is a generalization of fuzzy set, where the 
models represented by three types concepts that is truthfulness, falsehood 

and neutrality. Neutrosophy is a Latin world "neuter" - neutral, Greek 

"sophia" - skill/wisdom). Neutrosophy is a branch of philosophy, introduced 
by FlorentinSmarandache which studies the origin, nature, and scope of 

neutralities, as well as theirinteractions with different ideational spectra. 

Neutrosophy considers a proposition, theory, event, concept, or entity, "A" 
in relation to its opposite, "Anti-A" and that which is not A, "Non-A", and 

that which is neither "A" nor "Anti-A", denoted by "Neut-A". Neutrosophy 

is the basis of neutrosophic logic, neutrosophic probability, neutrosophic 
set, and neutrosophic statistics. 

Inspiring from the realities of real life phenomenons like sport games 

(winning/ tie/ defeating), votes (yes/ NA/ no) and decision making (making 
a decision/ hesitating/ not making), Smarandache [3, 4] introduced a new 

concept of a neutrosophic set and neutrosophic logic (NS in short) in 1999, 

which is the generalization of a fuzzy sets and intutionistic fuzzy set. NS is 
described by membership degree, indeterminate degree and non-

membership degree. The idea of NS generates the theory of neutrosophic 

sets by giving representation to indeterminates. This theory is considered as 
complete representation of almost every model of all real-world problems. 

Therefore, if uncertainty is involved in a problem we use fuzzy theory while 

dealing indeterminacy, we need neutrosophic theory. In fact, this theory has 

several applications in many different fields like control theory, databases, 

medical diagnosis problem and decision-making problems. These sets 
models have been studied by many authors. Using Neutrosophic theory, 

many mathematicians introduced the concept of neutrosophic algebraic 
structures such as neutrosophic algebraic structures, neutrosophic fields, 

neutrosophic vector spaces, neutrosophic groups, neutrosophicbigroups, 

neutrosophic N-groups, neutrosophicbisemigroups, neutrosophic N-
semigroup, neutrosophic loops, neutrosophicbiloops, neutrosophic N-loop, 

neutrosophic groupoids, neutrosophicbigroupoids and neutrosophic AG-

groupoids. In 2012, Jun et al. gave the idea of cubic sets [5]. For more detail 
of cubic set one can cite [6, 7, 8, 9, 10, 11]. More recently Jun et al. combine 

neutrosophic set with cubic sets and gave the idea of Neutrosophic cubic set 

[12] and define different operations [13]. Further interval neutrosophic sets 
was introduced by Wang et al. [14]. Fuzzy Graphs: In 1975 Rosenfeld [15] 

extended the idea given by Kauffmann in 1973 [16] and initiate the concept 

of fuzzy graphs and considered the relations between fuzzy sets. In 1987 
Bhattacharya explained some remarks on fuzzy graphs [17]. Mordeson and 

Nair explained the study of fuzzy graphs and fuzzy hypergraphs in their 

book in 2001 [18]. Akram et al. gave the idea of interval valued fuzzy graphs 
[19, 20], intuitionistic fuzzy graphs and bipolar fuzzy graphs [21, 22, 23]. 

Strong intuitionistic fuzzy graphs were presented by Akram and Davvaz 

[24]. Intuitionistic fuzzy sets were further generalized by Smarandache [4]. 
Cayley interval-valued fuzzy threshold graphs were studied by Borzooei and 

Rashmanlou [25]. Buckley gave the concept of self-centered graphs [26]. 

Further characterized g-self-centered fuzzy graphs was given by Sunitha et 
al. [27]. Mishra et al. [28] introduced the idea of coherent category of 

interval-valued intuitionistic fuzzy graphs. Pal et al. [29] and Pramanik et 

al. [30, 31] discussed some results to the theory of interval-valued fuzzy 
graphs. Parvathi et al. [32] defined operations on intuitionistic fuzzy graphs. 

The idea of product of intuitionistic fuzzy graphs was introduced by Sahoo 

and Pal [33]. Gulistan et al. [32] presented the idea of neutrophic cubic 
graphs with real life application in industry. The main role of neutrosophic 

cubic graph structure theory in computer application is the development of 

graph algorithms. These algorithms are used to those problems that are 
modeled in the form of graphs and the corresponding computer science 

applications problems. Theoretical concept of the neutrosophic cubic graphs 

structures are highly utilized by computer science application. Especially in 

mailto:gulistanmath@hu.edu.pk
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research area of computer science such as data mining, image segmentation, 

clustering, image capturing and networking. The neutrosophic cubic graphs 

structures are more flexible and compatible then fuzzy graphs due to the fact 

that they have many applications in networks. 
Our approach: In this paper we initiate the idea of neutrosophic cubic graph 

structures which is extension of neutrosophic cubic graphs. Neutrosophic 

cubic graphs are defined for one set of edges between vertices while 
neutrosophic cubic graphs structures are defined for more than one set of 

edges. We also defined basic operations like Cartesian product, 

composition, union, join, cross product, strong product and lexicographic 
product of two neutrosophic cubic graph structures. At the end we discuss 

the application of neutrosophic cubic graphs in decision making problems. 

.  

II.  Preliminaries 

We briefly describe few fundamental concepts, ideas and preliminaries of 

neutrosophic sets, neutrosophic cubic sets and neutrosophic cubic graphs. 
Definition 2.1 [34] Neurosophics set is define as: 

𝐴 = {⟨𝑥, 𝐹𝐴(𝑥), 𝑇𝐴(𝑥), 𝐼𝐴(𝑥)⟩: 𝑥 ∈ 𝑋} 
where 𝑋 is a universe of discoveries and 𝐴 is characterized by a truth-

membership function 𝑇𝐴: 𝑋 →]0
−, 1+[,an indeterminacy-membership 

function 𝐼𝐴: 𝑋 →]0
−, 1+[ and a falsity-membership function 𝐹𝐴: 𝑋 →

]0−, 1+[. There is not restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), , 𝐹𝐴(𝑥). 
 

Definition 2.2 [35] A single valued neutrosophics set is define as: 

𝐴𝑁𝑆 = {⟨𝑥, 𝐹𝐴(𝑥), 𝑇𝐴(𝑥), 𝐼𝐴(𝑥)⟩: 𝑥 ∈ 𝑋} 
where 𝑋 is a universe of discoveries and 𝐴𝑁𝑆 is characterized by a truth-

membership function 𝑇𝐴: 𝑋 → 0,1],an indeterminacy-membership function 

𝐼𝐴: 𝑋 → 0,1] and a falsity-membership function 𝐹𝐴: 𝑋 → 0,1]. There is not 

restriction on the sum of 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥). 
Definition 2.3 [35]Let us consider two single valued neutrosophic sets 

𝐴𝑁𝑆 = {⟨𝑥, 𝐹𝐴(𝑥), 𝑇𝐴(𝑥), 𝐼𝐴(𝑥)⟩: 𝑥 ∈ 𝑋} 
and 

𝐵𝑁𝑆 = {⟨𝑥, 𝐹𝐵(𝑥), 𝑇𝐵(𝑥), 𝐼𝐵(𝑥)⟩: 𝑥 ∈ 𝑋} 
then set theoretical operations for these two single valued nurtrosophic sets 

are given as; 

(𝑖)𝐴𝑁𝑆 ⊂ 𝐵𝑁𝑆 if and only if 𝑇𝐴(𝑥) ≤ 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) ≥
𝐼𝐵(𝑥), 𝐹𝐴(𝑥) ≥ 𝐹𝐵(𝑥). 

(𝑖𝑖)𝐴𝑁𝑆 = 𝐵𝑁𝑆 if and only if 𝑇𝐴(𝑥) = 𝑇𝐵(𝑥), 𝐼𝐴(𝑥) =
𝐼𝐵(𝑥), 𝐹𝐴(𝑥) = 𝐹𝐵(𝑥), for any 𝑥 ∈ 𝑋. 

(𝑖𝑖𝑖) The complement of 𝐴𝑁𝑆 is denoted by 𝐴𝑁𝑆
𝑐  and is defined 

by 

𝐴𝑁𝑆
𝑐 = {⟨𝑥, 𝐹𝐴(𝑥),1 − 𝐼𝐴(𝑥), 𝑇𝐴(𝑥)⟩/𝑥 ∈ 𝑋} 

(𝑖𝑣) The intersection 

𝐴𝑁𝑆𝐵𝑁𝑆
= {⟨𝑥,min{𝑇𝐴(𝑥), 𝑇𝐵(𝑥)},max{𝐼𝐴(𝑥), 𝐼𝐵(𝑥)},max{𝐹𝐴(𝑥), 𝐹𝐵(𝑥)}⟩: 𝑥 ∈ 𝑋} 
(𝑣) The Union 

𝐴𝑁𝑆𝐵𝑁𝑆
= {⟨𝑥,max{𝑇𝐴(𝑥), 𝑇𝐵(𝑥)},min{𝐼𝐴(𝑥), 𝐼𝐵(𝑥)},min{𝐹𝐴(𝑥), 𝐹𝐵(𝑥)}⟩: 𝑥 ∈ 𝑋}. 
Definition 2.4 [2, 36] Let 𝐴̃1 = ⟨𝑇1, 𝐼1, 𝐹1⟩ and 𝐴̃2 = ⟨𝑇2, 𝐼2, 𝐹2⟩ be two 

single valued neutrosophic number. Then, the operations for NNs are 
defined as below; 

𝜆𝐴̃ = ⟨1 − (1 − 𝑇1)
𝜆, 𝐼1

𝜆 , 𝐹1
𝜆⟩, 

𝐴̃1
𝜆 = ⟨𝑇1

𝜆 , 1 − (1 − 𝐼1)
𝜆 , 1 − (1 − 𝐹1)

𝜆⟩, 

𝐴̃1 + 𝐴̃2 = ⟨𝑇1 + 𝑇2 − 𝑇1𝑇2, 𝐼1𝐼2, 𝐹1𝐹2⟩ 
𝐴̃1𝐴̃2 = ⟨𝑇1𝑇2, 𝐼1 + 𝐼2−𝐼1𝐼2, 𝐹1 + 𝐹2 − 𝐹1𝐹2⟩ where 𝜆 > 0. 

 

Definition 2.5 [8]Let X be a non-empty set. A neutrosophic cubic set (NCS) 

in 𝑋 is a pair 𝐴 = (𝑨, 𝜦) where 𝑨 = {⟨𝑥, 𝐴̃𝑇(𝑥), 𝐴̃𝐼(𝑥), 𝐴̃𝐹(𝑥)⟩|𝑥 ∈ 𝑋} is an 

interval neutrosophic set in 𝑋 and𝚲 = {⟨𝑥, 𝜆𝑇(𝑥), 𝜆𝐼(𝑥), 𝜆𝐹(𝑥)⟩|𝑥 ∈ 𝑋} is a 

neutrosophic set in 𝑋. Also [0,0] ⪯ 𝐴̃𝑇 + 𝐴̃𝐼 + 𝐴̃𝐹 ⪯ [3,3] and 0 ≤ 𝜆𝑇 +
𝜆𝐼 + 𝜆𝐹 ≤ 3.  
 

Definition 2.6 [24] Let 𝐺∗ = (𝑉, 𝐸) be a Graph. By neutrosophic cubic 

graph of 𝐺∗, we mean a pair 𝐺 = (𝑀,𝑁) where  

𝑀 = (𝐴, 𝐵) = ((𝑇̃𝐴, 𝑇𝐵), (𝐼𝐴, 𝐼𝐵), (𝐹̃𝐴, 𝐹𝐵)) 
is the neutrosophic cubic set representation of 𝑉 and  

𝑁 = (𝐶, 𝐷) = ((𝑇̃𝐶 , 𝑇𝐷), (𝐼𝐶 , 𝐼𝐷), (𝐹̃𝐶 , 𝐹𝐷)) 
is the neutrosphic cubic set representation of 𝐸 such that; 

(i)(𝑇̃𝐶(𝑢𝑖𝑣𝑖) ⪯ 𝑟𝑚𝑖𝑛{𝑇̃𝐴(𝑢𝑖), 𝑇̃𝐴(𝑣𝑖)}, 𝑇𝐷(𝑢𝑖𝑣𝑖) ≤ max{𝑇𝐵(𝑢𝑖), 𝑇𝐵(𝑣𝑖)}) 

(ii)(𝐼𝐶(𝑢𝑖𝑣𝑖) ⪯ 𝑟𝑚𝑖𝑛{𝐼𝐴(𝑢𝑖), 𝐼𝐴(𝑣𝑖)}, 𝐼𝐷(𝑢𝑖𝑣𝑖) ≤ max{𝐼𝐵(𝑢𝑖), 𝐼𝐵(𝑣𝑖)}) 

(iii)(𝐹̃𝐶(𝑢𝑖𝑣𝑖) ⪯ 𝑟𝑚𝑎𝑥{𝐹̃𝐴(𝑢𝑖), 𝐹̃𝐴(𝑣𝑖)}, 𝐹𝐷(𝑢𝑖𝑣𝑖) ≤ min{𝐹𝐵(𝑢𝑖), 𝐹𝐵(𝑣𝑖)}) 
 

Definition 2.7 [24] Let 𝐺∗ = (𝑉, 𝐸) be a graph and 𝐺 = (𝑀,𝑁) be a 

Neutrosophic Cubic Graph on 𝑉 is said to be truth-internal (T-internal) if 
the following conditions hold 

𝑇𝐵(𝑥) ∈ 𝑇̃𝐴
−(𝑥), 𝑇̃𝐴

+(𝑥)], ∀𝑥 ∈ 𝑉, 𝑇𝐷(𝑒 ∈ 𝑇̃𝐶
−(𝑒), 𝑇̃𝐶

+(𝑒)], ∀𝑒 ∈ 𝐸 
indeterminacy-internal (I-internal) if the following conditions hold 

𝐼𝐵(𝑥) ∈ 𝐼𝐴
−(𝑥), 𝐼𝐴

+(𝑥)], ∀𝑥 ∈ 𝑉, 𝐼𝐷(𝑒) ∈ 𝐼𝐶
−(𝑒), 𝐼𝐶

+(𝑒)], ∀𝑒 ∈ 𝐸 
falsity-internal (F-internal) if the following conditions hold 

𝐹𝐵(𝑥) ∈ 𝐹̃𝐴
−(𝑥), 𝐹̃𝐴

+(𝑥)], ∀𝑥 ∈ 𝑉, 𝐹𝐷(𝑒) ∈ 𝐹̃𝐶
−(𝑒), 𝐹̃𝐶

+(𝑒)], ∀𝑒 ∈ 𝐸 
truth-external (T-external) if the following conditions hold 

𝑇𝐵(𝑥) ∉ 𝑇̃𝐴
−(𝑥), 𝑇̃𝐴

+(𝑥)], ∀𝑥 ∈ 𝑉, 𝑇𝐷(𝑒) ∉ 𝑇̃𝐶
−(𝑒), 𝑇̃𝐶

+(𝑒)], ∀𝑒 ∈ 𝐸 
indeterminacy-external (I-external) if the following conditions hold 

𝐼𝐵(𝑥) ∉ 𝐼𝐴
−(𝑥), 𝐼𝐴

+(𝑥)], ∀𝑥 ∈ 𝑉, 𝐼𝐷(𝑒) ∉ 𝐼𝐶
−(𝑒), 𝐼𝐶

+(𝑒)], ∀𝑒 ∈ 𝐸 
falsity-external (F-external) if the following conditions hold 

𝐹𝐵(𝑥) ∉ 𝐹̃𝐴
−(𝑥), 𝐹̃𝐴

+(𝑥)], ∀𝑥 ∈ 𝑉, 𝐹𝐷(𝑒) ∉ 𝐹̃𝐶
−(𝑒), 𝐹̃𝐶

+(𝑒)], ∀𝑒 ∈ 𝐸 
 

 

Definition 2.8 [24] Let 𝐺∗ = (𝑉, 𝐸) be a graph and 𝐺 = (𝑀,𝑁) be a 

neutrosophic cubic graph on V is said to be internal if the following 

conditions hold 

(

𝑇𝐵(𝑥) ∈ 𝑇̃𝐴
−(𝑥), 𝑇̃𝐴

+(𝑥)],

𝐼𝐵(𝑥) ∈ 𝐼𝐴
−(𝑥), 𝐼𝐴

+(𝑥)],

𝐹𝐵(𝑥) ∈ 𝐹̃𝐴
−(𝑥), 𝐹̃𝐴

+(𝑥)]

)∀𝑥 ∈ 𝑉,(

𝑇𝐷(𝑒) ∈ 𝑇𝐶
−(𝑒), 𝑇𝐶

+(𝑒)],

𝐼𝐷(𝑒) ∈ 𝐼𝐶
−(𝑒), 𝐼𝐶

+(𝑒)],

𝐹𝐷(𝑒) ∈ 𝐹𝐶
−(𝑒), 𝐹𝐶

+(𝑒)]

)∀𝑒 ∈ 𝐸 

A neutrosophic cubic graph is said to be internal neutrosophic cubic graph 
if it is truth-internal, indeterminacy-internal and falsity-internal.  

 

III. Neutrosophic Cubic Graph Structures 

 

In this section we define the extension of neutrosophic cubic graphs to 

neutrosophic cubic graph structures 
 

Definition 3.1 Let 𝐺̆∗ = (𝑉, 𝐸1, 𝐸2, . . . , 𝐸𝑛) be a graph structure. Then 𝐺̆ =
(𝑀,𝑁1, 𝑁2, . . . , 𝑁𝑛) is said to be neutrosophic cubic graph structure of 

𝐺̆∗,where  

𝑀 = (𝐴, 𝐵) = ((𝑇̃𝐴, 𝑇𝐵), (𝐼𝐴, 𝐼𝐵), (𝐹̃𝐴, 𝐹𝐵)) 
is the neutrosophic cubic set representation of 𝑉 and 

𝑁1 = (𝐶1, 𝐷1) = ((𝑇̃𝐶1 , 𝑇𝐷1), (𝐼𝐶1 , 𝐼𝐷1), (𝐹̃𝐶1 , 𝐹𝐷1)) 

 𝑁2 = (𝐶2, 𝐷2) = ((𝑇̃𝐶2 , 𝑇𝐷2), (𝐼𝐶2 , 𝐼𝐷2), (𝐹̃𝐶2 , 𝐹𝐷2)) 

𝑁𝑛 = (𝐶𝑛 , 𝐷𝑛) = ((𝑇̃𝐶𝑛 , 𝑇𝐷𝑛), (𝐼𝐶𝑛 , 𝐼𝐷𝑛), (𝐹̃𝐶𝑛 , 𝐹𝐷𝑛)) 

are the neutrosphic cubic set representations of 𝐸1, 𝐸2, . . . , 𝐸𝑛 respectively, 
if the following conditions are satisfied: 

(i) 𝑀 is a neutrosophic cubic set on 𝑉 such that ∀𝑥 ∈ 𝑉 

0 ≤ 𝑇̃𝐴 + 𝐼𝐴 + 𝐹̃𝐴 ≤ 3,3],0 ≤ 𝑇𝐵 + 𝐼𝐵 + 𝐹𝐵 ≤ 3 

(ii) 𝑁𝑛 is a neutrosophic cubic set on 𝐸𝑛 such that ∀𝑥𝑦 ∈ 𝐸𝑛 , 𝑖 ∈ 1,2, . . . , 𝑛 

0 ≤ 𝑇̃𝐶𝑛 + 𝐼𝐶𝑛 + 𝐹̃𝐶𝑛 ≤ 3,3],0 ≤ 𝑇𝐷𝑛 + 𝐼𝐷𝑛 + 𝐹𝐷𝑛 ≤ 3 

(iii) Also ∀𝑥𝑦 ∈ 𝐸𝑛 , 𝑖 ∈ 1,2, . . . , 𝑛 

𝑇̃𝐶𝑛(𝑥𝑦) ⪯ 𝑟𝑚𝑖𝑛{𝑇̃𝐴(𝑥), 𝑇̃𝐴(𝑦)}, 𝑇𝐷𝑛(𝑥𝑦) ≤ max{𝑇𝐵(𝑥), 𝑇𝐵(𝑦)}, 

𝐼𝐶𝑛(𝑥𝑦) ⪯ 𝑟𝑚𝑖𝑛{𝐼𝐴(𝑥), 𝐼𝐴(𝑦)}, 𝐼𝐷𝑛(𝑥𝑦) ≤ max{𝐼𝐵(𝑥), 𝐼𝐵(𝑦)}, 

𝐹̃𝐶𝑛(𝑥𝑦) ⪯ 𝑟𝑚𝑎𝑥{𝐹̃𝐴(𝑥), 𝐹̃𝐴(𝑦)}, 𝐹𝐷𝑛(𝑥𝑦) ≤ min{𝐹𝐵(𝑥), 𝐹𝐵(𝑦)} 

 

Example: Let 𝐺̆∗ = (𝑉, 𝐸1, 𝐸2) be a graph structure where  

 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑}, 
 𝐸1 = {𝑎𝑏, 𝑎𝑐, }, 
 𝐸2 = {𝑎𝑑, 𝑏𝑐, 𝑏𝑑} 

defined as 

𝑀 = ⟨

{𝑎, ([0.4,0.5], 0.6), ([0.2,0.3], 0.2), ([0.6,0.7], 0.1)},
{𝑏, ([0.5,0.6], 0.4), ([0.4,0.5], 0.5), ([0.1,0.2], 0.7)},
{𝑐, ([0.3,0.4], 0.9), ([0.9,1.0], 0.2), ([0.7,0.8], 0.3)},
{𝑑, ([0.8,0.9], 0.7), ([0.4,0.5], 0.3), ([0.5,0.6], 0.4)}

⟩ , 𝑁1

= ⟨
{𝑎𝑏, ([0.4,0.5], 0.6), ([0.2,0.3], 0.5), ([0.6,0.7], 0.1)},
{𝑎𝑐, ([0.3,0.4], 0.9), ([0.2,0.3], 0.2), ([0.7,0.8], 0.1)}

⟩,  

𝑁2 = ⟨

{𝑎𝑑, ([0.4,0.5],0.7), ([0.2,0.3],0.3), ([0.6,0.7],0.1)},
{𝑏𝑐, ([0.3,0.4],0.9), ([0.4,0.5],0.5), ([0.7,0.8],0.3)},
{𝑏𝑑, ([0.5,0.6],0.7), ([0.4,0.5],0.5), ([0.5,0.6],0.4)}

⟩. 
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Definition 3.2 Let 𝐺̆𝑆1 = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 =
(𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) be two neutrosophic cubic graph structures defined 

on 𝐺̆1
∗ = (𝑉1, 𝐸11, 𝐸21, . . . , 𝐸𝑛1) and 𝐺̆2

∗ = (𝑉2, 𝐸12, 𝐸22, . . . , 𝐸𝑛2) 
respectively. The cartesian product of 𝐺̆1

∗ and 𝐺̆2
∗ is defined as 

𝐺̆𝑆1 × 𝐺̆𝑆2 = (𝑀1, 𝑁11,𝑁21, . . . , 𝑁𝑛1) × (𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) 
 = (𝑀1 ×𝑀2, 𝑁11 × 𝑁12, 𝑁21 ×𝑁22, . . . , 𝑁𝑛1 ×𝑁𝑛2) 
 = ((𝐴1, 𝐵1) × (𝐴2, 𝐵2), (𝐶11, 𝐷11) × (𝐶12, 𝐷12), 

(𝐶21, 𝐷21) × (𝐶22, 𝐷22), . . . , (𝐶𝑛1, 𝐷𝑛1) × (𝐶𝑛2, 𝐷𝑛2)) 
 = ((𝐴1 × 𝐴2, 𝐵1 × 𝐵2, ), (𝐶11 × 𝐶12, 𝐷11 × 𝐷12), 

(𝐶21 × 𝐶22, 𝐷21 × 𝐷22), . . . , (𝐶𝑛1 × 𝐶𝑛2, 𝐷𝑛1 × 𝐷𝑛2)) 
 =

((𝑇̃𝐴1×𝐴2 , 𝑇𝐵1×𝐵2), (𝐼𝐴1×𝐴2 , 𝐼𝐵1×𝐵2), (𝐹̃𝐴1×𝐴2 , 𝐹𝐵1×𝐵2)), 

((𝑇̃𝐶11×𝐶12 , 𝑇𝐷11×𝐷12), (𝐼𝐶11×𝐶12 , 𝐼𝐷11×𝐷12), (𝐹̃𝐶11×𝐶12 , 𝐹𝐷11×𝐷12) 

(𝑇̃𝐶21×𝐶22 , 𝑇𝐷21×𝐷22), (𝐼𝐶21×𝐶22 , 𝐼𝐷21×𝐷22), (𝐹̃𝐶21×𝐶22 , 𝐹𝐷21×𝐷22), . . ., 

(𝑇̃𝐶𝑛1×𝐶𝑛2 , 𝑇𝐷𝑛1×𝐷𝑛2), (𝐼𝐶𝑛1×𝐶𝑛2 , 𝐼𝐷𝑛1×𝐷𝑛2), (𝐹̃𝐶𝑛1×𝐶𝑛2 , 𝐹𝐷𝑛1×𝐷𝑛2)) 

and is defined as follow: 

(i) 𝑇̃𝐴1×𝐴2(𝑥, 𝑦) = 𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑦)), 𝑇𝐵1×𝐵2(𝑥, 𝑦) =

max(𝑇𝐵1(𝑥), 𝑇𝐵2(𝑦)),  

(ii)  𝐼𝐴1×𝐴2(𝑥, 𝑦) = 𝑟𝑚𝑖𝑛(𝐼𝐴1(𝑥), 𝐼𝐴2(𝑦)), 𝐼𝐵1×𝐵2(𝑥, 𝑦) =

max(𝐼𝐵1(𝑥), 𝐼𝐵2(𝑦)), 

(iii)  𝐹̃𝐴1×𝐴2(𝑥, 𝑦) = 𝑟𝑚𝑎𝑥(𝐹̃𝐴1(𝑥), 𝐹̃𝐴2(𝑦)), 𝐹𝐵1×𝐵2(𝑥, 𝑦) =

min(𝐹𝐵1(𝑥), 𝐹𝐵2(𝑦)) 

(iv) 𝑇̃𝐶𝑛1×𝐶𝑛2((𝑥, 𝑦1)(𝑥, 𝑦2)) = 𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥), 𝑇̃𝐶𝑛2(𝑦1𝑦2)) 

𝑇𝐷𝑛1×𝐷𝑛2((𝑥, 𝑦1)(𝑥, 𝑦2)) = max(𝑇𝐵1(𝑥), 𝑇𝐷𝑛2(𝑦1𝑦2)) 

(v) 𝐼𝐶𝑛1×𝐶𝑛2((𝑥, 𝑦1)(𝑥, 𝑦2)) = 𝑟𝑚𝑖𝑛(𝐼𝐴1(𝑥), 𝐼𝐶𝑛2(𝑦1𝑦2)) 

𝐼𝐷𝑛1×𝐷𝑛2((𝑥, 𝑦1)(𝑥, 𝑦2)) = max(𝐼𝐵1(𝑥), 𝐼𝐷𝑛2(𝑦1𝑦2)) 

(vi) 𝐹̃𝐶𝑛1×𝐶𝑛2((𝑥, 𝑦1)(𝑥, 𝑦2)) = 𝑟𝑚𝑎𝑥(𝐹̃𝐴1(𝑥), 𝐹̃𝐶𝑛2(𝑦1𝑦2)) 

𝐹𝐷𝑛1×𝐷𝑛2((𝑥, 𝑦1)(𝑥, 𝑦2)) = min(𝐹𝐵1(𝑥), 𝐹𝐷𝑛2(𝑦1𝑦2)) 

(vii)𝑇̃𝐶𝑛1×𝐶𝑛2((𝑥1, 𝑦)(𝑥2, 𝑦)) = 𝑟𝑚𝑖𝑛(𝑇̃𝐶𝑛1(𝑥1𝑥2), 𝑇̃𝐴2(𝑦)) 

𝑇𝐷𝑛1×𝐷𝑛2((𝑥1, 𝑦)(𝑥2, 𝑦)) = max(𝑇𝐷𝑛1(𝑥1𝑥2), 𝑇𝐵2(𝑦)) 

(viii)𝐼𝐶𝑛1×𝐶𝑛2((𝑥1, 𝑦)(𝑥2, 𝑦)) = 𝑟𝑚𝑖𝑛(𝐼𝐶𝑛1(𝑥1𝑥2), 𝐼𝐴2(𝑦)) 

𝐼𝐷𝑛1×𝐷𝑛2((𝑥1, 𝑦)(𝑥2, 𝑦)) = max(𝐼𝐷𝑛1(𝑥1𝑥2), 𝐼𝐵2(𝑦)) 

(ix) 𝐹̃𝐶𝑛1×𝐶𝑛2((𝑥1, 𝑦)(𝑥2, 𝑦)) = 𝑟𝑚𝑎𝑥(𝐹̃𝐶𝑛1(𝑥1𝑥2), 𝐹̃𝐴2(𝑦)) 

𝐹𝐷𝑛1×𝐷𝑛2((𝑥1, 𝑦)(𝑥2, 𝑦)) = min(𝐹𝐷𝑛1(𝑥1𝑥2), 𝐹𝐵2(𝑦)) 

∀(𝑥, 𝑦) ∈ (𝑉1, 𝑉2) = 𝑉 for (𝑖) − (𝑖𝑖𝑖), ∀𝑥 ∈ 𝑉1 and 𝑦1𝑦2 ∈ 𝐸𝑛2; (𝑖 ∈
1,2, . . . , 𝑛) for (𝑖𝑣) − (𝑣𝑖), ∀𝑦 ∈ 𝑉2 and 𝑥1𝑥2 ∈ 𝐸𝑛1; (𝑖 ∈ 1,2, . . . , 𝑛) for 

(𝑣𝑖) − (𝑖𝑥).  
 

Example: Let 𝐺̆𝑠1 = (𝑀1, 𝑁11,𝑁21, 𝑁31) and 𝐺̆𝑠2 = (𝑀2, 𝑁12, 𝑁22) be two 

neutrosophic cubic graph structures defined on 𝐺̆1
∗ and 𝐺̆2

∗ respectively, 

where 

𝑀1 = ⟨

{𝑎, ([0.3,0.4],0.1), ([0.5,0.6],0.2), ([0.4,0.5],0.3)},
{𝑏, ([0.1,0.2],0.5), ([0.7,0.8],0.6), ([0.5,0.7],0.4)},

{𝑐, ([0.8,0.9],0.3), ([0.2,0.3],0.5), ([0.3,0.4],0.5)},
{𝑑, ([0.2,0.3],0.5), ([0.9,1.0],0.4), ([0.6,0.7],0.2)}

⟩ 

𝑁11 = ⟨
{𝑎𝑏, ([0.1,0.2],0.5), ([0.5,0.6],0.6), ([0.5,0.7],0.3)},

{𝑐𝑑, ([0.2,0.3],0.5), ([0.2,0.3],0.5), ([0.6,0.7],0.2)}
⟩ 

𝑁21 = ⟨
{𝑎𝑑, ([0.2,0.3],0.5), ([0.5,0.6],0.4), ([0.6,0.7],0.2)},

{𝑏𝑐, ([0.1,0.2],0.5), ([0.2,0.3],0.6), ([0.5,0.7],0.4)}
⟩ 

 
 

and 

𝑀2 = ⟨

{𝑥, ([0.4,0.5],0.2), ([0.2,0.3],0.7), ([0.5,0.6],0.1)},
{𝑦, ([0.2,0.3],0.4), ([0.7,0.8],0.4), ([0.1,0.2],0.5)},
{𝑧, ([0.4,0.5],0.8), ([0.5,0.6],0.3), ([0.8,0.9],0.4)}

⟩ 

𝑁12 = ⟨{𝑥𝑦, ([0.2,0.3],0.4), ([0.2,0.3],0.7), ([0.5,0.6],0.1)}⟩ 

𝑁22 = ⟨
{𝑥𝑧, ([0.4,0.5],0.8), ([0.2,0.3],0.7), ([0.8,0.9],0.1)},

{𝑦𝑧, ([0.2,0.3],0.8), ([0.5,0.6],0.4), ([0.8,0.9],0.4)}
⟩ 

 
 

Then 𝐺̆𝑠1 × 𝐺̆𝑠2 will be  

𝑀1 ×𝑀2 = ⟨

{(𝑎, 𝑥), ([0.3,0.4],0.2), ([0.2,0.3],0.7), ([0.5,0.6],0.7)},
{(𝑎, 𝑦), ([0.2,0.3],0.4), ([0.5,0.6],0.4), ([0.4,0.5],0.3)},
{(𝑎, 𝑧), ([0.3,0.4],0.8), ([0.5,0.6],0.3), ([0.8,0.9],0.3)},

{(𝑏, 𝑥), ([0.1,0.2],0.5), ([0.2,0.3],0.7), ([0.5,0.7],0.1)},
{(𝑏, 𝑦), ([0.1,0.2],0.5), ([0.7,0.8],0.6), ([0.5,0.7],0.4)},
{(𝑏, 𝑧), ([0.1,0.2],0.8), ([0.5,0.6],0.6), ([0.8,0.9],0.4)},

{(𝑐, 𝑥), ([0.4,0.5],0.3), ([0.2,0.3],0.7), ([0.5,0.6],0.1)},
{(𝑐, 𝑦), ([0.2,0.3],0.4), ([0.2,0.3],0.5), ([0.3,0.4],0.5)},
{(𝑐, 𝑧), ([0.4,0.5],0.8), ([0.2,0.3],0.5), ([0.8,0.9],0.4)},

{(𝑑, 𝑥), ([0.2,0.3],0.5), ([0.2,0.3],0.7), ([0.6,0.7],0.1)},
{(𝑑, 𝑦), ([0.2,0.3],0.5), ([0.7,0.8],0.4), ([0.6,0.7],0.2)},
{(𝑑, 𝑧), ([0.2,0.3],0.8), ([0.5,0.6],0.4), ([0.8,0.9],0.2)}

⟩ 

𝑁11 × 𝑁12

= ⟨

{((𝑎, 𝑥)(𝑎, 𝑦)), ([0.2,0.3],0.4), ([0.2,0.3],0.7), ([0.5,0.6],0.1)},
{((𝑏, 𝑥)(𝑏, 𝑦)), ([0.1,0.2],0.5), ([0.2,0.3],0.7), ([0.5,0.6],0.1)},
{((𝑐, 𝑥)(𝑐, 𝑦)), ([0.2,0.3],0.4), ([0.2,0.3],0.7), ([0.5,0.6],0.1)}

⟩ 

𝑁11 × 𝑁22

= ⟨

{((𝑎, 𝑧)(𝑏, 𝑧)), ([0.1,0.2],0.8), ([0.5,0.6],0.6), ([0.8,0.9],0.3)},
{((𝑐, 𝑧)(𝑑, 𝑧)), ([0.2,0.3],0.8), ([0.2,0.3],0.5), ([0.8,0.9],0.2)},
{((𝑑, 𝑥)(𝑑, 𝑦)), ([0.2,0.3],0.5), ([0.2,0.3],0.7), ([0.6,0.7],0.1)}

⟩ 

𝑁21 ×𝑁12

= ⟨
{((𝑏, 𝑦)(𝑐, 𝑦)), ([0.1,0.2],0.5), ([0.2,0.3],0.6), ([0.5,0.7],0.4)},

{((𝑎, 𝑥)(𝑑, 𝑥)), ([0.2,0.3],0.5), ([0.2,0.3],0.7), ([0.6,0.7],0.1)}
⟩ 
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𝑁21 ×𝑁22

= ⟨

{((𝑎, 𝑦)(𝑎, 𝑧)), ([0.2,0.3],0.8), ([0.5,0.6],0.4), ([0.8,0.9],0.3)},
{((𝑏, 𝑥)(𝑏, 𝑧)), ([0.1,0.2],0.8), ([0.2,0.3],0.7), ([0.8,0.9],0.1)},

{((𝑐, 𝑥)(𝑐, 𝑧)), ([0.4,0.5],0.8), ([0.2,0.3],0.7), ([0.8,0.9],0.1)},
{((𝑑, 𝑦)(𝑑, 𝑧)), ([0.2,0.3],0.8), ([0.5,0.6],0.4), ([0.8,0.9],0.2)}

⟩ 

 
 
Proposition 3.3 The cartesian product of two neutrosophic cubic graph 

structures is also a neutrosophic cubic graph structure.  

 

Proof. Condition is obvious for 𝑀1 ×𝑀2. Therefore we verify for 𝑁𝑛1 ×
𝑁𝑛2; 𝑛 = 1,2, . . . , 𝑛, where  

𝑁𝑛1 ×𝑁𝑛2 = {((𝑇̃𝐶𝑛1×𝐶𝑛2, 𝑇𝐷𝑛1×𝐷𝑛2), (𝐼𝐶𝑛1×𝐶𝑛2 , 𝐼𝐷𝑛1×𝐷𝑛2), 

(𝐹̃𝐶𝑛1×𝐶𝑛2 , 𝐹𝐷𝑛1×𝐷𝑛2))} 

Let 𝑥 ∈ 𝑉1 and 𝑥2𝑦2 ∈ 𝐸𝑛2. Then 

𝑇̃𝐶𝑛1×𝐶𝑛2((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1(𝑥), 𝑇̃𝐶𝑛2(𝑥2𝑦2))} 

 ⪯ 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1(𝑥), 𝑟𝑚𝑖𝑛((𝑇̃𝐴2(𝑥2), (𝑇̃𝐴2(𝑦2))} 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛((𝑇̃𝐴1(𝑥), (𝑇̃𝐴2(𝑥2)), 𝑟𝑚𝑖𝑛((𝑇̃𝐴1(𝑥), (𝑇̃𝐴2(𝑦2))} 

 = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 × 𝑇̃𝐴2)(𝑥, 𝑥2), ((𝑇̃𝐴1 × 𝑇̃𝐴2)(𝑥, 𝑦2)} 

𝑇𝐷𝑛1×𝐷𝑛2((𝑥, 𝑥2)(𝑥, 𝑦2)) = max{(𝑇𝐵1(𝑥), 𝑇𝐷𝑛2(𝑥2𝑦2))} 

 ≤ max{(𝑇𝐵1(𝑥),max((𝑇𝐵2(𝑥2), (𝑇𝐵2(𝑦2))} 

 =
max{max((𝑇𝐵1(𝑥), (𝑇𝐵2(𝑥2)),max((𝑇𝐵1(𝑥), (𝑇𝐵2(𝑦2))} 

 = max{(𝑇𝐵1 × 𝑇𝐵2)(𝑥, 𝑥2), ((𝑇𝐵1 × 𝑇𝐵2)(𝑥, 𝑦2)} 

𝐼𝐶𝑛1×𝐶𝑛2((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝑟𝑚𝑖𝑛{(𝐼𝐴1(𝑥), 𝐼𝐶𝑛2(𝑥2𝑦2))} 

 ⪯ 𝑟𝑚𝑖𝑛{(𝐼𝐴1(𝑥), 𝑟𝑚𝑖𝑛((𝐼𝐴2(𝑥2), (𝐼𝐴2(𝑦2))} 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛((𝐼𝐴1(𝑥), (𝐼𝐴2(𝑥2)), 𝑟𝑚𝑖𝑛((𝐼𝐴1(𝑥), (𝐼𝐴2(𝑦2))} 

 = 𝑟𝑚𝑖𝑛{(𝐼𝐴1 × 𝐼𝐴2)(𝑥, 𝑥2), ((𝐼𝐴1 × 𝐼𝐴2)(𝑥, 𝑦2)} 

𝐼𝐷𝑛1×𝐷𝑛2((𝑥, 𝑥2)(𝑥, 𝑦2)) = max{(𝐼𝐵1(𝑥), 𝐼𝐷𝑛2(𝑥2𝑦2))} 

 ≤ max{(𝐼𝐵1(𝑥),max((𝐼𝐵2(𝑥2), (𝐼𝐵2(𝑦2))} 

 =
max{max((𝐼𝐵1(𝑥), (𝐼𝐵2(𝑥2)),max((𝐼𝐵1(𝑥), (𝐼𝐵2(𝑦2))} 

 = max{(𝐼𝐵1 × 𝐼𝐵2)(𝑥, 𝑥2), ((𝐼𝐵1 × 𝐼𝐵2)(𝑥, 𝑦2)} 
 

𝐹̃𝐶𝑛1×𝐶𝑛2((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1(𝑥), 𝐹̃𝐶𝑛2(𝑥2𝑦2))} 

 ⪯ 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1(𝑥), 𝑟𝑚𝑎𝑥((𝐹̃𝐴2(𝑥2), (𝐹̃𝐴2(𝑦2))} 

 =
𝑟𝑚𝑎𝑥{𝑟𝑚𝑎𝑥((𝐹̃𝐴1(𝑥), (𝐹̃𝐴2(𝑥2)), 𝑟𝑚𝑎𝑥((𝐹̃𝐴1(𝑥), (𝐹̃𝐴2(𝑦2))} 

 = 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1 × 𝐹̃𝐴2)(𝑥, 𝑥2), ((𝐹̃𝐴1 × 𝐹̃𝐴2)(𝑥, 𝑦2)} 

 

 

𝐹𝐷𝑛1×𝐷𝑛2((𝑥, 𝑥2)(𝑥, 𝑦2)) = min{(𝐹𝐵1(𝑥), 𝐹𝐷𝑛2(𝑥2𝑦2))} 

 ≤ min{(𝐹𝐵1(𝑥),min((𝐹𝐵2(𝑥2), (𝐹𝐵2(𝑦2))} 

 =
min{min((𝐹𝐵1(𝑥), (𝐹𝐵2(𝑥2)),min((𝐹𝐵1(𝑥), (𝐹𝐵2(𝑦2))} 

 = min{(𝐹𝐵1 × 𝐹𝐵2)(𝑥, 𝑥2), (𝐹𝐵1 × 𝐹𝐵2)(𝑥, 𝑦2)}, 

similarly we can prove it for 𝑧 ∈ 𝑉2 and 𝑥1𝑦1 ∈ 𝐸𝑛1. ◻ 
 

Definition 3.4 Let 𝐺̆𝑆1 = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 =
(𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) be two neutrosophic cubic graph structures defined 

on 𝐺̆1
∗ = (𝑉1, 𝐸11, 𝐸12, . . . , 𝐸1𝑛) and 𝐺̆2

∗ = (𝑉2, 𝐸21, 𝐸22, . . . , 𝐸2𝑛) 
respectively. The composition of 𝐺̆1

∗ and 𝐺̆2
∗ is denoted by 𝐺̆1[𝐺̆2] and is 

defined as 

𝐺̆1[𝐺̆2] = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1)[(𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2)] 
 = {𝑀1[𝑀2], 𝑁11[𝑁12], 𝑁21[𝑁22], . . . , 𝑁𝑛1[𝑁𝑛2]} 
 =

{
(𝐴1, 𝐵1)[(𝐴2, 𝐵2)], (𝐶11, 𝐷11)[(𝐶12, 𝐷12)],

(𝐶21, 𝐷21)[(𝐶22, 𝐷22)], . . . , (𝐶𝑛1, 𝐷𝑛1)[(𝐶𝑛2, 𝐷𝑛2)]
} 

 = {
(𝐴1[𝐴2], 𝐵1[𝐵2]), (𝐶11[𝐶12], 𝐷11[𝐷12]),

(𝐶21[𝐶22], 𝐷21[𝐷22]), . . . , (𝐶𝑛1[𝐶𝑛2], 𝐷𝑛1[𝐷𝑛2])
} 

 =

{
 
 
 
 
 

 
 
 
 
 ⟨
((𝑇̃𝐴1 ∘ 𝑇̃𝐴2), (𝑇𝐵1 ∘ 𝑇𝐵2)), ((𝐼𝐴1 ∘ 𝐼𝐴2), (𝐼𝐵1 ∘ 𝐼𝐵2)),

((𝐹̃𝐴1 ∘ 𝐹̃𝐴2), (𝐹𝐵1 ∘ 𝐹𝐵2))
⟩ ,

⟨

{
((𝑇̃𝐶11 ∘ 𝑇̃𝐶12), (𝑇𝐷11 ∘ 𝑇𝐷12)), ((𝐼𝐶11 ∘ 𝐼𝐶12), (𝐼𝐷11 ∘ 𝐼𝐷12)),

((𝐹̃𝐶11 ∘ 𝐹̃𝐶12), (𝐹𝐷11 ∘ 𝐹𝐷12))
} ,

{
((𝑇̃𝐶21 ∘ 𝑇̃𝐶22), (𝑇𝐷21 ∘ 𝑇𝐷22)), ((𝐼𝐶21 ∘ 𝐼𝐶22), (𝐼𝐷21 ∘ 𝐼𝐷22)),

((𝐹̃𝐶21 ∘ 𝐹̃𝐶22), (𝐹𝐷21 ∘ 𝐹𝐷22))
} , . . . ,

{
((𝑇̃𝐶𝑛1 ∘ 𝑇̃𝐶𝑛2), (𝑇𝐷𝑛1 ∘ 𝑇𝐷𝑛2)), ((𝐼𝐶𝑛1 ∘ 𝐼𝐶𝑛2), (𝐼𝐷𝑛1 ∘ 𝐼𝐷𝑛2)),

((𝐹̃𝐶𝑛1 ∘ 𝐹̃𝐶𝑛2), (𝐹𝐷𝑛1 ∘ 𝐹𝐷𝑛2))
}

⟩

}
 
 
 
 
 

 
 
 
 
 

 

where (i) ∀(𝑥, 𝑦) ∈ (𝑉1, 𝑉2) = 𝑉 

 (𝑇̃𝐴1 ∘ 𝑇̃𝐴2)(𝑥, 𝑦) = 𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑦)), (𝑇𝐵1 ∘ 𝑇𝐵2)(𝑥, 𝑦)

= max(𝑇𝐵1(𝑥), 𝑇𝐵2(𝑦)) 

 

 (𝐼𝐴1 ∘ 𝐼𝐴2)(𝑥, 𝑦) = 𝑟𝑚𝑖𝑛(𝐼𝐴1(𝑥), 𝐼𝐴2(𝑦)), (𝐼𝐵1 ∘ 𝐼𝐵2)(𝑥, 𝑦)

= max(𝐼𝐵1(𝑥), 𝐼𝐵2(𝑦)) 
 

(𝐹̃𝐴1 ∘ 𝐹̃𝐴2)(𝑥, 𝑦) = 𝑟𝑚𝑎𝑥(𝐹̃𝐴1(𝑥), 𝐹̃𝐴2(𝑦)), (𝐹𝐵1 ∘ 𝐹𝐵2)(𝑥, 𝑦)

= min(𝐹𝐵1(𝑥), 𝐹𝐵𝐹2(𝑦)) 

(ii) ∀𝑥 ∈ 𝑉1 and 𝑦1𝑦2 ∈ 𝐸𝑛2 
(𝑇̃𝐶𝑛1 ∘ 𝑇̃𝐶𝑛2)((𝑥, 𝑦1)(𝑥, 𝑦2)) = 𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥), 𝑇̃𝐶𝑛2(𝑦1𝑦2)) 

(𝑇𝐷𝑛1 ∘ 𝑇𝐷𝑛2)((𝑥, 𝑦1)(𝑥, 𝑦2)) = max(𝑇𝐵1(𝑥), 𝑇𝐷𝑛2(𝑦1𝑦2)) 

(𝐼𝐶𝑛1 ∘ 𝐼𝐶𝑛2)((𝑥, 𝑦1)(𝑥, 𝑦2)) = 𝑟𝑚𝑖𝑛(𝐼𝐴1(𝑥), 𝐼𝐶𝑛2(𝑦1𝑦2)) 

(𝐼𝐷𝑛1 ∘ 𝐼𝐷𝑛2)((𝑥, 𝑦1)(𝑥, 𝑦2)) = max(𝐼𝐵1(𝑥), 𝐼𝐷𝑛2(𝑦1𝑦2)) 

(𝐹̃𝐶𝑛1 ∘ 𝐹̃𝐶𝑛2)((𝑥, 𝑦1)(𝑥, 𝑦2)) = 𝑟𝑚𝑎𝑥(𝐹̃𝐴1(𝑥), 𝐹̃𝐶𝑛2(𝑦1𝑦2)) 

(𝐹𝐷𝑛1 ∘ 𝐹𝐷𝑛2)((𝑥, 𝑦1)(𝑥, 𝑦2)) = min(𝐹𝐵1(𝑥), 𝐹𝐷𝑛2(𝑦1𝑦2)) 

(iii) ∀𝑦 ∈ 𝑉2 and 𝑥1𝑥2 ∈ 𝐸𝑛1 
(𝑇̃𝐶𝑛1 ∘ 𝑇̃𝐶𝑛2)((𝑥1, 𝑦)(𝑥2, 𝑦)) = 𝑟𝑚𝑖𝑛(𝑇̃𝐶𝑛1(𝑥1𝑥2), 𝑇̃𝐴2(𝑦)) 

(𝑇𝐷𝑛1 ∘ 𝑇𝐷𝑛2)((𝑥1, 𝑦)(𝑥2, 𝑦)) = max(𝑇𝐷𝑛1(𝑥1𝑥2), 𝑇𝐵2(𝑦)) 

 

(𝐼𝐶𝑛1 ∘ 𝐼𝐶𝑛2)((𝑥1, 𝑦)(𝑥2, 𝑦)) = 𝑟𝑚𝑖𝑛(𝐼𝐶𝑛1(𝑥1𝑥2), 𝐼𝐴2(𝑦)) 

(𝐼𝐷𝑛1 ∘ 𝐼𝐷𝑛2)((𝑥1, 𝑦)(𝑥2, 𝑦)) = max(𝐼𝐷𝑛1(𝑥1𝑥2), 𝐼𝐵2(𝑦)) 

 

(𝐹̃𝐶𝑛1 ∘ 𝐹̃𝐶𝑛2)((𝑥1, 𝑦)(𝑥2, 𝑦)) = 𝑟𝑚𝑎𝑥(𝐹̃𝐶𝑛1(𝑥1𝑥2), 𝐹̃𝐴2(𝑦)) 

(𝐹𝐷𝑛1 ∘ 𝐹𝐷𝑛2)((𝑥1, 𝑦)(𝑥2, 𝑦)) = min(𝐹𝐷𝑛1(𝑥1𝑥2), 𝐹𝐵2(𝑦)) 

(iv) ∀(𝑥1, 𝑦1)(𝑥2, 𝑦2) ∈ 𝐸
0 − 𝐸 

(𝑇̃𝐶𝑛1 ∘ 𝑇̃𝐶𝑛2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = 𝑟𝑚𝑖𝑛(𝑇̃𝐴2(𝑦1), 𝑇̃𝐴2(𝑦2), 𝑇̃𝐶𝑛1(𝑥1𝑥2)) 

(𝑇𝐷𝑛1 ∘ 𝑇𝐷𝑛2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = max(𝑇𝐵2(𝑦1), 𝑇𝐵2(𝑦2), 𝑇𝐷𝑛1(𝑥1𝑥2)) 

(𝐼𝐶𝑛1 ∘ 𝐼𝐶𝑛2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = 𝑟𝑚𝑖𝑛(𝐼𝐴2(𝑦1), 𝐼𝐴2(𝑦2), 𝐼𝐶𝑛1(𝑥1𝑥2)) 

(𝐼𝐷𝑛1 ∘ 𝐼𝐷𝑛2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = max(𝐼𝐵2(𝑦1), 𝐼𝐵2(𝑦2), 𝐼𝐷𝑛1(𝑥1𝑥2)) 

(𝐹̃𝐶𝑛1 ∘ 𝐹̃𝐶𝑛2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = 𝑟𝑚𝑎𝑥(𝐹̃𝐴2(𝑦1), 𝐹̃𝐴2(𝑦2), 𝐹̃𝐶𝑛1(𝑥1𝑥2)) 

(𝐹𝐷𝑛1 ∘ 𝐹𝐷𝑛2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = min(𝐹𝐵2(𝑦1), 𝐹𝐵2(𝑦2), 𝐹𝐷𝑛1(𝑥1𝑥2)) 
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Example: Let 𝐺̆𝑠1 = (𝑀1, 𝑁11) and 𝐺̆𝑠2 = (𝑀2, 𝑁12, 𝑁22) be two 

neutrosophic cubic graph structures defined on 𝐺̆1
∗ and 𝐺̆2

∗ respectively, 

where 

𝑙𝑀1 = ⟨
{𝑎, ([0.3,0.4],0.7), ([0.5,0.6],0.2), ([0.4,0.5],0.4)},

{𝑏, ([0.5,0.6],0.4), ([0.6,0.7],0.3), ([0.1,0.2],0.5)}
⟩𝑁11

= ⟨{𝑎𝑏, ([0.3,0.4],0.7), ([0.5,0.6],0.3), ([0.4,0.5],0.4)}⟩ 
and 

𝑙𝑀2 = ⟨

{𝑥, ([0.4,0.5],0.2), ([0.6,0.7],0.4), ([0.2,0.3],0.6)},
{𝑦, ([0.1,0.2],0.7), ([0.8,0.9],0.5), ([0.3,0.4],0.3)},
{𝑧, ([0.3,0.4].0.6), ([0.5,0.6],0.2), ([0.7,0.8],0.4)}

⟩𝑁12

= ⟨
{𝑥𝑦, ([0.1,0.2],0.7), ([0.6,0.7],0.5), ([0.3,0.4],0.3)},

{𝑥𝑧, ([0.3,0.4].0.6), ([0.5,0.6],0.4), ([0.7,0.8],0.4)}
⟩𝑁22

= ⟨{𝑦𝑧, ([0.1,0.2],0.7), ([0.5,0.6],0.5), ([0.7,0.8],0.3)}⟩ 

 
 

Then 𝐺̆𝑠1[𝐺̆𝑠2] will be 

𝑙𝑀1[𝑀2]

= ⟨

{(𝑎, 𝑥), ([0.3,0.4],0.7), ([0.5,0.6],0.4), ([0.4,0.5],0.4)},
{(𝑎, 𝑦), ([0.1,0.2],0.7), ([0.5,0.6],0.5), ([0.4,0.5],0.3)},
{(𝑎, 𝑧), ([0.3,0.4],0.7), ([0.5,0.6],0.2), ([0.7,0.8],0.4)},

{(𝑏, 𝑧), ([0.3,0.4],0.6), ([0.5,0.6],0.3), ([0.7,0.8],0.4)},
{(𝑏, 𝑦), ([0.1,0.2],0.7), ([0.6,0.7],0.5), ([0.3,0.4],0.3)},
{(𝑏, 𝑥), ([0.4,0.5],0.4), ([0.6,0.7],0.4), ([0.2,0.3],0.5)}

⟩𝑁11[𝑁12]

= ⟨

{(𝑎, 𝑥)(𝑎, 𝑦), ([0.1,0.2],0.7), ([0.5,0.6],0.5), ([0.4,0.5],0.3)},
{(𝑎, 𝑥)(𝑎, 𝑧), ([0.3,0.4],0.7), ([0.5,0.6],0.4), ([0.7,0.8],0.4)},

{(𝑎, 𝑥)(𝑏, 𝑧), ([0.3,0.4],0.7), ([0.5,0.6],0.4), ([0.7,0.8],0.4)},
{(𝑎, 𝑥)(𝑏, 𝑦), ([0.1,0.2],0.7), ([0.5,0.6],0.5), ([0.4,0.5],0.3)},
{(𝑎, 𝑥)(𝑏, 𝑥), ([0.3,0.4],0.7), ([0.5,0.6],0.4), ([0.7,0.8],0.4)},

{(𝑎, 𝑦)(𝑏, 𝑦), ([0.1,0.2],0.7), ([0.5,0.6],0.5), ([0.4,0.5],0.3)},
{(𝑎, 𝑦)(𝑏, 𝑥), ([0.1,0.2],0.7), ([0.5,0.6],0.5), ([0.4,0.5],0.3)},
{(𝑎, 𝑧)(𝑏, 𝑥), ([0.3,0.4],0.7), ([0.5,0.6],0.4), ([0.7,0.8],0.4)},

{(𝑏, 𝑧)(𝑏, 𝑥), ([0.3,0.4],0.6), ([0.5,0.6],0.4), ([0.7,0.8],0.4)
{(𝑏, 𝑥)(𝑏, 𝑦), ([0.1,0.2],0.7), ([0.6,0.7],0.5), ([0.3,0.4],0.3)}

⟩𝑁11[𝑁22]

= ⟨

{(𝑎, 𝑦)(𝑎, 𝑧), ([0.1,0.2],0.7), ([0.5,0.6],0.5), ([0.4,0.5],0.3)},

{(𝑎, 𝑦)(𝑏, 𝑧), ([0.1,0.2],0.7), ([0.5,0.6],0.5), ([0.7,0.8],0.3)},
{(𝑎, 𝑧)(𝑏, 𝑧), ([0.3,0.4],0.7), ([0.5,0.6],0.3), ([0.7,0.8],0.4)},
{(𝑎, 𝑧)(𝑏, 𝑦), ([0.1,0.2],0.7), ([0.5,0.6],0.5), ([0.7,0.8],0.3)},

{(𝑏, 𝑦)(𝑏, 𝑧), ([0.1,0.2],0.7), ([0.5,0.6],0.5), ([0.7,0.8],0.3)}

⟩ 

 
 

Proposition 3.5 The composition of two neutrosophic cubic graph 
structures is again a neutrosophic cubic graph structure.  

 

Proof. Condition is obvious for 𝑀1 ∘ 𝑀2. we will prove it for 𝑁𝑛1 ∘
𝑁𝑛2; 𝑛 = 1,2, . . . , 𝑛, where  

𝑁𝑛1 ∘ 𝑁𝑛2 = {((𝑇̃𝐶𝑛1∘𝐶𝑛2 , 𝑇𝐷𝑛1∘𝐷𝑛2), (𝐼𝐶𝑛1∘𝐶𝑛2 , 𝐼𝐷𝑛1∘𝐷𝑛2), (𝐹̃𝐶𝑛1∘𝐶𝑛2 , 𝐹𝐷𝑛1∘𝐷𝑛2))} 

(i) Let 𝑥 ∈ 𝑉1 and 𝑥2𝑦2 ∈ 𝐸𝑛2. Then 

𝑇̃𝐶𝑖1∘𝐶𝑖2((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1(𝑥), 𝑇̃𝐶𝑖2(𝑥2𝑦2))} 

 ⪯ 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1(𝑥), 𝑟𝑚𝑖𝑛((𝑇̃𝐴2(𝑥2), (𝑇̃𝐴2(𝑦2))} 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛((𝑇̃𝐴1(𝑥), (𝑇̃𝐴2(𝑥2)), 𝑟𝑚𝑖𝑛((𝑇̃𝐴1(𝑥), (𝑇̃𝐴2(𝑦2))} 

 = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 ∘ 𝑇̃𝐴2)(𝑥, 𝑥2), (𝑇̃𝐴1 ∘ 𝑇̃𝐴2)(𝑥, 𝑦2)} 

𝑇𝐷𝑖1∘𝐷𝑖2((𝑥, 𝑥2)(𝑥, 𝑦2)) = max{(𝑇𝐵1(𝑥), 𝑇𝐷𝑖2(𝑥2𝑦2))} 

 ≤ max{(𝑇𝐵1(𝑥),max(𝑇𝐵2(𝑥2), (𝑇𝐵2(𝑦2))} 

 =
max{max((𝑇𝐵1(𝑥), (𝑇𝐵2(𝑥2)),max((𝑇𝐵1(𝑥), (𝑇𝐵2(𝑦2))} 

 = max{(𝑇𝐵1 ∘ 𝑇𝐵2)(𝑥, 𝑥2), (𝑇𝐵1 ∘ 𝑇𝐵2)(𝑥, 𝑦2)} 

𝐼𝐶𝑖1∘𝐶𝑖2((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝑟𝑚𝑖𝑛{(𝐼𝐴1(𝑥), 𝐼𝐶𝑖2(𝑥2𝑦2))} 

 ⪯ 𝑟𝑚𝑖𝑛{(𝐼𝐴1(𝑥), 𝑟𝑚𝑖𝑛((𝐼𝐴2(𝑥2), (𝐼𝐴2(𝑦2))} 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛((𝐼𝐴1(𝑥), (𝐼𝐴2(𝑥2)), 𝑟𝑚𝑖𝑛((𝐼𝐴1(𝑥), (𝐼𝐴2(𝑦2))} 

 = 𝑟𝑚𝑖𝑛{(𝐼𝐴1 ∘ 𝐼𝐴2)(𝑥, 𝑥2), ((𝐼𝐴1 ∘ 𝐼𝐴2)(𝑥, 𝑦2)} 

𝐼𝐷𝑖1∘𝐷𝑖2((𝑥, 𝑥2)(𝑥, 𝑦2)) = max{(𝐼𝐵1(𝑥), 𝐼𝐷𝑖2(𝑥2𝑦2))} 

 ≤ max{(𝐼𝐵1(𝑥),max((𝐼𝐵2(𝑥2), (𝐼𝐵2(𝑦2))} 

 =
max{max((𝐼𝐵1(𝑥), (𝐼𝐵2(𝑥2)),max((𝐼𝐵1(𝑥), (𝐼𝐵2(𝑦2))} 

 = max{(𝐼𝐵1 ∘ 𝐼𝐵2)(𝑥, 𝑥2), ((𝐼𝐵1 ∘ 𝐼𝐵2)(𝑥, 𝑦2)} 

𝐹̃𝐶𝑖1∘𝐶𝑖2((𝑥, 𝑥2)(𝑥, 𝑦2)) = 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1(𝑥), 𝐹̃𝐶𝑖2(𝑥2𝑦2))} 

 ⪯ 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1(𝑥), 𝑟𝑚𝑎𝑥((𝐹̃𝐴2(𝑥2), (𝐹̃𝐴2(𝑦2))} 

 =
𝑟𝑚𝑎𝑥{𝑟𝑚𝑎𝑥((𝐹̃𝐴1(𝑥), (𝐹̃𝐴2(𝑥2)), 𝑟𝑚𝑎𝑥((𝐹̃𝐴1(𝑥), (𝐹̃𝐴2(𝑦2))} 

 = 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1 ∘ 𝐹̃𝐴2)(𝑥, 𝑥2), ((𝐹̃𝐴1 ∘ 𝐹̃𝐴2)(𝑥, 𝑦2)} 

𝐹𝐷𝑖1∘𝐷𝑖2((𝑥, 𝑥2)(𝑥, 𝑦2)) = min{(𝐹𝐵1(𝑥), 𝐹𝐷𝑖2(𝑥2𝑦2))} 

 ≤ min{(𝐹𝐵1(𝑥),min((𝐹𝐵2(𝑥2), (𝐹𝐵2(𝑦2))} 

 =
min{min((𝐹𝐵1(𝑥), (𝐹𝐵2(𝑥2)),min((𝐹𝐵1(𝑥), (𝐹𝐵2(𝑦2))} 

 = min{(𝐹𝐵1 ∘ 𝐹𝐵2)(𝑥, 𝑥2), (𝐹𝐵1 ∘ 𝐹𝐵2)(𝑥, 𝑦2)} 

for (𝑥1, 𝑥2), (𝑥, 𝑦2) ∈ 𝑉1 ∘ 𝑉2. 

(ii) Let 𝑦 ∈ 𝑉2 and 𝑥1𝑦1 ∈ 𝐸𝑖1 

(𝑇̃𝐶𝑖1 ∘ 𝑇̃𝐶𝑖2)((𝑥1, 𝑦)(𝑦1, 𝑦)) = 𝑟𝑚𝑖𝑛(𝑇̃𝐶𝑖1(𝑥1𝑦1), 𝑇̃𝐴2(𝑦)) 

 ⪯ 𝑟𝑚𝑖𝑛(𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥1), 𝑇̃𝐴1(𝑦1)), 𝑇̃𝐴2(𝑦)) 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥1), 𝑇̃𝐴2(𝑦)), 𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑦1), 𝑇̃𝐴2(𝑦))} 

 = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 ∘ 𝑇̃𝐴2)(𝑥1, 𝑦), (𝑇̃𝐴1 ∘ 𝑇̃𝐴2)(𝑦1, 𝑦)} 

(𝑇𝐷𝑖1 ∘ 𝑇𝐷𝑖2)((𝑥1, 𝑦)(𝑦1, 𝑦)) = max(𝑇𝐷𝑖1(𝑥1𝑦1), 𝑇𝐵2(𝑦)) 

 ≤ max(max(𝑇𝐵1(𝑥1), 𝑇𝐵1(𝑦1)), 𝑇𝐵2(𝑦)) 

 =
max{max(𝑇𝐵1(𝑥1), 𝑇𝐵2(𝑦)),max(𝑇𝐵1(𝑦1), 𝑇𝐵2(𝑦)} 

 = max{(𝑇𝐵1 ∘ 𝑇𝐵2)(𝑥1, 𝑦), (𝑇𝐵1 ∘ 𝑇𝐵2)(𝑦1, 𝑦) 
 

(𝐼𝐶𝑖1 ∘ 𝐼𝐶𝑖2)((𝑥1, 𝑦)(𝑦1, 𝑦)) = 𝑟𝑚𝑖𝑛(𝐼𝐶𝑖1(𝑥1𝑦1), 𝐼𝐴2(𝑦)) 
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 ⪯ 𝑟𝑚𝑖𝑛(𝑟𝑚𝑖𝑛(𝐼𝐴1(𝑥1), 𝐼𝐴1(𝑦1)), 𝐼𝐴2(𝑦)) 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛(𝐼𝐴1(𝑥1), 𝐼𝐴2(𝑦)), 𝑟𝑚𝑖𝑛(𝐼𝐴1(𝑦1), 𝐼𝐴2(𝑦))} 

 = 𝑟𝑚𝑖𝑛{(𝐼𝐴1 ∘ 𝐼𝐴2)(𝑥1, 𝑦), (𝐼𝐴1 ∘ 𝐼𝐴2)(𝑦1, 𝑦)} 

(𝐼𝐷𝑖1 ∘ 𝐼𝐷𝑖2)((𝑥1, 𝑦)(𝑦1, 𝑦)) = max(𝐼𝐷𝑖1(𝑥1𝑦1), 𝐼𝐵2(𝑦)) 

 ≤ max(max(𝐼𝐵1(𝑥1), 𝐼𝐵1(𝑦1)), 𝐼𝐵2(𝑦)) 

 = max{max(𝐼𝐵1(𝑥1), 𝐼𝐵2(𝑦)),max(𝐼𝐵1(𝑦1), 𝐼𝐵2(𝑦)} 

 = max{(𝐼𝐵1 ∘ 𝐼𝐵2)(𝑥1, 𝑦), (𝐼𝐵1 ∘ 𝐼𝐵2)(𝑦1, 𝑦) 

 

(𝐹̃𝐶𝑖1 ∘ 𝐹̃𝐶𝑖2)((𝑥1, 𝑦)(𝑦1, 𝑦)) = 𝑟𝑚𝑎𝑥(𝐹̃𝐶𝑖1(𝑥1𝑦1), 𝐹̃𝐴2(𝑦)) 

 ⪯ 𝑟𝑚𝑎𝑥(𝑟𝑚𝑎𝑥(𝐹̃𝐴1(𝑥1), 𝐹̃𝐴1(𝑦1)), 𝐹̃𝐴2(𝑦)) 

 =
𝑟𝑚𝑎𝑥{𝑟𝑚𝑎𝑥(𝐹̃𝐴1(𝑥1), 𝐹̃𝐴2(𝑦)), 𝑟𝑚𝑎𝑥(𝐹̃𝐴1(𝑦1), 𝐹̃𝐴2(𝑦))} 

 = 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1 ∘ 𝐹̃𝐴2)(𝑥1, 𝑦), (𝐹̃𝐴1 ∘ 𝐹̃𝐴2)(𝑦1, 𝑦)} 

(𝐹𝐷𝑖1 ∘ 𝐹𝐷𝑖2)((𝑥1, 𝑦)(𝑦1, 𝑦)) = min(𝐹𝐷𝑖1(𝑥1𝑦1), 𝐹𝐵2(𝑦)) 

 ≤ min(min(𝐹𝐵1(𝑥1), 𝐹𝐵1(𝑦1)), 𝐹𝐵2(𝑦)) 

 =
min{min(𝐹𝐵1(𝑥1), 𝐹𝐵2(𝑦)),min(𝐹𝐵1(𝑦1), 𝐹𝐵2(𝑦)} 

 = min{(𝐹𝐵1 ∘ 𝐹𝐵2)(𝑥1, 𝑦), (𝐹𝐵1 ∘ 𝐹𝐵2)(𝑦1, 𝑦)} 

for (𝑥1, 𝑦), (𝑦1, 𝑦) ∈ 𝑉1 ∘ 𝑉2. 

(iii) Let (𝑥1, 𝑦1)(𝑥2, 𝑦2) ∈ 𝐸
0 − 𝐸 

(𝑇̃𝐶𝑖1 ∘ 𝑇̃𝐶𝑖2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = 𝑟𝑚𝑖𝑛(𝑇̃𝐴2(𝑦1), 𝑇̃𝐴2(𝑦2), 𝑇̃𝐶𝑖1(𝑥1𝑥2)) 

 ⪯ 𝑟𝑚𝑖𝑛{𝑇̃𝐴2(𝑦1), 𝑇̃𝐴2(𝑦2), 𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥1), 𝑇̃𝐴1(𝑥2)} 

 = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1(𝑥1), 𝑇̃𝐴2(𝑦1)), (𝑇̃𝐴1(𝑥2), 𝑇̃𝐴2(𝑦2))} 

 = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 ∘ 𝑇̃𝐴2)(𝑥1, 𝑦1), (𝑇̃𝐴1 ∘ 𝑇̃𝐴2)(𝑥2, 𝑦2)} 

(𝑇𝐷𝑖1 ∘ 𝑇𝐷𝑖2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = max(𝑇𝐵2(𝑦1), 𝑇𝐵2(𝑦2), 𝑇𝐷𝑖1(𝑥1𝑥2)) 

 ≤ max{𝑇𝐵2(𝑦1), 𝑇𝐵2(𝑦2),max(𝑇𝐵1(𝑥1), 𝑇𝐵1(𝑥2)} 

 = max{(𝑇𝐵1(𝑥1), 𝑇𝐵2(𝑦1)), (𝑇𝐵1(𝑥2), 𝑇𝐵2(𝑦2))} 

 = max{(𝑇𝐵1 ∘ 𝑇𝐵2)(𝑥1, 𝑦1), (𝑇𝐵1 ∘ 𝑇𝐵2)(𝑥2, 𝑦2)} 
 

(𝐼𝐶𝑖1 ∘ 𝐼𝐶𝑖2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = 𝑟𝑚𝑖𝑛(𝐼𝐴2(𝑦1), 𝐼𝐴2(𝑦2), 𝐼𝐶𝑖1(𝑥1𝑥2)) 

 ⪯ 𝑟𝑚𝑖𝑛{𝐼𝐴2(𝑦1), 𝐼𝐴2(𝑦2), 𝑟𝑚𝑖𝑛(𝐼𝐴1(𝑥1), 𝐼𝐴1(𝑥2)} 

 = 𝑟𝑚𝑖𝑛{(𝐼𝐴1(𝑥1), 𝐼𝐴2(𝑦1)), (𝐼𝐴1(𝑥2), 𝐼𝐴2(𝑦2))} 

 = 𝑟𝑚𝑖𝑛{(𝐼𝐴1 ∘ 𝐼𝐴2)(𝑥1, 𝑦1), (𝐼𝐴1 ∘ 𝐼𝐴2)(𝑥2, 𝑦2)} 

(𝐼𝐷𝑖1 ∘ 𝐼𝐷𝑖2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = max(𝐼𝐵2(𝑦1), 𝐼𝐵2(𝑦2), 𝐼𝐷𝑖1(𝑥1𝑥2)) 

 ≤ max{𝐼𝐵2(𝑦1), 𝐼𝐵2(𝑦2),max(𝐼𝐵1(𝑥1), 𝐼𝐵1(𝑥2)} 

 = max{(𝐼𝐵1(𝑥1), 𝐼𝐵2(𝑦1)), (𝐼𝐵1(𝑥2), 𝐼𝐵2(𝑦2))} 

 = max{(𝐼𝐵1 ∘ 𝐼𝐵2)(𝑥1, 𝑦1), (𝐼𝐵1 ∘ 𝐼𝐵2)(𝑥2, 𝑦2)} 
 

(𝐹̃𝐶𝑖1 ∘ 𝐹̃𝐶𝑖2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = 𝑟𝑚𝑎𝑥(𝐹̃𝐴2(𝑦1), 𝐹̃𝐴2(𝑦2), 𝐹̃𝐶𝑖1(𝑥1𝑥2)) 

 ⪯ 𝑟𝑚𝑎𝑥{𝐹̃𝐴2(𝑦1), 𝐹̃𝐴2(𝑦2), 𝑟𝑚𝑎𝑥(𝐹̃𝐴1(𝑥1), 𝐹̃𝐴1(𝑥2)} 

 = 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1(𝑥1), 𝐹̃𝐴2(𝑦1)), (𝐹̃𝐴1(𝑥2), 𝐹̃𝐴2(𝑦2))} 

 = 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1 ∘ 𝐹̃𝐴2)(𝑥1, 𝑦1), (𝐹̃𝐴1 ∘ 𝐹̃𝐴2)(𝑥2, 𝑦2)} 

(𝐹𝐷𝑖1 ∘ 𝐹𝐷𝑖2)((𝑥1, 𝑦1)(𝑥2, 𝑦2)) = min(𝐹𝐵2(𝑦1), 𝐹𝐵2(𝑦2), 𝐹𝐷𝑖1(𝑥1𝑥2)) 

 ≤ min{𝐹𝐵2(𝑦1), 𝐹𝐵2(𝑦2),min(𝐹𝐵1(𝑥1), 𝐹𝐵1(𝑥2)} 

 = min{(𝐹𝐵1(𝑥1), 𝐹𝐵2(𝑦1)), (𝐹𝐵1(𝑥2), 𝐹𝐵2(𝑦2))} 

 = min{(𝐹𝐵1 ∘ 𝐹𝐵2)(𝑥1, 𝑦1), (𝐹𝐵1 ∘ 𝐹𝐵2)(𝑥2, 𝑦2)} 

for (𝑥1, 𝑦1), (𝑥1, 𝑦2) ∈ 𝑉1 ∘ 𝑉2 for 𝑖 ∈ 1,2, . . . , 𝑛. This proves the result.  

Definition 3.6 Let 𝐺̆𝑆1 = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 =
(𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) be two neutrosophic cubic graph structures defined 

on 𝐺̆1
∗ = (𝑉1, 𝐸11, 𝐸12, . . . , 𝐸1𝑛) and 𝐺̆2

∗ = (𝑉2, 𝐸21, 𝐸22, . . . , 𝐸2𝑛) 
respectively. P-union is denoted by 𝐺̆𝑆1 ∪𝑃 𝐺̃𝑆2 and is defined as 

𝐺̆𝑆1 ∪𝑃 𝐺̆𝑆2 = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1) ∪𝑃 (𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) 
 =

(𝑀1 ∪𝑃 𝑀2, 𝑁11 ∪𝑃 𝑁12,𝑁21 ∪𝑃 𝑁22, . . . , 𝑁𝑛1 ∪𝑃 𝑁𝑛2) 
 = ((𝐴1, 𝐵1) ∪𝑃 (𝐴2, 𝐵2), (𝐶11, 𝐷11) ∪𝑃 (𝐶12, 𝐷12), 
 

(𝐶21, 𝐷21) ∪𝑃 (𝐶22, 𝐷22), . . . , (𝐶𝑛1, 𝐷𝑛1) ∪𝑃 (𝐶𝑛2, 𝐷𝑛2)) 
 =

((𝐴1 ∪𝑃 𝐴2, 𝐵1 ∪𝑃 𝐵2, ), (𝐶11 ∪𝑃 𝐶12, 𝐷11 ∪𝑃 𝐷12), 
 

(𝐶21 ∪𝑃 𝐶22, 𝐷21 ∪𝑃 𝐷22), . . . , (𝐶𝑛1 ∪𝑃 𝐶𝑛2, 𝐷𝑛1 ∪𝑃 𝐷𝑛2)) 

 =

{
 
 

 
 
((𝑇̃𝐴1∪𝑃𝐴2 , 𝑇𝐵1∪𝑃𝐵2), (𝐼𝐴1∪𝑃𝐴2 , 𝐼𝐵1∪𝑃𝐵2), (𝐹̃𝐴1∪𝑃𝐴2 , 𝐹𝐵1∪𝑃𝐵2)),

((𝑇̃𝐶11∪𝑃𝐶12 , 𝑇𝐷11∪𝑃𝐷12), (𝐼𝐶11∪𝑃𝐶12 , 𝐼𝐷11∪𝑃𝐷12), (𝐹̃𝐶11∪𝑃𝐶12 , 𝐹𝐷11∪𝑃𝐷12),

(𝑇̃𝐶21∪𝑃𝐶22 , 𝑇𝐷21∪𝑃𝐷22), (𝐼𝐶21∪𝑃𝐶22 , 𝐼𝐷21∪𝑃𝐷22), (𝐹̃𝐶21∪𝑃𝐶22 , 𝐹𝐷21∪𝑃𝐷22), . . . ,

(𝑇̃𝐶𝑛1∪𝑃𝐶𝑛2 , 𝑇𝐷𝑛1∪𝑃𝐷𝑛2), (𝐼𝐶𝑛1∪𝑃𝐶𝑛2 , 𝐼𝐷𝑛1∪𝑃𝐷𝑛2), (𝐹̃𝐶𝑛1∪𝑃𝐶𝑛2 , 𝐹𝐷𝑛1∪𝑃𝐷𝑛2)) }
 
 

 
 

 

where 

(𝑇̃𝐴1 ∪𝑃 𝑇̃𝐴2)(𝑥) = {

𝑇̃𝐴1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2

𝑇̃𝐴2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

(𝑇𝐵1 ∪𝑃 𝑇𝐵2)(𝑥) = {

𝑇𝐵1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2
𝑇𝐵2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1
max{𝑇𝐵1(𝑥), 𝑇𝐵2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

 

(𝐼𝐴1 ∪𝑃 𝐼𝐴2)(𝑥) = {

𝐼𝐴1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2

𝐼𝐴2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝐼𝐴1(𝑥), 𝐼𝐴2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

(𝐼𝐵1 ∪𝑃 𝐼𝐵2)(𝑥) = {

𝐼𝐵1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2
𝐼𝐵2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1
max{𝐼𝐵1(𝑥), 𝐼𝐵2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

 

(𝐹̃𝐴1 ∪𝑃 𝐹̃𝐴2)(𝑥) = {

𝐹̃𝐴1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2

𝐹̃𝐴2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝐹̃𝐴1(𝑥), 𝐹̃𝐴2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

(𝐹𝐵1 ∪𝑃 𝐹𝐵2)(𝑥) = {

𝐹𝐵1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2
𝐹𝐵2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1
max{𝐹𝐵1(𝑥), 𝐹𝐵2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

 

(𝑇̃𝐶𝑛1 ∪𝑃 𝑇̃𝐶𝑛2)(𝑥2𝑦2) = {

𝑇̃𝐶𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2

𝑇̃𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝑇̃𝐶𝑛1(𝑥2𝑦2), 𝑇̃𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

(𝑇𝐷𝑛1 ∪𝑃 𝑇𝐷𝑛2)(𝑥2𝑦2) = {

𝑇𝐷𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2
𝑇𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1
max{𝑇𝐷𝑛1(𝑥2𝑦2), 𝑇𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

 

(𝐼𝐶𝑛1 ∪𝑃 𝐼𝐶𝑛2)(𝑥2𝑦2) = {

𝐼𝐶𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2

𝐼𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝐼𝐶𝑛1(𝑥2𝑦2), 𝐼𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

 (𝐼𝐷𝑛1 ∪𝑃 𝐼𝐷𝑛2)(𝑥2𝑦2) =

{

𝐼𝐷𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2
𝐼𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1
max{𝐼𝐷𝑛1(𝑥2𝑦2), 𝐼𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

 

(𝐹̃𝐶𝑛1 ∪𝑃 𝐹̃𝐶𝑛2)(𝑥2𝑦2) = {

𝐹̃𝐶𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2

𝐹̃𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝐹̃𝐶𝑛1(𝑥2𝑦2), 𝐹̃𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

 (𝐹𝐷𝑛1 ∪𝑃 𝐹𝐷𝑛2)(𝑥2𝑦2) =

{

𝐹𝐷𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2
𝐹𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1
max{𝐹𝐷𝑛1(𝑥2𝑦2), 𝐹𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

and R-union is denoted by 𝐺̆𝑆1 ∪𝑅 𝐺̃𝑆2 and is defined as 

𝐺̆𝑆1 ∪𝑅 𝐺̆𝑆2 = (𝑀1, 𝑁11,𝑁21, . . . , 𝑁𝑛1) ∪𝑅 (𝑀2,𝑁12, 𝑁22, . . . , 𝑁𝑛2) 
 =

(𝑀1 ∪𝑅 𝑀2, 𝑁11 ∪𝑅 𝑁12, 𝑁21 ∪𝑅 𝑁22, . . . , 𝑁𝑛1 ∪𝑅 𝑁𝑛2) 
 =

{
(𝐴1, 𝐵1) ∪𝑅 (𝐴2, 𝐵2), (𝐶11, 𝐷11) ∪𝑅 (𝐶12, 𝐷12),
(𝐶21, 𝐷21) ∪𝑅 (𝐶22, 𝐷22), . . . , (𝐶𝑛1, 𝐷𝑛1) ∪𝑅 (𝐶𝑛2, 𝐷𝑛2)

} 

 =

{
(𝐴1 ∪𝑅 𝐴2, 𝐵1 ∪𝑅 𝐵2, ), (𝐶11 ∪𝑅 𝐶12, 𝐷11 ∪𝑅 𝐷12),
(𝐶21 ∪𝑅 𝐶22, 𝐷21 ∪𝑅 𝐷22), . . . , (𝐶𝑛1 ∪𝑅 𝐶𝑛2, 𝐷𝑛1 ∪𝑅 𝐷𝑛2)

} 
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 =

{
 
 

 
 
((𝑇̃𝐴1∪𝑅𝐴2 , 𝑇𝐵1∪𝑅𝐵2), (𝐼𝐴1∪𝑅𝐴2 , 𝐼𝐵1∪𝑅𝐵2), (𝐹̃𝐴1∪𝑅𝐴2 , 𝐹𝐵1∪𝑅𝐵2)),

((𝑇̃𝐶11∪𝑅𝐶12 , 𝑇𝐷11∪𝑅𝐷12), (𝐼𝐶11∪𝑅𝐶12 , 𝐼𝐷11∪𝑅𝐷12), (𝐹̃𝐶11∪𝑅𝐶12 , 𝐹𝐷11∪𝑅𝐷12),

(𝑇̃𝐶21∪𝑅𝐶22 , 𝑇𝐷21∪𝑅𝐷22), (𝐼𝐶21∪𝑅𝐶22 , 𝐼𝐷21∪𝑅𝐷22), (𝐹̃𝐶21∪𝑅𝐶22 , 𝐹𝐷21∪𝑅𝐷22), . . . ,

(𝑇̃𝐶𝑛1∪𝑅𝐶𝑛2 , 𝑇𝐷𝑛1∪𝑅𝐷𝑛2), (𝐼𝐶𝑛1∪𝑅𝐶𝑛2 , 𝐼𝐷𝑛1∪𝑅𝐷𝑛2), (𝐹̃𝐶𝑛1∪𝑅𝐶𝑛2 , 𝐹𝐷𝑛1∪𝑅𝐷𝑛2)) }
 
 

 
 

 

 

(𝑇̃𝐴1 ∪𝑅 𝑇̃𝐴2)(𝑥) = {

𝑇̃𝐴1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2

𝑇̃𝐴2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

(𝑇𝐵1 ∪𝑅 𝑇𝐵2)(𝑥) = {

𝑇𝐵1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2
𝑇𝐵2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1
min{𝑇𝐵1(𝑥), 𝑇𝐵2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

 

(𝐼𝐴1 ∪𝑅 𝐼𝐴2)(𝑥) = {

𝐼𝐴1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2

𝐼𝐴2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝐼𝐴1(𝑥), 𝐼𝐴2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

(𝐼𝐵1 ∪𝑅 𝐼𝐵2)(𝑥) = {

𝐼𝐵1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2
𝐼𝐵2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1
min{𝐼𝐵1(𝑥), 𝐼𝐵2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

 

(𝐹̃𝐴1 ∪𝑅 𝑀𝑇𝐹2
)(𝑥) = {

𝐹̃𝐴1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2

𝐹̃𝐴2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝐹̃𝐴1(𝑥), 𝐹̃𝐴2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

 (𝐹𝐵1 ∪𝑅 𝐹𝐵2)(𝑥) =

{

𝐹𝐵1(𝑥)if𝑥 ∈ 𝑉1 − 𝑉2
𝐹𝐵2(𝑥)if𝑥 ∈ 𝑉2 − 𝑉1
min{𝐹𝐵1(𝑥), 𝐹𝐵2(𝑥)}if𝑥 ∈ 𝑉1 ∩ 𝑉2

 

 

 (𝑇̃𝐶𝑛1 ∪𝑅 𝑇̃𝐶𝑛2)(𝑥2𝑦2) =

{

𝑇̃𝐶𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2

𝑇̃𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝑇̃𝐶𝑛1(𝑥2𝑦2), 𝑇̃𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

 (𝑇𝐷𝑛1 ∪𝑅 𝑁𝐷𝑛2)(𝑥2𝑦2) =

{

𝑇𝐷𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2
𝑇𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1
min{𝑇𝐷𝑛1(𝑥2𝑦2), 𝑇𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

 

 (𝐼𝐶𝑛1 ∪𝑅 𝐼𝐶𝑛2)(𝑥2𝑦2) =

{

𝐼𝐶𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2

𝐼𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝐼𝐶𝑛1(𝑥2𝑦2), 𝐼𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

 (𝐼𝐷𝑛1 ∪𝑅 𝐼𝐷𝑛2)(𝑥2𝑦2) =

{

𝐼𝐷𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2
𝐼𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1
min{𝐼𝐷𝑛1(𝑥2𝑦2), 𝐼𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

 

 (𝐹̃𝐶𝑛1 ∪𝑅 𝐹̃𝐶𝑛2)(𝑥2𝑦2) =

{

𝐹̃𝐶𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2

𝐹̃𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1

𝑟𝑚𝑎𝑥{𝐹̃𝐶𝑛1(𝑥2𝑦2), 𝐹̃𝐶𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

 (𝐹𝐷𝑛1 ∪𝑅 𝐹𝐷𝑛2)(𝑥2𝑦2) =

{

𝐹𝐷𝑛1(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉1 − 𝑉2
𝐹𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝑉2 − 𝑉1
min{𝐹𝐷𝑛1(𝑥2𝑦2), 𝐹𝐷𝑛2(𝑥2𝑦2)if𝑥2𝑦2 ∈ 𝐸1 ∩ 𝐸2

 

 

Example: Let 𝐺̆𝑠1 = (𝑀1, 𝑁11, 𝑁21) and 𝐺̆𝑠2 = (𝑀2,𝑁12, 𝑁22) be two 

neutrosophic cubic graph structures defined on 𝐺̆1
∗ and 𝐺̆2

∗ respectively, 

where 

 𝑙𝑀1 =

⟨

{𝑎, ([0.3,0.4],0.8), ([0.5,0.6],0.2), ([0.4,0.5],0.4)},
{𝑏, ([0.6,0.7],0.2), ([0.1,0.2],0.8), ([0.5,0.6],0.5)},
{𝑐, ([0.4,0.5],0.3), ([0.7,0.8],0.4), ([0.2,0.3],0.3)}

⟩𝑁11 =

⟨
{𝑎𝑏, ([0.3,0.4],0.8), ([0.1,0.2],0.8), ([0.5,0.6],0.4)},

{𝑏𝑐, ([0.4,0.5],0.3), ([0.1,0.2],0.8), ([0.5,0.6],0.3)}
⟩𝑁21 =

⟨{𝑎𝑐, ([0.3,0.4],0.8), ([0.5,0.6],0.4), ([0.4,0.5],0.3)}⟩ 

 
 

and 

 𝑙𝑀2 =

⟨

{𝑎, ([0.2,0.4],0.7), ([0.4,0.5],0.3), ([0.7,0.8],0.4)},
{𝑏, ([0.5,0.6],0.3), ([0.2,0.3],0.6), ([0.5,0.6]),0.2)},
{𝑐, ([0.4,0.5],0.4), ([0.1,0.2],0.8), ([0.6,0.7],0.1)}

⟩𝑁12 =

⟨
{𝑎𝑏, ([0.2,0.4],0.7), ([0.2,0.3],0.6), ([0.7,0.8],0.2)},

{𝑏𝑐, ([0.4,0.5],0.4), ([0.1,0.2],0.8), ([0.6,0.7],0.1)}
⟩𝑁22 =

⟨{𝑎𝑐, ([0.2,0.4],0.7), ([0.1,0.2],0.8), ([0.7,0.8],0.1)}⟩ 

 
 

Then 𝐺̆𝑠1 ∪𝑃 𝐺̆𝑠2 will be 

 𝑀1 ∪𝑃 𝑀2 =

⟨

{𝑎, ([0.3,0.4],0.8), ([0.5,0.6],0.3), ([0.7,0.8],0.4)},
{𝑏, ([0.6,0.7],0.3), ([0.2,0.3],0.8), ([0.5,0.6],0.5)},
{𝑐, ([0.4,0.5],0.4), ([0.7,0.8],0.8), ([0.6,0.7],0.3)}

⟩ 

 𝑁11 ∪𝑃 𝑁12 =

⟨
{𝑎𝑏, ([0.3,0.4],0.8), ([0.2,0.3],0.8), ([0.7,0.8],0.4)},

{𝑏𝑐, ([0.4,0.5],0.4), ([0.1,0.2],0.8), ([0.6,0.7],0.3)}
⟩ 

 𝑁21 ∪𝑃 𝑁22 =
⟨{𝑎𝑐, ([0.3,0.4],0.8), ([0.5,0.6],0.8), ([0.7,0.8],0.3)}⟩ 
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and 𝐺̆𝑠1 ∪𝑅 𝐺̆𝑠2 will be 

 𝑀1 ∪𝑅 𝑀2 =

⟨

{𝑎, ([0.3,0.4],0.7), ([0.5,0.6],0.2), ([0.7,0.8],0.4)},
{𝑏, ([0.6,0.7],0.2), ([0.2,0.3],0.6), ([0.5,0.6],0.2)},
{𝑐, ([0.4,0.5],0.3), ([0.7,0.8],0.4), ([0.6,0.7],0.1)}

⟩ 

 𝑁11 ∪𝑅 𝑁12 =

⟨
{𝑎𝑏, ([0.3,0.4],0.7), ([0.2,0.3],0.6), ([0.7,0.8],0.2)},

{𝑏𝑐, ([0.4,0.5],0.3), ([0.1,0.2],0.8), ([0.6,0.7],0.1)}
⟩ 

 𝑁21 ∪𝑅 𝑁22 =
⟨{𝑎𝑐, ([0.3,0.4],0.7), ([0.5,0.6],0.4), ([0.7,0.8],0.1)}⟩.  

 
 

Proposition 3.7 The P-union of two neutrosophic cubic graph structures is 

again a neutrosophic cubic graph structure.  

Proof.Let 𝐺̆𝑆1 = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 = (𝑀2,𝑁12, 𝑁22, . . . , 𝑁𝑛2) 
be two neutrosophic cubic graph structures defined on 𝐺̆1

∗ =
(𝑉1, 𝐸11, 𝐸12, . . . , 𝐸1𝑛) and 𝐺̆2

∗ = (𝑉2, 𝐸21, 𝐸22, . . . , 𝐸2𝑛) respectively.Since all 

the conditions for 𝑀1 ∪𝑃 𝑀2 are satisfied automatically hence, we only 

verify conditions for 𝑁1𝑖 ∪𝑃 𝑁2𝑖; 𝑖 ∈ 1,2, . . . , 𝑛. Let 𝑥𝑦 ∈ 𝐸1𝑖 ∩ 𝐸2𝑖 then 

(𝑇̃𝐶𝑖1 ∪𝑃 𝑇̃𝐶𝑖2)(𝑥𝑦) = 𝑟𝑚𝑎𝑥{𝑇̃𝐶𝑖1(𝑥𝑦), 𝑇̃𝐶𝑖2(𝑥𝑦)} 

 ⪯
𝑟𝑚𝑎𝑥{𝑟𝑚𝑖𝑛{𝑇̃𝐴1(𝑥), 𝑇̃𝐴1(𝑦)}, 𝑟𝑚𝑖𝑛{𝑇̃𝐴2(𝑥), 𝑇̃𝐴2(𝑦)}} 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑎𝑥{𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑥)}, 𝑟𝑚𝑎𝑥{𝑇̃𝐴1(𝑦), 𝑇̃𝐴2(𝑦)}} 

 = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 ∪𝑃 𝑇̃𝐴2)(𝑥), (𝑇̃𝐴1 ∪𝑃 𝑇̃𝐴2)(𝑦)} 

 (𝑇𝐷𝑖1 ∪𝑃 𝑇𝐷𝑖2)(𝑥𝑦) = max{𝑇𝐷𝑖1(𝑥𝑦), 𝑇𝐷𝑖2(𝑥𝑦)} 

 ≤ max{max{𝑇𝐵1(𝑥), 𝑇𝐵1(𝑦)},max{𝑇𝐵2(𝑥), 𝑇𝐵2(𝑦)}} 

 = max{max{𝑇𝐵1(𝑥), 𝑇𝐵2(𝑥)},max{𝑇𝐵1(𝑦), 𝑇𝐵2(𝑦)}} 

 = max{(𝑇𝐵1 ∪𝑃 𝑇𝐵2)(𝑥), (𝑇𝐵1 ∪𝑃 𝑇𝐵2)(𝑦)} 

(𝐼𝐶𝑖1 ∪𝑃 𝐼𝐶𝑖2)(𝑥𝑦) = 𝑟𝑚𝑎𝑥{𝐼𝐶𝑖1(𝑥𝑦), 𝐼𝐶𝑖2(𝑥𝑦)} 

 ⪯
𝑟𝑚𝑎𝑥{𝑟𝑚𝑖𝑛{𝐼𝐴1(𝑥), 𝐼𝐴1(𝑦)}, 𝑟𝑚𝑖𝑛{𝐼𝐴2(𝑥), 𝐼𝐴2(𝑦)}} 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑎𝑥{𝐼𝐴1(𝑥), 𝐼𝐴2(𝑥)}, 𝑟𝑚𝑎𝑥{𝐼𝐴1(𝑦), 𝐼𝐴2(𝑦)}} 

 = 𝑟𝑚𝑖𝑛{(𝐼𝐴1 ∪𝑃 𝐼𝐴2)(𝑥), (𝐼𝐴1 ∪𝑃 𝐼𝐴2)(𝑦)} 

 (𝐼𝐷𝑖1 ∪𝑃 𝐼𝐷𝑖2)(𝑥𝑦) = max{𝐼𝐷𝑖1(𝑥𝑦), 𝐼𝐷𝑖2(𝑥𝑦)} 

 ≤
max{𝑟𝑚𝑎𝑥{𝐼𝐵1(𝑥), 𝐼𝐵1(𝑦)}, 𝑟𝑚𝑎𝑥{𝐼𝐵2(𝑥), 𝐼𝐵2(𝑦)}} 

 =
max{𝑟𝑚𝑎𝑥{𝐼𝐵1(𝑥), 𝐼𝐵2(𝑥)}, 𝑟𝑚𝑎𝑥{𝐼𝐵1(𝑦), 𝐼𝐵2(𝑦)}} 

 = max{(𝐼𝐵1 ∪𝑃 𝐼𝐵2)(𝑥), (𝐼𝐵1 ∪𝑃 𝐼𝐵2)(𝑦)} 

(𝐹̃𝐶𝑖1 ∪𝑃 𝐹̃𝐶𝑖2)(𝑥𝑦) = 𝑟𝑚𝑎𝑥{𝐹̃𝐶𝑖1(𝑥𝑦), 𝐹̃𝐶𝑖2(𝑥𝑦)} 

 ⪯
𝑟𝑚𝑎𝑥{𝑟𝑚𝑎𝑥{𝐹̃𝐴1(𝑥), 𝐹̃𝐴1(𝑦)}, 𝑟𝑚𝑎𝑥{𝐹̃𝐴2(𝑥), 𝐹̃𝐴2(𝑦)}} 

 =
𝑟𝑚𝑎𝑥{𝑟𝑚𝑎𝑥{𝐹̃𝐴1(𝑥), 𝐹̃𝐴2(𝑥)}, 𝑟𝑚𝑎𝑥{𝐹̃𝐴1(𝑦), 𝐹̃𝐴2(𝑦)}} 

 = 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1 ∪𝑃 𝐹̃𝐴2)(𝑥), (𝐹̃𝐴1 ∪𝑃 𝐹̃𝐴2)(𝑦)} 

(𝐹𝐷𝑖1 ∪𝑃 𝐹𝐷𝑖2)(𝑥𝑦) = max{𝐹𝐷𝑖1(𝑥𝑦), 𝐹𝐷𝑖2(𝑥𝑦)} 

 ≤ max{min{𝐹𝐵1(𝑥), 𝐹𝐵1(𝑦)},min{𝐹𝐵2(𝑥), 𝐹𝐵2(𝑦)}} 

 = min{max{𝐹𝐵1(𝑥), 𝐹𝐵2(𝑥)},max{𝐹𝐵1(𝑦), 𝐹𝐵2(𝑦)}} 

 = min{(𝐹𝐵1 ∪𝑃 𝐹𝐵2)(𝑥), (𝐹𝐵1 ∪𝑃 𝐹𝐵2)(𝑦)} 

If 𝑥𝑦 ∈ 𝐸𝑖1 and 𝑥𝑦 ∉ 𝐸𝑖2, then 

(𝑇̃𝐶𝑖1 ∪𝑃 𝑇̃𝐶𝑖2)(𝑥𝑦) ⪯ 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 ∪𝑃 𝑇̃𝐴2)(𝑥), (𝑇̃𝐴1 ∪𝑃 𝑇̃𝐴2)(𝑦)} 

(𝑇𝐷𝑖1 ∪𝑃 𝑇𝐷𝑖2)(𝑥𝑦) = max{(𝑇𝐵1 ∪𝑃 𝑇𝐵2)(𝑥), (𝑇𝐵1 ∪𝑃 𝑇𝐵2)(𝑦)} 

(𝐼𝐶𝑖1 ∪𝑃 𝐼𝐶𝑖2)(𝑥𝑦) ⪯ 𝑟𝑚𝑖𝑛{(𝐼𝐴1 ∪𝑃 𝐼𝐴2)(𝑥), (𝐼𝐴1 ∪𝑃 𝐼𝐴2)(𝑦)} 

(𝐼𝐷𝑖1 ∪𝑃 𝐼𝐷𝑖2)(𝑥𝑦) = max{(𝐼𝐵1 ∪𝑃 𝐼𝐵2)(𝑥), (𝐼𝐵1 ∪𝑃 𝐼𝐵2)(𝑦)} 

(𝐹̃𝐶𝑖1 ∪𝑃 𝐹̃𝐶𝑖2)(𝑥𝑦) ⪯ 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1 ∪𝑃 𝐹̃𝐴2)(𝑥), (𝐹̃𝐴1 ∪𝑃 𝐹̃𝐴2)(𝑦)} 

(𝐹𝐷𝑖1 ∪𝑃 𝐹𝐷𝑖2)(𝑥𝑦) = min{(𝐹𝐵1 ∪𝑃 𝐹𝐵2)(𝑥), (𝐹𝐵1 ∪𝑃 𝐹𝐵2)(𝑦)} 

If 𝑥𝑦 ∉ 𝐸𝑖1 and 𝑥𝑦 ∈ 𝐸𝑖2, then 

(𝑇̃𝐶𝑖1 ∪𝑃 𝑇̃𝐶𝑖2)(𝑥𝑦) ⪯ 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 ∪𝑃 𝑇̃𝐴2)(𝑥), (𝑇̃𝐴1 ∪𝑃 𝑇̃𝐴2)(𝑦)} 

(𝑇𝐷𝑖1 ∪𝑃 𝑇𝐷𝑖2)(𝑥𝑦) = max{(𝑇𝐵1 ∪𝑃 𝑇𝐵2)(𝑥), (𝑇𝐵1 ∪𝑃 𝑇𝐵2)(𝑦)} 

(𝐼𝐶𝑖1 ∪𝑃 𝐼𝐶𝑖2)(𝑥𝑦) ⪯ 𝑟𝑚𝑖𝑛{(𝐼𝐴1 ∪𝑃 𝐼𝐴2)(𝑥), (𝐼𝐴1 ∪𝑃 𝐼𝐴2)(𝑦)} 

(𝐼𝐷𝑖1 ∪𝑃 𝐼𝐷𝑖2)(𝑥𝑦) = max{(𝐼𝐵1 ∪𝑃 𝐼𝐵2)(𝑥), (𝐼𝐵1 ∪𝑃 𝐼𝐵2)(𝑦)} 

(𝐹̃𝐶𝑖1 ∪𝑃 𝐹̃𝐶𝑖2)(𝑥𝑦) ⪯ 𝑟𝑚𝑎𝑥{(𝐹̃𝐴1 ∪𝑃 𝐹̃𝐴2)(𝑥), (𝐹̃𝐴1 ∪𝑃 𝐹̃𝐴2)(𝑦)} 

(𝐹𝐷𝑖1 ∪𝑃 𝐹𝐷𝑖2)(𝑥𝑦) = min{(𝐹𝐵1 ∪𝑃 𝐹𝐵2)(𝑥), (𝐹𝐵1 ∪𝑃 𝐹𝐵2)(𝑦)} 

Hence the P-union of two nuetrosophic cubic graphs is a neutrosophic cubic 

graph.  

 

Remark 3.8 R-union of two neutrosophic cubic graph structures may not 

be a neutrosophic cubic graph structure as in above example  

𝐼𝐷11∪𝑅𝐷12(𝑎𝑏) = 0.8 ≰ max{0.6,0.4} = max{𝐼𝐵1∪𝑅𝐵2(𝑎), 𝐼𝐵1∪𝑅𝐵2(𝑏)} 
so it is not a neutrosophic cubic graph structure.  

Proposition 3.9: Let 𝐺∗ =
(𝑉1 ∪𝑃 𝑉2, 𝐸11 ∪𝑃 𝐸12, 𝐸21 ∪𝑃 𝐸22, . . . , 𝐸𝑛1 ∪𝑃 𝐸𝑛2) be the P-union of 𝐺1

∗ =
(𝑉1, 𝐸11, 𝐸21, . . . , 𝐸𝑛1) and 𝐺2

∗ = (𝑉2, 𝐸12, 𝐸22, . . . , 𝐸𝑛2). Then every 

neutrosophic cubic graph structure 𝐺̆𝑆 = (𝑀,𝑁1, 𝑁2, . . . , 𝑁𝑛) of the 𝐺∗ is the 

P-union of a neutrosophic cubic graph structure 𝐺̆𝑆1 of 𝐺1
∗ and a 

neutrosophic cubic graph structure 𝐺̆𝑆2 of 𝐺2
∗.  

Proof. We define M1, 𝑀2, 𝑁𝑖1 and 𝑁𝑖2 for 𝑖 = 1,2, . . . , 𝑛 as; 

if 𝑥 ∈ 𝑉1 

 𝑇̆𝐴1(𝑥) = 𝑇̆𝐴(𝑥) 

 𝑇𝐵1(𝑥) = 𝑇𝐵(𝑥) 

if 𝑥 ∈ 𝑉2 

 𝑇̆𝐴2(𝑥) = 𝑇̆𝐴(𝑥) 

 𝑇𝐵2(𝑥) = 𝑇𝐵(𝑥) 

if 𝑥𝑦 ∈ 𝐸𝑖1 

 𝑇̆𝐶𝑖1(𝑥𝑦) = 𝑇̆𝐶𝑖(𝑥𝑦) 

 𝑇̆𝐷𝑖1(𝑥𝑦) = 𝑇̆𝐷𝑖(𝑥𝑦) 

if 𝑥𝑦 ∈ 𝐸𝑖2 

 𝑇̆𝐶𝑖2(𝑥𝑦) = 𝑇̆𝐶𝑖(𝑥𝑦) 

 𝑇̆𝐷𝑖2(𝑥𝑦) = 𝑇̆𝐷𝑖(𝑥𝑦) 

so that 𝑀1,𝑀2, 𝐸𝑖1 and 𝐸𝑖2 are neutosophic cubic sets on 𝑉1, 𝑉2, 𝐸𝑖1 and 𝐸𝑖2 

also 𝑀 = 𝑀1 ∪𝑃 𝑀2 and 𝑁𝑖 = 𝑁𝑖1 ∪𝑃 𝑁𝑖2 for 𝑖 = 1,2, . . . , 𝑛. Now for 𝑥𝑦 ∈
𝐸𝑖𝑗 ; 𝑗 = 1,2 and 𝑖 = 1,2, . . . , 𝑛, we have  

 𝑇̆𝐶𝑖𝑗(𝑥𝑦) = 𝑇̆𝐶𝑖(𝑥𝑦) 

 ⪯ 𝑟𝑚𝑖𝑛{𝑇̆𝐴(𝑥), 𝑇̆𝐴(𝑦)} 
 = 𝑟𝑚𝑖𝑛{𝑇̆𝐴𝑗(𝑥), 𝑇̆𝐴𝑗(𝑦)} 

 

 𝑇𝐷𝑖𝑗(𝑥𝑦) = 𝑇𝐷𝑖(𝑥𝑦) 
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 ⪯ 𝑟𝑚𝑖𝑛{𝑇𝐵(𝑥), 𝑇𝐵(𝑦)} 
 = 𝑟𝑚𝑖𝑛{𝑇𝐵𝑗(𝑥), 𝑇𝐵𝑗(𝑦)} 

Similarly we can prove it for (𝐼, 𝐼) and (𝐹̆, 𝐹). So 𝐺̆𝑠𝑗 =

(𝑀𝑗 , 𝑁1𝑗 , 𝑁2𝑗 , . . . , 𝑁𝑛𝑗) is a neutrosophic cubic graph structure of 𝐺𝐽
∗; 𝑗 =

1,2. Thus a nuetrosophic cubic graph structure of 𝐺∗ = 𝐺1
∗ ∪𝑃 𝐺2

∗ is the P-

union of the neutrosophic cubic graph structures 𝐺1
∗ and 𝐺2

∗. This completes 
the proof.  

Definition 3.10:Let 𝐺̆𝑆1 = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 =
(𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) be two neutrosophic cubic graph structures defined 

on 𝐺̆1
∗ = (𝑉1, 𝐸11, 𝐸12, . . . , 𝐸1𝑛) and 𝐺̆2

∗ = (𝑉2, 𝐸21, 𝐸22, . . . , 𝐸2𝑛) 
respectively. P-join is denoted by 𝐺̆𝑆1+𝑃𝐺̆𝑆2 and is defined by 

𝐺̆𝑆1+𝑃𝐺̆𝑆2 = (𝑀1, 𝑁11,𝑁21, . . . , 𝑁𝑛1)+𝑃(𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) 
 =

(𝑀1+𝑃𝑀2, 𝑁11+𝑃𝑁12, 𝑁21+𝑃𝑁22, . . . , 𝑁𝑛1+𝑃𝑁𝑛2) 
 =

{
(𝐴1, 𝐵1)+𝑃(𝐴2, 𝐵2), (𝐶11, 𝐷11)+𝑃(𝐶12, 𝐷12),
(𝐶21, 𝐷21)+𝑃(𝐶22, 𝐷22), . . . , (𝐶𝑛1, 𝐷𝑛1)+𝑃(𝐶𝑛2, 𝐷𝑛2)

} 

 =

{
(𝐴1+𝑃𝐴2, 𝐵1+𝑃𝐵2, ), (𝐶11+𝑃𝐶12, 𝐷11+𝑃𝐷12),
(𝐶21+𝑃𝐶22, 𝐷21+𝑃𝐷22), . . . , (𝐶𝑛1+𝑃𝐶𝑛2, 𝐷𝑛1+𝑃𝐷𝑛2)

} 

 =

{
 
 

 
 
((𝑇̃𝐴1+𝑃𝐴2 , 𝑇𝐵1+𝑃𝐵2), (𝐼𝐴1+𝑃𝐴2 , 𝐼𝐵1+𝑃𝐵2), (𝐹̃𝐴1+𝑃𝐴2 , 𝐹𝐵1+𝑃𝐵2)),

((𝑇̃𝐶11+𝑃𝐶12 , 𝑇𝐷11+𝑃𝐷12), (𝐼𝐶11+𝑃𝐶12 , 𝐼𝐷11+𝑃𝐷12), (𝐹̃𝐶11+𝑃𝐶12 , 𝐹𝐷11+𝑃𝐷12),

(𝑇̃𝐶21+𝑃𝐶22 , 𝑇𝐷21+𝑃𝐷22), (𝐼𝐶21+𝑃𝐶22 , 𝐼𝐷21+𝑃𝐷22), (𝐹̃𝐶21+𝑃𝐶22 , 𝐹𝐷21+𝑃𝐷22), . . . ,

(𝑇̃𝐶𝑛1+𝑃𝐶𝑛2 , 𝑇𝐷𝑛1+𝑃𝐷𝑛2), (𝐼𝐶𝑛1+𝑃𝐶𝑛2 , 𝐼𝐷𝑛1+𝑃𝐷𝑛2), (𝐹̃𝐶𝑛1+𝑃𝐶𝑛2 , 𝐹𝐷𝑛1+𝑃𝐷𝑛2)) }
 
 

 
 

 

where (i) if 𝑥 ∈ 𝑉1 ∪ 𝑉2 

 
(𝑇̃𝐴1+𝑃𝑇̃𝐴2)(𝑥) = (𝑇̃𝐴1 ∪𝑃 𝑇̃𝐴2)(𝑥)

(𝑇𝐵1+𝑃𝑇𝐵2)(𝑥) = (𝑇𝐵1 ∪𝑃 𝑇𝐵2)(𝑥)
 

 
(𝐼𝐴1+𝑃𝐼𝐴2)(𝑥) = (𝐼𝐴1 ∪𝑃 𝐼𝐴2)(𝑥)

(𝐼𝐵1+𝑃𝐼𝐵2)(𝑥) = (𝐼𝐵1 ∪𝑃 𝐼𝐵2)(𝑥)
 

 
(𝐹̃𝐴1+𝑃𝐹̃𝐴2)(𝑥) = (𝐹̃𝐴1 ∪𝑃 𝐹̃𝐴2)(𝑥)

(𝐹𝐵1+𝑃𝐹𝐵2)(𝑥) = (𝐹𝐵1 ∪𝑃 𝐹𝐵2)(𝑥)
 

(ii) if 𝑥𝑦 ∈ 𝐸𝑖1 ∪ 𝐸𝑖2; 𝑖 = 1,2, . . . , 𝑛 

 
(𝑇̃𝐶𝑖1+𝑃𝑇̃𝐶𝑖2)(𝑥𝑦) = (𝑇̃𝐶𝑖1 ∪𝑃 𝑇̃𝐶𝑖2)(𝑥𝑦)

(𝑇𝐷𝑖1+𝑃𝑇𝐷𝑖2)(𝑥𝑦) = (𝑇𝐷𝑖1 ∪𝑃 𝑇𝐷𝑖2)(𝑥𝑦)
 

 
(𝐼𝐶𝑖1+𝑃𝐼𝐶𝑖2)(𝑥𝑦) = (𝐼𝐶𝑖1 ∪𝑃 𝐼𝐶𝑖2)(𝑥𝑦)

(𝐼𝐷𝑖1+𝑃𝐼𝐷𝑖2)(𝑥𝑦) = (𝐼𝐷𝑖1 ∪𝑃 𝐼𝐷𝑖2)(𝑥𝑦)
 

 
(𝐹̃𝐶𝑖1+𝑃𝐹̃𝐶𝑖2)(𝑥𝑦) = (𝐹̃𝐶𝑖1 ∪𝑃 𝐹̃𝐶𝑖2)(𝑥𝑦)

(𝐹𝐷𝑖1+𝑃𝐹𝐷𝑖2)(𝑥𝑦) = (𝐹𝐷𝑖1 ∪𝑃 𝐹𝐷𝑖2)(𝑥𝑦)
 

(iii) if 𝑥𝑦 ∈ 𝐸𝑖
∗, where 𝐸𝑖

∗ is the set of all edges joining the vertices of 𝑉1 and 

𝑉2;         𝑖 = 1,2, . . . , 𝑛 

 
(𝑇̃𝐶𝑖1+𝑃𝑇̃𝐶𝑖2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑦)}

(𝑇𝐷𝑖1+𝑃𝑇𝐷𝑖2)(𝑥𝑦) = min{𝑇𝐵1(𝑥), 𝑇𝐵2(𝑦)}
 

 
(𝐼𝐶𝑖1+𝑃𝐼𝐶𝑖2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝐼𝐴1(𝑥), 𝐼𝐴2(𝑦)}

(𝐼𝐷𝑖1+𝑃𝐼𝐷𝑖2)(𝑥𝑦) = min{𝐼𝐵1(𝑥), 𝐼𝐵2(𝑦)}
 

 
(𝐹̃𝐶𝑖1+𝑃𝐹̃𝐶𝑖2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝐹̃𝐴1(𝑥), 𝐹̃𝐴2(𝑦)}

(𝐹𝐷𝑖1+𝑃𝐹𝐷𝑖2)(𝑥𝑦) = min{𝐹𝐵1(𝑥), 𝐹𝐵2(𝑦)}
 

 

Definition 3.11 Let 𝐺̆𝑆1 = (𝑀1, 𝑁11,𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 =
(𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) be two neutrosophic cubic graph structures defined 

on 𝐺̆1
∗ = (𝑉1, 𝐸11, 𝐸12, . . . , 𝐸1𝑛) and 𝐺̆2

∗ = (𝑉2, 𝐸21, 𝐸22, . . . , 𝐸2𝑛) 
respectively. R-join is denoted by 𝐺̆𝑆1+𝑅𝐺̆𝑆2 and is defined by 

 𝐺̆𝑆1+𝑅𝐺̆𝑆2 =
(𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1)+𝑅(𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) 

 =
(𝑀1+𝑅𝑀2,𝑁11+𝑅𝑁12,𝑁21+𝑅𝑁22, . . . , 𝑁𝑛1+𝑅𝑁𝑛2) 

 =

{
(𝐴1, 𝐵1)+𝑅(𝐴2, 𝐵2), (𝐶11, 𝐷11)+𝑅(𝐶12, 𝐷12),
(𝐶21, 𝐷21)+𝑅(𝐶22, 𝐷22), . . . , (𝐶𝑛1, 𝐷𝑛1)+𝑅(𝐶𝑛2, 𝐷𝑛2)

} 

 =

{
(𝐴1+𝑅𝐴2, 𝐵1+𝑅𝐵2, ), (𝐶11+𝑅𝐶12, 𝐷11+𝑅𝐷12),
(𝐶21+𝑅𝐶22, 𝐷21+𝑅𝐷22), . . . , (𝐶𝑛1+𝑅𝐶𝑛2, 𝐷𝑛1+𝑅𝐷𝑛2)

} 

 =

{
 
 

 
 
((𝑇̃𝐴1+𝑅𝐴2 , 𝑇𝐵1+𝑅𝐵2), (𝐼𝐴1+𝑅𝐴2 , 𝐼𝐵1+𝑅𝐵2), (𝐹̃𝐴1+𝑅𝐴2 , 𝐹𝐵1+𝑅𝐵2)),

((𝑇̃𝐶11+𝑅𝐶12 , 𝑇𝐷11+𝑅𝐷12), (𝐼𝐶11+𝑅𝐶12 , 𝐼𝐷11+𝑅𝐷12), (𝐹̃𝐶11+𝑅𝐶12 , 𝐹𝐷11+𝑅𝐷12),

(𝑇̃𝐶21+𝑅𝐶22 , 𝑇𝐷21+𝑅𝐷22), (𝐼𝐶21+𝑅𝐶22 , 𝐼𝐷21+𝑅𝐷22), (𝐹̃𝐶21+𝑅𝐶22 , 𝐹𝐷21+𝑅𝐷22), . . . ,

(𝑇̃𝐶𝑛1+𝑅𝐶𝑛2 , 𝑇𝐷𝑛1+𝑅𝐷𝑛2), (𝐼𝐶𝑛1+𝑅𝐶𝑛2 , 𝐼𝐷𝑛1+𝑅𝐷𝑛2), (𝐹̃𝐶𝑛1+𝑅𝐶𝑛2 , 𝐹𝐷𝑛1+𝑅𝐷𝑛2)) }
 
 

 
 

 

where (i) if 𝑥 ∈ 𝑉1 ∪ 𝑉2 

 
(𝑇̃𝐴1+𝑅𝑇̃𝐴2)(𝑥) = (𝑇̃𝐴1 ∪𝑅 𝑇̃𝐴2)(𝑥)

(𝑇𝐵1+𝑅𝑇𝐵2)(𝑥) = (𝑇𝐵1 ∪𝑅 𝑇𝐵2)(𝑥)
 

 
(𝐼𝐴1+𝑅𝐼𝐴2)(𝑥) = (𝐼𝐴1 ∪𝑅 𝐼𝐴2)(𝑥)

(𝐼𝐵1+𝑅𝐼𝐵2)(𝑥) = (𝐼𝐵1 ∪𝑅 𝐼𝐵2)(𝑥)
 

 
(𝐹̃𝐴1+𝑅𝐹̃𝐴2)(𝑥) = (𝐹̃𝐴1 ∪𝑅 𝐹̃𝐴2)(𝑥)

(𝐹𝐵1+𝑅𝐹𝐵2)(𝑥) = (𝐹𝐵1 ∪𝑅 𝐹𝐵2)(𝑥)
 

(ii) if 𝑥𝑦 ∈ 𝐸𝑖1 ∪ 𝐸𝑖2; 𝑖 = 1,2, . . . , 𝑛 

 {
(𝑇̃𝐶𝑖1+𝑅𝑇̃𝐶𝑖2)(𝑥𝑦) = (𝑇̃𝐶𝑖1 ∪𝑅 𝑇̃𝐶𝑖2)(𝑥𝑦)

(𝑇𝐷𝑖1+𝑅𝑇𝐷𝑖2)(𝑥𝑦) = (𝑇𝐷𝑖1 ∪𝑅 𝑇𝐷𝑖2)(𝑥𝑦)
 

 {
(𝐼𝐶𝑖1+𝑅𝐼𝐶𝑖2)(𝑥𝑦) = (𝐼𝐶𝑖1 ∪𝑅 𝐼𝐶𝑖2)(𝑥𝑦)

(𝐼𝐷𝑖1+𝑅𝐼𝐷𝑖2)(𝑥𝑦) = (𝐼𝐷𝑖1 ∪𝑅 𝐼𝐷𝑖2)(𝑥𝑦)
 

 {
(𝐹̃𝐶𝑖1+𝑅𝐹̃𝐶𝑖2)(𝑥𝑦) = (𝐹̃𝐶𝑖1 ∪𝑅 𝐹̃𝐶𝑖2)(𝑥𝑦)

(𝐹𝐷𝑖1+𝑅𝐹𝐷𝑖2)(𝑥𝑦) = (𝐹𝐷𝑖1 ∪𝑅 𝐹𝐷𝑖2)(𝑥𝑦)
 

(iii) if 𝑥𝑦 ∈ 𝐸𝑖
∗, where 𝐸𝑖

∗ is the set of all edges joining the vertices of 𝑉1 and 

𝑉2;         𝑖 = 1,2, . . . , 𝑛 

 {
(𝑇̃𝐶𝑖1+𝑅𝑇̃𝐶𝑖2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑦)}

(𝑇𝐷𝑖1+𝑅𝑇𝐷𝑖2)(𝑥𝑦) = max{𝑇𝐵1(𝑥), 𝑇𝐵2(𝑦)}
 

 {
(𝐼𝐶𝑖1+𝑅𝐼𝐶𝑖2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝐼𝐴1(𝑥), 𝐼𝐴2(𝑦)}

(𝐼𝐷𝑖1+𝑅𝐼𝐷𝑖2)(𝑥𝑦) = max{𝐼𝐵1(𝑥), 𝐼𝐵2(𝑦)}
 

 {
(𝐹̃𝐶𝑖1+𝑅𝐹̃𝐶𝑖2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝐹̃𝐴1(𝑥), 𝐹̃𝐴2(𝑦)}

(𝐹𝐷𝑖1+𝑅𝐹𝐷𝑖2)(𝑥𝑦) = max{𝐹𝐵1(𝑥), 𝐹𝐵2(𝑦)}
 

 

Proposition 3.12 The P-join of two neutrosophic cubic graph structures is 

again a neutrosophic cubic graph structure.  
 

Proof. Straightforward. 

 

Definition 3.13 Let 𝐺̆𝑆1 = (𝑀1, 𝑁11,𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 =
(𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) be two neutrosophic cubic graph structures defined 

on 𝐺̆1
∗ = (𝑉1, 𝐸11, 𝐸12, . . . , 𝐸1𝑛) and 𝐺̆2

∗ = (𝑉2, 𝐸21, 𝐸22, . . . , 𝐸2𝑛) 
respectively. The cross product is denoted by 𝐺̆𝑆1 ∗ 𝐺̆𝑆2 and is defined by 

𝐺̆𝑆1 ∗ 𝐺̆𝑆2 = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1) ∗ (𝑀2,𝑁12, 𝑁22, . . . , 𝑁𝑛2) 
 = (𝑀1 ∗ 𝑀2, 𝑁11 ∗ 𝑁12, 𝑁21 ∗ 𝑁22, . . . , 𝑁𝑛1 ∗ 𝑁𝑛2) 
 =

{
(𝐴1, 𝐵1) ∗ (𝐴2, 𝐵2), (𝐶11, 𝐷11) ∗ (𝐶12, 𝐷12),
(𝐶21, 𝐷21) ∗ (𝐶22, 𝐷22), . . . , (𝐶𝑛1, 𝐷𝑛1) ∗ (𝐶𝑛2, 𝐷𝑛2)

} 

 =

{
((𝐴1 ∗ 𝐴2, 𝐵1 ∗ 𝐵2, ), (𝐶11 ∗ 𝐶12, 𝐷11 ∗ 𝐷12),
(𝐶21 ∗ 𝐶22, 𝐷21 ∗ 𝐷22), . . . , (𝐶𝑛1 ∗ 𝐶𝑛2, 𝐷𝑛1 ∗ 𝐷𝑛2)

} 

 =

{
 
 

 
 
((𝑇̃𝐴1∗𝐴2 , 𝑇𝐵1∗𝐵2), (𝐼𝐴1∗𝐴2 , 𝐼𝐵1∗𝐵2), (𝐹̃𝐴1∗𝐴2 , 𝐹𝐵1∗𝐵2)),

((𝑇̃𝐶11∗𝐶12 , 𝑇𝐷11∗𝐷12), (𝐼𝐶11∗𝐶12, 𝐼𝐷11∗𝐷12), (𝐹̃𝐶11∗𝐶12 , 𝐹𝐷11∗𝐷12),

(𝑇̃𝐶21∗𝐶22 , 𝑇𝐷21∗𝐷22), (𝐼𝐶21∗𝐶22 , 𝐼𝐷21∗𝐷22), (𝐹̃𝐶21∗𝐶22 , 𝐹𝐷21∗𝐷22), . . . ,

(𝑇̃𝐶𝑛1∗𝐶𝑛2 , 𝑇𝐷𝑛1∗𝐷𝑛2), (𝐼𝐶𝑛1∗𝐶𝑛2 , 𝐼𝐷𝑛1∗𝐷𝑛2), (𝐹̃𝐶𝑛1∗𝐶𝑛2 , 𝐹𝐷𝑛1∗𝐷𝑛2)) }
 
 

 
 

 

where (i) if 𝑥𝑦 ∈ 𝑉1 × 𝑉2 

 (𝑇̃𝐴1 ∗ 𝑇̃𝐴2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑦)} 

 (𝑇𝐵1 ∗ 𝑇𝐵2)(𝑥𝑦) = max{𝑇𝐵1(𝑥), 𝑇𝐵2(𝑦)} 
 

 (𝐼𝐴1 ∗ 𝐼𝐴2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝐼𝐴1(𝑥), 𝐼𝐴2(𝑦)} 

 (𝐼𝐵1 ∗ 𝐼𝐵2)(𝑥𝑦) = max{𝐼𝐵1(𝑥), 𝐼𝐵2(𝑦)} 
 

(𝐹̃𝐴1 ∗ 𝐹̃𝐴2)(𝑥𝑦) = 𝑟𝑚𝑎𝑥{𝐹̃𝐴1(𝑥), 𝐹̃𝐴2(𝑦)} 

(𝐹𝐵1 ∗ 𝐹𝐵2)(𝑥𝑦) = min{𝐹𝐵1(𝑥), 𝐹𝐵2(𝑦)} 

(ii) if 𝑥1𝑥2 ∈ 𝐸𝑖1 and 𝑦1𝑦2 ∈ 𝐸𝑖2, 𝑖 = 1,2, . . . , 𝑛 

(𝑇̃𝐶𝑖1 ∗ 𝑇̃𝐶𝑖2)(𝑥1𝑦1)(𝑥2𝑦2) = 𝑟𝑚𝑖𝑛{𝑇̃𝐶𝑖1(𝑥1𝑥2), 𝑇̃𝐶𝑖2(𝑦1𝑦2)} 

(𝑇𝐷𝑖1 ∗ 𝑇𝐷𝑖2)(𝑥1𝑦1)(𝑥2𝑦2) = max{𝑇𝐷𝑖1(𝑥1𝑥2), 𝑇𝐷𝑖2(𝑦1𝑦2)} 

(𝐼𝐶𝑖1 ∗ 𝐼𝐶𝑖2)(𝑥1𝑦1)(𝑥2𝑦2) = 𝑟𝑚𝑖𝑛{𝐼𝐶𝑖1(𝑥1𝑥2), 𝐼𝐶𝑖2(𝑦1𝑦2)} 

(𝐼𝐷𝑖1 ∗ 𝐼𝐷𝑖2)(𝑥1𝑦1)(𝑥2𝑦2) = max{𝐼𝐷𝑖1(𝑥1𝑥2), 𝐼𝐷𝑖2(𝑦1𝑦2)} 
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(𝐹̃𝐶𝑖1 ∗ 𝐹̃𝐶𝑖2)(𝑥1𝑦1)(𝑥2𝑦2) = 𝑟𝑚𝑎𝑥{𝐹̃𝐶𝑖1(𝑥1𝑥2), 𝐹̃𝐶𝑖2(𝑦1𝑦2)} 

(𝐹𝐷𝑖1 ∗ 𝐹𝐷𝑖2)(𝑥1𝑦1)(𝑥2𝑦2) = min{𝐹𝐷𝑖1(𝑥1𝑥2), 𝐹𝐷𝑖2(𝑦1𝑦2)} 

 

Example: Let 𝐺̆𝑠1 = (𝑀1, 𝑁11, 𝑁21) and 𝐺̆𝑠2 = (𝑀2,𝑁12) be two 

neutrosophic cubic graph structures defined on 𝐺̆1
∗ and 𝐺̆2

∗ respectively, 

where 

𝑙𝑀 = ⟨

{𝑎, ([0.4,0.5],0.3), ([0.3,0.4],0.6), ([0.6,0.7],0.5)},
{𝑏, ([0.2,0.3],0.6), ([0.4,0.5],0.2), ([0.1,0.2],0.3)},
{𝑐, ([0.4,0.6],0.3), ([0.5,0.6],0.3), ([0.7,0.8],0.2)}

⟩𝑁11

= ⟨{𝑎𝑏, ([0.2,0.3],0.6), ([0.3,0.4],0.6), ([0.6,0.7],0.3)}⟩𝑁21
= ⟨{𝑏𝑐, ([0.2,0.3],0.6), ([0.4,0.5],0.3), ([0.7,0.8],0.2)}⟩ 

 
and 

𝑙𝑀2 = ⟨
{𝑥, ([0.2,0.3],0.5), ([0.6,0.7],0.1), ([0.5,0.6],0.4)},

{𝑦, ([0.5,0.6],0.2), ([0.7,0.8],0.3), ([0.1,0.2],0.5)}
⟩𝑁12

= ⟨{𝑥𝑦, ([0.2,0.3],0.5), ([0.6,0.7],0.3), ([0.5,0.6],0.4)}⟩ 

 
 

Then 𝐺̆𝑆1 ∗ 𝐺̆𝑆2 will be 

𝑙𝑀1 ∗ 𝑀2

= ⟨

{(𝑎, 𝑥), ([0.2,0.3],0.5), ([0.3,0.4],0.6), ([0.6,0.7],0.4)},
{(𝑎, 𝑦), ([0.4,0.5],0.3), ([0.3,0.4],0.6), ([0.6,0.7],0.5)},
{(𝑏, 𝑥), ([0.2,0.3],0.6), ([0.4,0.5],0.2), ([0.5,0.6],0.3)},

{(𝑏, 𝑦), ([0.2,0.3],0.6), ([0.4,0.5],0.3), ([0.1,0.2],0.3)},
{(𝑐, 𝑥), ([0.2,0.3],0.5), ([0.5,0.6],0.3), ([0.7,0.8],0.2)},
{(𝑐, 𝑦), ([0.4,0.6],0.3), ([0.5,0.6],0.3), ([0.7,0.8],0.2)}

⟩𝑁11 ∗ 𝑁12

= ⟨
{(𝑎, 𝑥)(𝑏, 𝑦), ([0.2,0.3],0.6), ([0.3,0.4],0.6), ([0.6,0.7],0.3)},

{(𝑎, 𝑦)(𝑏, 𝑥), ([0.2,0.3],0.6), ([0.3,0.4],0.6), ([0.6,0.7],0.3)}
⟩𝑁21

∗ 𝑁12 = ⟨
{(𝑏, 𝑥)(𝑐, 𝑦), ([0.2,0.3],0.6), ([0.4,0.5],0.3), ([0.7,0.8],0.2)},

{(𝑏, 𝑦)(𝑐, 𝑥), ([0.2,0.3],0.6), ([0.4,0.5],0.3), ([0.7,0.8],0.2)}
⟩ 

 
 

Proposition 3.14 The cross product of two neutrosophic cubic graph 

structures is again a neutrosophic cubic graph structure.  
 

Proof. Let 𝐺̆𝑆1 = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 = (𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) 
be two neutrosophic cubic graph structures defined on 𝐺̆1

∗ =
(𝑉1, 𝐸11, 𝐸12, . . . , 𝐸1𝑛) and 𝐺̆2

∗ = (𝑉2, 𝐸21, 𝐸22, . . . , 𝐸2𝑛) respectively. 

Condition is obvious for 𝑀1 ∗ 𝑀2. Therefore we verify for 𝑁𝑛1 ∗ 𝑁𝑛2; 𝑛 =
1,2, . . . , 𝑛, where  

𝑁𝑛1 ∗ 𝑁𝑛2
= {((𝑇̃𝐶𝑛1∗𝐶𝑛2 , 𝑇𝐷𝑛1∗𝐷𝑛2), (𝐼𝐶𝑛1∗𝐶𝑛2 , 𝐼𝐷𝑛1∗𝐷𝑛2), (𝐹̃𝐶𝑛1∗𝐶𝑛2 , 𝐹𝐷𝑛1∗𝐷𝑛2))} 

We consider for 𝑥1𝑦1 ∈ 𝐸𝑖1 and 𝑥2𝑦2 ∈ 𝐸𝑖2, 𝑖 = 1,2, . . . , 𝑛 

(𝑇̃𝐶𝑖1 ∗ 𝑇̃𝐶𝑖2)(𝑥1𝑥2)(𝑦1𝑦2) = 𝑟𝑚𝑖𝑛{𝑇̃𝐶𝑖1(𝑥1𝑥2), 𝑇̃𝐶𝑖2(𝑦1𝑦2)} 

 ⪯
𝑟𝑚𝑖𝑛⟨𝑟𝑚𝑖𝑛{𝑇̃𝐴𝑖1(𝑥1), 𝑇̃𝐴𝑖1(𝑥2)}, 𝑟𝑚𝑖𝑛{𝑇̃𝐴𝑖2(𝑦1), 𝑇̃𝐴𝑖2(𝑦2)}⟩ 

 =
𝑟𝑚𝑖𝑛⟨𝑟𝑚𝑖𝑛{𝑇̃𝐴𝑖1(𝑥1), 𝑇̃𝐴𝑖2(𝑦1)}, 𝑟𝑚𝑖𝑛{𝑇̃𝐴𝑖1(𝑥2), 𝑇̃𝐴𝑖2(𝑦2)}⟩ 

 = 𝑟𝑚𝑖𝑛{𝑇̃𝐶𝑛1∗𝐶𝑛2(𝑥1𝑦1), 𝑇̃𝐶𝑛1∗𝐶𝑛2(𝑥2𝑦2)} 

(𝑇𝐷𝑖1 ∗ 𝑇𝐷𝑖2)(𝑥1𝑥2)(𝑦1𝑦2) = max{𝑇𝐷𝑖1(𝑥1𝑥2), 𝑇𝐷𝑖2(𝑦1𝑦2)} 

 =
max⟨max{𝑇𝐷𝑖1(𝑥1), 𝑇𝐷𝑖1(𝑥2)},max{𝑇𝐷𝑖2(𝑦1), 𝑇𝐷𝑖2(𝑦2)}⟩ 

 =
max⟨max{𝑇𝐷𝑖1(𝑥1), 𝑇𝐷𝑖2(𝑦1)},max{𝑇𝐷𝑖1(𝑥2), 𝑇𝐷𝑖2(𝑦2)}⟩ 

 = max{𝑇𝐷𝑛1∗𝐷𝑛2(𝑥1𝑦1), 𝑇𝐷𝑛1∗𝐷𝑛2(𝑥2𝑦2)} 

Similarly we can show it for (𝐼𝐶𝑛1∗𝐶𝑛2 , 𝐼𝐷𝑛1∗𝐷𝑛2) and (𝐹̃𝐶𝑛1∗𝐶𝑛2 , 𝐹𝐷𝑛1∗𝐷𝑛2). 

This completes the proof. ◻ 

 

Definition 3.15 Let 𝐺̆𝑆1 = (𝑀1, 𝑁11,𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 =
(𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) be two neutrosophic cubic graph structures defined 

on 𝐺̆1
∗ = (𝑉1, 𝐸11, 𝐸12, . . . , 𝐸1𝑛) and 𝐺̆2

∗ = (𝑉2, 𝐸21, 𝐸22, . . . , 𝐸2𝑛) 
respectively. The strong product is denoted by 𝐺̆𝑆1⊠ 𝐺̆𝑆2 and is defined by 

𝐺̆𝑆1⊠ 𝐺̆𝑆2 = (𝑀1,𝑁11, 𝑁21, . . . , 𝑁𝑛1) ⊠ (𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) 
 = (𝑀1⊠𝑀2, 𝑁11⊠𝑁12, 𝑁21⊠𝑁22, . . . , 𝑁𝑛1⊠

𝑁𝑛2) 
 =

⟨
((𝐴1, 𝐵1)⊠ (𝐴2, 𝐵2)), ((𝐶11, 𝐷11) ⊠ (𝐶12, 𝐷12)),
((𝐶21, 𝐷21)⊠ (𝐶22, 𝐷22)), . . . , ((𝐶𝑛1, 𝐷𝑛1)⊠ (𝐶𝑛2, 𝐷𝑛2))

⟩ 

 =

⟨
(𝐴1⊠𝐴2, 𝐵1⊠𝐵2, ), (𝐶11⊠𝐶12, 𝐷11⊠𝐷12),
(𝐶21⊠𝐶22, 𝐷21⊠𝐷22), . . . , (𝐶𝑛1⊠𝐶𝑛2, 𝐷𝑛1⊠𝐷𝑛2)

⟩ 

 =

⟨

((𝑇̃𝐴1⊠𝐴2 , 𝑇𝐵1⊠𝐵2), (𝐼𝐴1⊠𝐴2 , 𝐼𝐵1⊠𝐵2), (𝐹̃𝐴1⊠𝐴2 , 𝐹𝐵1⊠𝐵2)),

{((𝑇̃𝐶11⊠𝐶12 , 𝑇𝐷11⊠𝐷12), (𝐼𝐶11⊠𝐶12 , 𝐼𝐷11⊠𝐷12), (𝐹̃𝐶11⊠𝐶12, 𝐹𝐷11⊠𝐷12)),

((𝑇̃𝐶21⊠𝐶22 , 𝑇𝐷21⊠𝐷22), (𝐼𝐶21⊠𝐶22 , 𝐼𝐷21⊠𝐷22), (𝐹̃𝐶21⊠𝐶22 , 𝐹𝐷21⊠𝐷22)), . . . ,

((𝑇̃𝐶𝑛1⊠𝐶𝑛2 , 𝑇𝐷𝑛1⊠𝐷𝑛2), (𝐼𝐶𝑛1⊠𝐶𝑛2 , 𝐼𝐷𝑛1⊠𝐷𝑛2), (𝐹̃𝐶𝑛1⊠𝐶𝑛2 , 𝐹𝐷𝑛1⊠𝐷𝑛2))}

⟩ 

where (i) if 𝑥𝑦 ∈ 𝑉1 × 𝑉2 

𝑇̃𝐴1⊠𝐴2(𝑥𝑦) = (𝑇̃𝐴1 ⊠ 𝑇̃𝐴2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑦)} 

𝑇𝐵1⊠𝐵2(𝑥𝑦) = (𝑇𝐵1 ⊠𝑇𝐵2)(𝑥𝑦) = max{𝑇𝐵1(𝑥), 𝑇𝐵2(𝑦)} 
 

𝐼𝐴1⊠𝐴2(𝑥𝑦) = (𝐼𝐴1 ⊠ 𝐼𝐴2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝐼𝐴1(𝑥), 𝐼𝐴2(𝑦)} 

 𝐼𝐵1⊠𝐵2(𝑥𝑦) = (𝐼𝐵1 ⊠ 𝐼𝐵2)(𝑥𝑦) =

max{𝐼𝐵1(𝑥), 𝐼𝐵2(𝑦)} 
 

𝐹̃𝐴1⊠𝐴2(𝑥𝑦) = (𝐹̃𝐴1 ⊠ 𝐹̃𝐴2)(𝑥𝑦) = 𝑟𝑚𝑎𝑥{𝐹̃𝐴1(𝑥), 𝐹̃𝐴2(𝑦)} 

𝐹𝐵1⊠𝐵2(𝑥𝑦) = (𝐹𝐵1 ⊠𝐹𝐵2)(𝑥𝑦) = min{𝐹𝐵1(𝑥), 𝐹𝐵2(𝑦)} 

 (ii) if 𝑥 ∈ 𝑉1 and 𝑦1𝑦2 ∈ 𝐸𝑖2; 𝑖 = 1,2, . . . , 𝑛 

𝑇̃𝐶𝑖1⊠𝐶𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝑇̃𝐶𝑖1 ⊠ 𝑇̃𝐶𝑖2)(𝑥𝑦1)(𝑥𝑦2)

= 𝑟𝑚𝑖𝑛{𝑇̃𝐴1(𝑥), 𝑇̃𝐶𝑖2(𝑦1𝑦2)} 

𝑇𝐷𝑖1⊠𝐷𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝑇𝐷𝑖1 ⊠𝑇𝐷𝑖2)(𝑥𝑦1)(𝑥𝑦2)

= max{𝑇𝐵1(𝑥), 𝑇𝐷𝑖2(𝑦1𝑦2)} 

 

𝐼𝐶𝑖1⊠𝐶𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝐼𝐶𝑖1 ⊠ 𝐼𝐶𝑖2)(𝑥𝑦1)(𝑥𝑦2) = 𝑟𝑚𝑖𝑛{𝐼𝐴1(𝑥), 𝐼𝐶𝑖2(𝑦1𝑦2)} 

𝐼𝐷𝑖1⊠𝐷𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝐼𝐷𝑖1 ⊠ 𝐼𝐷𝑖2)(𝑥𝑦1)(𝑥𝑦2) = max{𝐼𝐵1(𝑥), 𝐼𝐷𝑖2(𝑦1𝑦2)} 

 

𝐹̃𝐶𝑖1⊠𝐶𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝐹̃𝐶𝑖1 ⊠ 𝐹̃𝐶𝑖2)(𝑥𝑦1)(𝑥𝑦2)

= 𝑟𝑚𝑎𝑥{𝐹̃𝐴1(𝑥), 𝐹̃𝐶𝑖2(𝑦1𝑦2)} 

𝐹𝐷𝑖1⊠𝐷𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝐹𝐷𝑖1 ⊠𝐹𝐷𝑖2)(𝑥𝑦1)(𝑥𝑦2)

= min{𝐹𝐵1(𝑥), 𝐹𝐷𝑖2(𝑦1𝑦2)} 

(iii) if 𝑥1𝑥2 ∈ 𝐸𝑖1 and 𝑦 ∈ 𝑉2; 𝑖 = 1,2, . . . , 𝑛 

𝑇̃𝐶𝑖1⊠𝐶𝑖2(𝑥1𝑦)(𝑥2𝑦) = (𝑇̃𝐶𝑖1 ⊠ 𝑇̃𝐶𝑖2)(𝑥1𝑦)(𝑥2𝑦)

= 𝑟𝑚𝑖𝑛{𝑇̃𝐶𝑖1(𝑥1𝑥2), 𝑇̃𝐴2(𝑦)} 
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𝑇𝐷𝑖1⊠𝐷𝑖2(𝑥1𝑦)(𝑥2𝑦) = (𝑇𝐷𝑖1 ⊠𝑇𝐷𝑖2)(𝑥1𝑦)(𝑥2𝑦)

= max{𝑇𝐶𝑖1(𝑥1𝑥2), 𝑇𝐴2(𝑦)} 

 

𝐼𝐶𝑖1⊠𝐶𝑖2(𝑥1𝑦)(𝑥2𝑦) = (𝐼𝐶𝑖1 ⊠ 𝐼𝐶𝑖2)(𝑥1𝑦)(𝑥2𝑦) = 𝑟𝑚𝑖𝑛{𝐼𝐶𝑖1(𝑥1𝑥2), 𝐼𝐴2(𝑦)} 

𝐼𝐷𝑖1⊠𝐷𝑖2(𝑥1𝑦)(𝑥2𝑦) = (𝐼𝐷𝑖1 ⊠ 𝐼𝐷𝑖2)(𝑥1𝑦)(𝑥2𝑦) = max{𝐼𝐶𝑖1(𝑥1𝑥2), 𝐼𝐴2(𝑦)} 

 

𝐹̃𝐶𝑖1⊠𝐶𝑖2(𝑥1𝑦)(𝑥2𝑦) = (𝐹̃𝐶𝑖1 ⊠ 𝐹̃𝐶𝑖2)(𝑥1𝑦)(𝑥2𝑦)

= 𝑟𝑚𝑎𝑥{𝐹̃𝐶𝑖1(𝑥1𝑥2), 𝐹̃𝐴2(𝑦)} 

𝐹𝐷𝑖1⊠𝐷𝑖2(𝑥1𝑦)(𝑥2𝑦) = (𝐹𝐷𝑖1 ⊠𝐹𝐷𝑖2)(𝑥1𝑦)(𝑥2𝑦)

= min{𝐹𝐶𝑖1(𝑥1𝑥2), 𝐹𝐴2(𝑦)} 

(iv) if 𝑥1𝑥2 ∈ 𝐸𝑖1 and 𝑦1𝑦2 ∈ 𝐸𝑖2, 𝑖 = 1,2, . . . , 𝑛 

𝑇̃𝐶𝑖1⊠𝐶𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝑇̃𝐶𝑖1 ⊠ 𝑇̃𝐶𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= 𝑟𝑚𝑖𝑛{𝑇̃𝐶𝑖1(𝑥1𝑥2), 𝑇̃𝐶𝑖2(𝑦1𝑦2)} 

𝑇𝐷𝑖1⊠𝐷𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝑇𝐷𝑖1 ⊠𝑇𝐷𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= max{𝑇𝐷𝑖1(𝑥1𝑥2), 𝑇𝐷𝑖2(𝑦1𝑦2)} 

 

𝐼𝐶𝑖1⊠𝐶𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝐼𝐶𝑖1 ⊠ 𝐼𝐶𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= 𝑟𝑚𝑖𝑛{𝐼𝐶𝑖1(𝑥1𝑥2), 𝐼𝐶𝑖2(𝑦1𝑦2)} 

𝐼𝐷𝑖1⊠𝐷𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝐼𝐷𝑖1 ⊠ 𝐼𝐷𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= max{𝐼𝐷𝑖1(𝑥1𝑥2), 𝐼𝐷𝑖2(𝑦1𝑦2)} 

𝐹̃𝐶𝑖1⊠𝐶𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝐹̃𝐶𝑖1 ⊠ 𝐹̃𝐶𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= 𝑟𝑚𝑎𝑥{𝐹̃𝐶𝑖1(𝑥1𝑥2), 𝐹̃𝐶𝑖2(𝑦1𝑦2)} 

𝐹𝐷𝑖1⊠𝐷𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝐹𝐷𝑖1 ⊠𝐹𝐷𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= min{𝐹𝐷𝑖1(𝑥1𝑥2), 𝐹𝐷𝑖2(𝑦1𝑦2)} 

 

Example: Let 𝐺̆𝑠1 = (𝑀1, 𝑁11,𝑁21) and 𝐺̆𝑠2 = (𝑀2, 𝑁12) be two 

neutrosophic cubic graph structures defined on 𝐺̆1
∗ and 𝐺̆2

∗ respectively, 

where 

𝑙𝑀 = ⟨

{𝑎, ([0.4,0.5],0.3), ([0.3,0.4],0.6), ([0.6,0.7],0.5)},
{𝑏, ([0.2,0.3],0.6), ([0.4,0.5],0.2), ([0.1,0.2],0.3)},
{𝑐, ([0.4,0.6],0.3), ([0.5,0.6],0.3), ([0.7,0.8],0.2)}

⟩𝑁11

= ⟨{𝑎𝑏, ([0.2,0.3],0.6), ([0.3,0.4],0.6), ([0.6,0.7],0.3)}⟩𝑁21

= ⟨
{𝑏𝑐, ([0.2,0.3],0.6), ([0.4,0.5],0.3), ([0.7,0.8],0.2)},

{𝑎𝑐, ([0.4,0.5],0.3), ([0.3,0.4],0.6), ([0.7,0.8],0.2)}
⟩ 

 

and 

𝑙𝑀2 = ⟨
{𝑥, ([0.2,0.3],0.5), ([0.6,0.7],0.1), ([0.5,0.6],0.4)},

{𝑦, ([0.5,0.6],0.2), ([0.7,0.8],0.3), ([0.1,0.2],0.5)}
⟩𝑁12

= ⟨{𝑥𝑦, ([0.2,0.3],0.5), ([0.6,0.7],0.3), ([0.5,0.6],0.4)}⟩ 

 
 

Then 𝐺̆𝑆1⊠ 𝐺̆𝑆2 will be 

𝑙𝑀1⊠𝑀2

= ⟨

{(𝑎, 𝑥), ([0.2,0.3], 0.5), ([0.3,0.4], 0.6), ([0.6,0.7], 0.4)},
{(𝑎, 𝑦), ([0.4,0.5], 0.3), ([0.3,0.4], 0.6), ([0.6,0.7], 0.5)},
{(𝑏, 𝑥), ([0.2,0.3], 0.6), ([0.4,0.5], 0.2), ([0.5,0.6], 0.3)},
{(𝑏, 𝑦), ([0.2,0.3], 0.6), ([0.4,0.5], 0.3), ([0.1,0.2], 0.3)},
{(𝑐, 𝑥), ([0.2,0.3], 0.5), ([0.5,0.6], 0.3), ([0.7,0.8], 0.2)},
{(𝑐, 𝑦), ([0.4,0.6], 0.3), ([0.5,0.6], 0.3), ([0.7,0.8], 0.2)}

⟩𝑁11⊠𝑁12

= ⟨

{(𝑎, 𝑥)(𝑏, 𝑦), ([0.2,0.3], 0.6), ([0.3,0.4], 0.6), ([0.6,0.7], 0.3)},
{(𝑎, 𝑦)(𝑏, 𝑥), ([0.2,0.3], 0.6), ([0.3,0.4], 0.6), ([0.6,0.7], 0.3)},
{(𝑎, 𝑥)(𝑎, 𝑦), ([0.2,0.3], 0.5), ([0.3,0.4], 0.6), ([0.6,0.7], 0.4)}

⟩ 

𝑁21⊠𝑁12

= ⟨

{(𝑏, 𝑥)(𝑐, 𝑦), ([0.2,0.3],0.6), ([0.4,0.5],0.3), ([0.7,0.8],0.2)},
{(𝑏, 𝑥)(𝑐, 𝑥)}, ([0.2,0.3],0.6), ([0.4,0.5],0.3), (0.7,0.8],0.2)},
{(𝑏, 𝑥)(𝑏, 𝑦), ([0.2,0.3],0.6), ([0.4,0.5],0.3), (0.5,0.6],0.3)}

⟩ 

 
 

Proposition 3.16 The strong product of two neutrosophic cubic graph 

structures is again a neutrosophic cubic graph structure.  
 

Proof. Let 𝐺̆𝑆1 = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 = (𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) 
be two neutrosophic cubic graph structures defined on 𝐺̆1

∗ =
(𝑉1, 𝐸11, 𝐸12, . . . , 𝐸1𝑛) and 𝐺̆2

∗ = (𝑉2, 𝐸21, 𝐸22, . . . , 𝐸2𝑛) respectively. 

Condition is obvious for 𝑀1⊠𝑀2. Therefore we verify for 𝑁𝑛1⊠𝑁𝑛2; 𝑛 =
1,2, . . . , 𝑛, where  

𝑁𝑛1⊠𝑁𝑛2
= {((𝑇̃𝐶𝑛1⊠𝐶𝑛2 , 𝑇𝐷𝑛1⊠𝐷𝑛2), (𝐼𝐶𝑛1⊠𝐶𝑛2 , 𝐼𝐷𝑛1⊠𝐷𝑛2), (𝐹̃𝐶𝑛1⊠𝐶𝑛2 , 𝐹𝐷𝑛1⊠𝐷𝑛2))} 

(i) Let 𝑥 ∈ 𝑉1 and 𝑦1𝑦2 ∈ 𝐸𝑖2; 𝑖 = 1,2, . . . , 𝑛 

𝑇̃𝐶𝑖1⊠𝐶𝑖2(𝑥𝑦1)(𝑥𝑦2) = 𝑟𝑚𝑖𝑛{𝑇̃𝐴1(𝑥), 𝑇̃𝐶𝑖2(𝑦1𝑦2)} 

 ⪯ 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1(𝑥), 𝑟𝑚𝑖𝑛((𝑇̃𝐴2(𝑦1), (𝑇̃𝐴2(𝑦2))} 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑦1)), 𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑦2))} 

 = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 ⊠ 𝑇̃𝐴2)(𝑥, 𝑦1), ((𝑇̃𝐴1 ⊠ 𝑇̃𝐴2)(𝑥, 𝑦2)} 

𝑇𝐷𝑛1⊠𝐷𝑛2((𝑥𝑦1)(𝑥𝑦2)) = max{(𝑇𝐵1(𝑥), 𝑇𝐷𝑛2(𝑦1𝑦2))} 

 ≤ max{(𝑇𝐵1(𝑥),max((𝑇𝐵2(𝑦1), (𝑇𝐵2(𝑦2))} 

 =
max{max((𝑇𝐵1(𝑥), (𝑇𝐵2(𝑦1)),max((𝑇𝐵1(𝑥), (𝑇𝐵2(𝑦2))} 

 = max{(𝑇𝐵1 ⊠𝑇𝐵2)(𝑥, 𝑦1), (𝑇𝐵1 ⊠𝑇𝐵2)(𝑥, 𝑦2)} 

(ii) Let 𝑥1𝑥2 ∈ 𝐸𝑖1 and 𝑦 ∈ 𝑉2; 𝑖 = 1,2, . . . , 𝑛 

 𝑇̃𝐶𝑖1⊠𝐶𝑖2(𝑥1𝑦)(𝑥2𝑦) = 𝑟𝑚𝑖𝑛{𝑇̃𝐶𝑖1(𝑥1𝑥2), 𝑇̃𝐴2(𝑦)} 

 ⪯ 𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛((𝑇̃𝐴1(𝑥1), 𝑇̃𝐴1(𝑥2)), 𝑇̃𝐴2(𝑦)} 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥1), 𝑇̃𝐴2(𝑦)), 𝑟𝑚𝑖𝑛((𝑇̃𝐴1(𝑥2), (𝑇̃𝐴2(𝑦))} 

 = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 ⊠ 𝑇̃𝐴2)(𝑥1𝑦), (𝑇̃𝐴1 ⊠ 𝑇̃𝐴2)(𝑥2𝑦)} 

𝑇𝐷𝑛1⊠𝐷𝑛2((𝑥1𝑦)(𝑥2𝑦)) = max{(𝑇𝐷𝑛1(𝑥1𝑥2), 𝑇𝐵2(𝑦))} 

 ≤ max{max(𝑇𝐵1(𝑥1), 𝑇𝐵1(𝑥2)), 𝑇𝐵2(𝑦)} 

 =
max{max(𝑇𝐵1(𝑥1), 𝑇𝐵2(𝑦)),max(𝑇𝐵2(𝑥2), 𝑇𝐵2(𝑦))} 

 = max{(𝑇𝐵1 ⊠𝑇𝐵2)(𝑥1𝑦), (𝑇𝐵1 ⊠𝑇𝐵2)(𝑥2𝑦)} 
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(iii) Let 𝑥1𝑥2 ∈ 𝐸𝑖1 and 𝑦1𝑦2 ∈ 𝐸𝑖2; 𝑖 = 1,2, . . . , 𝑛 

 𝑇̃𝐶𝑖1⊠𝐶𝑖2(𝑥1𝑦1)(𝑥2𝑦2) =

𝑟𝑚𝑖𝑛{𝑇̃𝐶𝑖1(𝑥1𝑥2), 𝑇̃𝐶𝑖2(𝑦1𝑦2)} 

 ⪯
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥1), 𝑇̃𝐴1(𝑥2)), 𝑟𝑚𝑖𝑛(𝑇̃𝐴2(𝑦1), 𝑇̃𝐴2(𝑦2))} 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥1), 𝑇̃𝐴2(𝑦1)), 𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥2), 𝑇′𝐴2(𝑦2))} 

 = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 ⊠ 𝑇̃𝐴2)(𝑥1𝑦1), (𝑇̃𝐴1 ⊠ 𝑇̃𝐴2)(𝑥2𝑦2) 

𝑇𝐷𝑖1⊠𝐷𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = max{𝑇𝐷𝑖1(𝑥1𝑥2), 𝑇𝐷𝑖2(𝑦1𝑦2)} 

 ≤ max{max(𝑇𝐵1(𝑥1), 𝑇𝐵1(𝑥2)), (𝑇𝐵2(𝑦1), 𝑇𝐵2(𝑦2))} 

 = max{max(𝑇𝐵1(𝑥1), 𝑇𝐵2(𝑦1)), (𝑇𝐵1(𝑥2), 𝑇𝐵2(𝑦2))} 

 = max{(𝑇𝐵1 ⊠𝑇𝐵2)(𝑥1𝑦1), (𝑇𝐵1 ⊠𝑇𝐵2)(𝑥2𝑦2)} 

Similarly we can also show this for (𝐼𝐶𝑛1⊠𝐶𝑛2 , 𝐼𝐷𝑛1⊠𝐷𝑛2) and 

(𝐹̃𝐶𝑛1⊠𝐶𝑛2 , 𝐹𝐷𝑛1⊠𝐷𝑛2). This completes the proof.  

 

Definition 3.17 Let 𝐺̆𝑆1 = (𝑀1, 𝑁11,𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 =
(𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) be two neutrosophic cubic graph structures defined 

on 𝐺̆1
∗ = (𝑉1, 𝐸11, 𝐸12, . . . , 𝐸1𝑛) and 𝐺̆2

∗ = (𝑉2, 𝐸21, 𝐸22, . . . , 𝐸2𝑛) 
respectively. The lexicographic product is denoted by 𝐺̆𝑆1 ⋅ 𝐺̆𝑆2 and is 

defined by 

𝐺̆𝑆1 ⋅ 𝐺̆𝑆2 = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1) ⋅ (𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) 
 = (𝑀1 ⋅ 𝑀2, 𝑁11 ⋅ 𝑁12, 𝑁21 ⋅ 𝑁22, . . . , 𝑁𝑛1 ⋅ 𝑁𝑛2) 
 = ((𝐴1, 𝐵1) ⋅ (𝐴2, 𝐵2), (𝐶11, 𝐷11) ⋅ (𝐶12, 𝐷12), 

(𝐶21, 𝐷21) ⋅ (𝐶22, 𝐷22), . . . , (𝐶𝑛1, 𝐷𝑛1) ⋅ (𝐶𝑛2, 𝐷𝑛2)) 
 = ((𝐴1 ⋅ 𝐴2, 𝐵1 ⋅ 𝐵2, ), (𝐶11 ⋅ 𝐶12, 𝐷11 ⋅ 𝐷12), 

(𝐶21 ⋅ 𝐶22, 𝐷21 ⋅ 𝐷22), . . . , (𝐶𝑛1 ⋅ 𝐶𝑛2, 𝐷𝑛1 ⋅ 𝐷𝑛2)) 
 =

{
 
 

 
 
((𝑇̃𝐴1⋅𝐴2 , 𝑇𝐵1⋅𝐵2), (𝐼𝐴1⋅𝐴2 , 𝐼𝐵1⋅𝐵2), (𝐹̃𝐴1⋅𝐴2 , 𝐹𝐵1⋅𝐵2)),

((𝑇̃𝐶11⋅𝐶12 , 𝑇𝐷11⋅𝐷12), (𝐼𝐶11⋅𝐶12 , 𝐼𝐷11⋅𝐷12), (𝐹̃𝐶11⋅𝐶12 , 𝐹𝐷11⋅𝐷12),

(𝑇̃𝐶21⋅𝐶22 , 𝑇𝐷21⋅𝐷22), (𝐼𝐶21⋅𝐶22 , 𝐼𝐷21⋅𝐷22), (𝐹̃𝐶21⋅𝐶22 , 𝐹𝐷21⋅𝐷22), . . . ,

(𝑇̃𝐶𝑛1⋅𝐶𝑛2 , 𝑇𝐷𝑛1⋅𝐷𝑛2), (𝐼𝐶𝑛1⋅𝐶𝑛2 , 𝐼𝐷𝑛1⋅𝐷𝑛2), (𝐹̃𝐶𝑛1⋅𝐶𝑛2 , 𝐹𝐷𝑛1⋅𝐷𝑛2)) }
 
 

 
 

 

where (i) if 𝑥𝑦 ∈ 𝑉1 × 𝑉2 

𝑇̃𝐴1⋅𝐴2(𝑥𝑦) = (𝑇̃𝐴1 ⋅ 𝑇̃𝐴2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑦)} 

 𝑇𝐵1⋅𝐵2(𝑥𝑦) = (𝑇𝐵1 ⋅ 𝑇𝐵2)(𝑥𝑦) =

max{𝑇𝐵1(𝑥), 𝑇𝐵2(𝑦)} 
 

𝐼𝐴1⋅𝐴2(𝑥𝑦) = (𝐼𝐴1 ⋅ 𝐼𝐴2)(𝑥𝑦) = 𝑟𝑚𝑖𝑛{𝐼𝐴1(𝑥), 𝐼𝐴2(𝑦)} 

𝐼𝐵1⋅𝐵2(𝑥𝑦) = (𝐼𝐵1 ⋅ 𝐼𝐵2)(𝑥𝑦) = max{𝐼𝐵1(𝑥), 𝐼𝐵2(𝑦)} 
 

𝐹̃𝐴1⋅𝐴2(𝑥𝑦) = (𝐹̃𝐴1 ⋅ 𝐹̃𝐴2)(𝑥𝑦) = 𝑟𝑚𝑎𝑥{𝐹̃𝐴1(𝑥), 𝐹̃𝐴2(𝑦)} 

𝐹𝐵1⋅𝐵2(𝑥𝑦) = (𝐹𝐵1 ⋅ 𝐹𝐵2)(𝑥𝑦) = min{𝐹𝐵1(𝑥), 𝐹𝐵2(𝑦)} 
 

(ii) if 𝑥 ∈ 𝑉1 and 𝑦1𝑦2 ∈ 𝐸𝑖2; 𝑖 = 1,2, . . . , 𝑛 

𝑇̃𝐶𝑖1⋅𝐶𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝑇̃𝐶𝑖1 ⋅ 𝑇̃𝐶𝑖2)(𝑥𝑦1)(𝑥𝑦2) = 𝑟𝑚𝑖𝑛{𝑇̃𝐴1(𝑥), 𝑇̃𝐶𝑖2(𝑦1𝑦2)} 

𝑇𝐷𝑖1⋅𝐷𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝑇𝐷𝑖1 ⋅ 𝑇𝐷𝑖2)(𝑥𝑦1)(𝑥𝑦2) = max{𝑇𝐵1(𝑥), 𝑇𝐷𝑖2(𝑦1𝑦2)} 

 

𝐼𝐶𝑖1⋅𝐶𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝐼𝐶𝑖1 ⋅ 𝐼𝐶𝑖2)(𝑥𝑦1)(𝑥𝑦2) = 𝑟𝑚𝑖𝑛{𝐼𝐴1(𝑥), 𝐼𝐶𝑖2(𝑦1𝑦2)} 

 𝐼𝐷𝑖1⋅𝐷𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝐼𝐷𝑖1 ⋅ 𝐼𝐷𝑖2)(𝑥𝑦1)(𝑥𝑦2) =

max{𝐼𝐵1(𝑥), 𝐼𝐷𝑖2(𝑦1𝑦2)} 

 

𝐹̃𝐶𝑖1⋅𝐶𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝐹̃𝐶𝑖1 ⋅ 𝐹̃𝐶𝑖2)(𝑥𝑦1)(𝑥𝑦2) = 𝑟𝑚𝑎𝑥{𝐹̃𝐴1(𝑥), 𝐹̃𝐶𝑖2(𝑦1𝑦2)} 

𝐹𝐷𝑖1⋅𝐷𝑖2(𝑥𝑦1)(𝑥𝑦2) = (𝐹𝐷𝑖1 ⋅ 𝐹𝐷𝑖2)(𝑥𝑦1)(𝑥𝑦2) = min{𝐹𝐵1(𝑥), 𝐹𝐷𝑖2(𝑦1𝑦2)} 

(iii) if 𝑥1𝑥2 ∈ 𝐸𝑖1 and 𝑦1𝑦2 ∈ 𝐸𝑖2, 𝑖 = 1,2, . . . , 𝑛 

𝑇̃𝐶𝑖1⋅𝐶𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝑇̃𝐶𝑖1 ⋅ 𝑇̃𝐶𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= 𝑟𝑚𝑖𝑛{𝑇̃𝐶𝑖1(𝑥1𝑥2), 𝑇̃𝐶𝑖2(𝑦1𝑦2)} 

𝑇𝐷𝑖1⋅𝐷𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝑇𝐷𝑖1 ⋅ 𝑇𝐷𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= max{𝑇𝐷𝑖1(𝑥1𝑥2), 𝑇𝐷𝑖2(𝑦1𝑦2)} 

 

𝐼𝐶𝑖1⋅𝐶𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝐼𝐶𝑖1 ⋅ 𝐼𝐶𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= 𝑟𝑚𝑖𝑛{𝐼𝐶𝑖1(𝑥1𝑥2), 𝐼𝐶𝑖2(𝑦1𝑦2)} 

𝐼𝐷𝑖1⋅𝐷𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝐼𝐷𝑖1 ⋅ 𝐼𝐷𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= max{𝐼𝐷𝑖1(𝑥1𝑥2), 𝐼𝐷𝑖2(𝑦1𝑦2)} 

 

𝐹̃𝐶𝑖1⋅𝐶𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝐹̃𝐶𝑖1 ⋅ 𝐹̃𝐶𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= 𝑟𝑚𝑎𝑥{𝐹̃𝐶𝑖1(𝑥1𝑥2), 𝐹̃𝐶𝑖2(𝑦1𝑦2)} 

𝐹𝐷𝑖1⋅𝐷𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = (𝐹𝐷𝑖1 ⋅ 𝐹𝐷𝑖2)(𝑥1𝑦1)(𝑥2𝑦2)

= min{𝐹𝐷𝑖1(𝑥1𝑥2), 𝐹𝐷𝑖2(𝑦1𝑦2)} 

 

Example: Let 𝐺̆𝑠1 and 𝐺̆𝑠2be two neutrosophic cubic graph structures as 

shown in figure:13. Then their lexicographic product will be 

𝑙𝑀1 ⋅ 𝑀2

= ⟨

{(𝑎, 𝑥), ([0.2,0.3],0.5), ([0.3,0.4],0.6), ([0.6,0.7],0.4)},
{(𝑎, 𝑦), ([0.4,0.5],0.3), ([0.3,0.4],0.6), ([0.6,0.7],0.5)},
{(𝑏, 𝑥), ([0.2,0.3],0.6), ([0.4,0.5],0.2), ([0.5,0.6],0.3)},

{(𝑏, 𝑦), ([0.2,0.3],0.6), ([0.4,0.5],0.3), ([0.1,0.2],0.3)},
{(𝑐, 𝑥), ([0.2,0.3],0.5), ([0.5,0.6],0.3), ([0.7,0.8],0.2)},
{(𝑐, 𝑦), ([0.4,0.6],0.3), ([0.5,0.6],0.3), ([0.7,0.8],0.2)}

⟩𝑁11 ⋅ 𝑁12

= ⟨

{(𝑎, 𝑥)(𝑏, 𝑦), ([0.2,0.3],0.6), ([0.3,0.4],0.6), ([0.6,0.7],0.3)},
{(𝑎, 𝑦)(𝑏, 𝑥), ([0.2,0.3],0.6), ([0.3,0.4],0.6), ([0.6,0.7],0.3)},
{(𝑎, 𝑥)(𝑎, 𝑦), ([0.2,0.3],0.5), ([0.3,0.4],0.6), ([0.6,0.7],0.4)}

⟩𝑁21 ⋅ 𝑁12

= ⟨
{(𝑏, 𝑥)(𝑐, 𝑦), ([0.2,0.3],0.6), ([0.4,0.5],0.3), ([0.7,0.8],0.2)},

{(𝑏, 𝑥)(𝑏, 𝑦), ([0.2,0.3],0.6), ([0.4,0.5],0.3), (0.5,0.6],0.3)}
⟩ 

 
 
Proposition 3.18 The lexicographic product of two neutrosophic cubic 

graph structures is again a neutrosophic cubic graph structure.  

 

Proof. Let 𝐺̆𝑆1 = (𝑀1, 𝑁11, 𝑁21, . . . , 𝑁𝑛1) and 𝐺̆𝑆2 = (𝑀2, 𝑁12, 𝑁22, . . . , 𝑁𝑛2) 
be two neutrosophic cubic graph structures defined on 𝐺̆1

∗ =
(𝑉1, 𝐸11, 𝐸12, . . . , 𝐸1𝑛) and 𝐺̆2

∗ = (𝑉2, 𝐸21, 𝐸22, . . . , 𝐸2𝑛) respectively. 

Condition is obvious for 𝑀1 ⋅ 𝑀2. Therefore we verify for 𝑁𝑛1 ⋅ 𝑁𝑛2; 𝑛 =
1,2, . . . , 𝑛, where  

𝑁𝑛1 ⋅ 𝑁𝑛2 = {((𝑇̃𝐶𝑛1⋅𝐶𝑛2 , 𝑇𝐷𝑛1⋅𝐷𝑛2), (𝐼𝐶𝑛1⋅𝐶𝑛2 , 𝐼𝐷𝑛1⋅𝐷𝑛2), (𝐹̃𝐶𝑛1⋅𝐶𝑛2 , 𝐹𝐷𝑛1⋅𝐷𝑛2))} 

(i) Let 𝑥 ∈ 𝑉1 and 𝑦1𝑦2 ∈ 𝐸𝑖2; 𝑖 = 1,2, . . . , 𝑛 

𝑇̃𝐶𝑖1⋅𝐶𝑖2(𝑥𝑦1)(𝑥𝑦2) = 𝑟𝑚𝑖𝑛{𝑇̃𝐴1(𝑥), 𝑇̃𝐶𝑖2(𝑦1𝑦2)} 

 ⪯ 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1(𝑥), 𝑟𝑚𝑖𝑛((𝑇̃𝐴2(𝑦1), (𝑇̃𝐴2(𝑦2))} 

 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑦1)), 𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥), 𝑇̃𝐴2(𝑦2))} 

 = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 ⋅ 𝑇̃𝐴2)(𝑥, 𝑦1), ((𝑇̃𝐴1 ⋅ 𝑇̃𝐴2)(𝑥, 𝑦2)} 

𝑇𝐷𝑛1⋅𝐷𝑛2((𝑥𝑦1)(𝑥𝑦2)) = max{(𝑇𝐵1(𝑥), 𝑇𝐷𝑛2(𝑦1𝑦2))} 

 ≤ max{(𝑇𝐵1(𝑥),max((𝑇𝐵2(𝑦1), (𝑇𝐵2(𝑦2))} 

 =
max{max((𝑇𝐵1(𝑥), (𝑇𝐵2(𝑦1)),max((𝑇𝐵1(𝑥), (𝑇𝐵2(𝑦2))} 

 = max{(𝑇𝐵1 ⋅ 𝑇𝐵2)(𝑥, 𝑦1), (𝑇𝐵1 ⋅ 𝑇𝐵2)(𝑥, 𝑦2)} 

(ii) Let 𝑥1𝑥2 ∈ 𝐸𝑖1 and 𝑦1𝑦2 ∈ 𝐸𝑖2; 𝑖 = 1,2, . . . , 𝑛 

𝑇̃𝐶𝑖1⋅𝐶𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = 𝑟𝑚𝑖𝑛{𝑇̃𝐶𝑖1(𝑥1𝑥2), 𝑇̃𝐶𝑖2(𝑦1𝑦2)} 

 ⪯
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥1), 𝑇̃𝐴1(𝑥2)), 𝑟𝑚𝑖𝑛(𝑇̃𝐴2(𝑦1), 𝑇̃𝐴2(𝑦2))} 
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 =
𝑟𝑚𝑖𝑛{𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥1), 𝑇̃𝐴2(𝑦1)), 𝑟𝑚𝑖𝑛(𝑇̃𝐴1(𝑥2), 𝑇′𝐴2(𝑦2))} 

 = 𝑟𝑚𝑖𝑛{(𝑇̃𝐴1 ⋅ 𝑇̃𝐴2)(𝑥1𝑦1), (𝑇̃𝐴1 ⋅ 𝑇̃𝐴2)(𝑥2𝑦2) 

𝑇𝐷𝑖1⋅𝐷𝑖2(𝑥1𝑦1)(𝑥2𝑦2) = max{𝑇𝐷𝑖1(𝑥1𝑥2), 𝑇𝐷𝑖2(𝑦1𝑦2)} 

 ≤ max{max(𝑇𝐵1(𝑥1), 𝑇𝐵1(𝑥2)), (𝑇𝐵2(𝑦1), 𝑇𝐵2(𝑦2))} 

 = max{max(𝑇𝐵1(𝑥1), 𝑇𝐵2(𝑦1)), (𝑇𝐵1(𝑥2), 𝑇𝐵2(𝑦2))} 

 = max{(𝑇𝐵1 ⋅ 𝑇𝐵2)(𝑥1𝑦1), (𝑇𝐵1 ⋅ 𝑇𝐵2)(𝑥2𝑦2)} 

Similarly we can show it for (𝐼𝐶𝑛1⋅𝐶𝑛2 , 𝐼𝐷𝑛1⋅𝐷𝑛2) and (𝐹̃𝐶𝑛1⋅𝐶𝑛2 , 𝐹𝐷𝑛1⋅𝐷𝑛2). This 

completes the proof. 

IV. Application in Multiple Attribute Group Decision Making 

Problem 

In this section we discuss a multiple attribute group decision making 

problem and developed an algorithm. 
Graphs are very important in daily life and allow us to study the behavior of 

something quickly. Graphs allow us to make a mental image of the data, so 

we can say that graphs help us to build a bridge between the abstract and the 
real. For too long we as humans have taken too much work upon our 

shoulders, its time to simplify our life and to use the best tool for the job. 

Graphing is one of these tools that might be used in such circumstances. 
Graphs are used in everyday life, from the local newspaper to the magazine 

stand. In computer science graphs are used to represent the flow of 

computation, used to measure the trafficking to a site, also used in fraud 
detection etc. So it is one of these skills that you simply cannot do without 

the help of graphs. Graphs can help us and make our life simpler from 

student to professionals. Fuzzy graph theory has been used in the world of 
Mathematics due to its effective applications. 

We first provide an algorithm and then we discuss an example. 

Algorithm:  

1. Select the set 𝑉 = {𝐴1, 𝐴2, . . . , 𝐴𝑛} of alternatives as a vertex set from the 
problem which is under study and select the membership grade for each 

element in the vertex set based on certain attributes. 

2. Select the set 𝐸 = {𝐸11, 𝐸21, 𝐸31, . . . , 𝐸𝑛1} of attributes or criteria as the 
set of edges. 

3. Use the Definition 3.1 of neutrosophic cubic graphs structures for finding 

the membership grade of each 𝐸𝑖1 for 𝑖 = 1,2,3. . . . 𝑛. 
4. After having the values of 𝑉 and 𝐸, draw the graph. 

5. Find the strength of each edge using the following definition and comapre 
them, 

 

Definition 4.1 Let 𝐸 = {𝑁11}  be a edge having neutrosophic cubic value 
and we define strength of edge as 

𝑆(𝐸) = [{(𝑇11
− + 𝐼11

− − 𝐹11
− ) + (𝑇11

+ + 𝐼11
+ − 𝐹11

+ )} + 𝑇11 + 𝐼11 − 𝐹11] 
where  𝑆 ∈ [−3,3]. 
This is same as the score of a neutrosophic cubic numbers. Here we used it 
for the graphs instead of numbers in terms of neutrosophic cubic sets. 

Example: Neutrosophic cubic graphs have vast applications in industries as 

discussed in [24]. Neutrosophic cubic graph structures have more vast 
applications in daily life, industries, economy and in foreign policy etc. The 

foreign policy of a country is influenced by so many factors. Some of them 

are listed as, "Geography, Size, Culture and History, Economics 
Development, Technology, Social Structure, Public Mood, Political 

Organization, Role of Press, Political Accountability,Leadership, Military 

Relation, Economic and trade policy, Diplomacy, Alliance, Membership of 

International Institute in Country, Religious Relation, Religious Festivals, 

Intelligence agencies and Boundaries etc". Here we discuss some of the 

above mentioned factors effecting the foreign policy for presenting an 
application of our developed mathematical procedure. We apply the 

algorithm as under: 

1. Let us consider a vertex set 𝑉 = {𝐴, 𝐵, 𝐶, 𝐷} of countries. Find the 

membership grade of each element of 𝑉 using the Neutrosophic cubic sets 
as under:  

𝑀 = ⟨

{𝐴, ([0.3,0.4],0.6), ([0.1,0.2],0.1), ([0.6,0.7],0.3)},
{𝐵, ([0.4,0.5],0.2), ([0.7,0.8],0.4), ([0.1,0.2],0.5)},

{𝐶, ([0.5,0.6],0.4), ([0.2,0.3],0.6), ([0.4,0.5],0.2)},
{𝐷, ([0.1,0.2],0.5), ([0.3,0.4],0.9), ([0.5,0.6],0.4)}

⟩ 

2. These countries are interlinked with each other by some relations given 
by  

𝐸 = {𝐸11, 𝐸21, 𝐸31} 
= {religiousrelations, traderelations, securityrelations} 

where  

𝐸11 = (𝐶11, 𝐷11) 
= {(𝑇̃𝐶11 , 𝑇𝐷11), (𝐼𝐶11 , 𝐼𝐷11), (𝐹̃𝐶11 , 𝐹𝐷11)} 

= {religious beliefs, religious festivals, effects of religion on society} 
 

𝐸21 = (𝐶21, 𝐷21) 
= {(𝑇̃𝐶21 , 𝑇𝐷21), (𝐼𝐶21 , 𝐼𝐷21), (𝐹̃𝐶21 , 𝐹𝐷21)} 

= {import, export, exchange} 
 

𝐸31 = (𝐶31, 𝐷31) 
= {(𝑇̃𝐶31 , 𝑇𝐷31), (𝐼𝐶31 , 𝐼𝐷31), (𝐹̃𝐶31 , 𝐹𝐷31)} 

= {Army, boundaries, intelligenceagencies} 
As the above given factors highly effect the relations among countries. 

These factors are responsible for the peace or war between two countries. 
3. Using the Definition 3.1 we have 

𝑙𝑁11 = ⟨
{𝐴𝐵, ([0.3,0.4],0.6), ([0.1,0.2],0.4), ([0.6,0.7],0.3)},

{𝐶𝐷, ([0.1,0.2],0.5), ([0.2,0.3],0.9), ([0.5,0.6],0.2)}
⟩𝑁21

= ⟨
{𝐴𝐷, ([0.1,0.2],0.6), ([0.1,0.2],0.9), ([0.6,0.7],0.3)},

{𝐵𝐶, ([0.4,0.5],0.4), ([0.2,0.3],0.6), ([0.4,0.5],0.2)}
⟩𝑁31

= ⟨
{𝐴𝐶, ([0.3,0.4],0.6), ([0.1,0.2],0.6), ([0.6,0.7],0.2)},

{𝐵𝐷, ([0.1,0.2],0.5), ([0.3,0.4],0.9), ([0.5,0.6],0.4)}
⟩ 

 
4.Draw the graph as under;  

5. Strength of edges is as under using the Definition 4.1, we have  

 𝑆(𝐴𝐵) = 0.4, 
 𝑆(𝐴𝐶) = 0.6, 
 𝑆(𝐴𝐷) = 0.5, 
 𝑆(𝐵𝐷) = 0.9, 
 𝑆(𝐷𝐶) = 0.9, 
 𝑆(𝐵𝐶) = 1.3. 

It is shown in the following figure  

 
 

𝑆(𝐵𝐶) > 𝑆(𝐷𝐶) = 𝑆(𝐵𝐷) > 𝑆(𝐴𝐶) > 𝑆(𝐴𝐷) > 𝑆(𝐴𝐵). 

Thus we can concluded that the countries 𝑩 and 𝑪 have strong relations 
between each other.  
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V. Comparative Analysis and Conclusions:  

All versions of neutrosophic sets like, single valued neutrosophic set, 

interval valued neutrosophic set and neutrosophic cubic set are used in 
literature so far for the applications of neutrosophic sets. But neutrosophic 

cubic sets are a more generalized tool to handle imprecision and vagueness 

and all other versions of neutrosophic sets are the special cases of it. On the 
other sides we have the comparison between the different types of graphs as 

shown the following table:  

Type of Graph Advantages and Limitations 

Crisp Graphs These can handle only exact 
information 

Fuzzy Graphs These can handle imprecise and 

vague information but only can 
handle only the positive aspects. 

Intuitionistic Fuzzy Graphs These can handle both positive 

and negative aspects, but it is not 

always possible to assign a single 

membership and non-membership 

value. 

Single values Neutrosophic 
Graphs 

These can handle positive, 
negative and hesitant 

information’s in a much better 

way as compared to previous 
ones. But like intutionistic fuzzy 

graphs it is not always possible to 

assign a single membership and 
non-membership value. 

Interval-valued Neutrosophic 

Graphs 

It can handle many problems as 

compared to previous. Yet have 
some limitations which can be 

handle through the hybrid version 

of neutrosophic cubic graphs. 

Neutrosophic Cubic Graphs This is the most generalized 
version of fuzzy graphs and it can 

handle many imprecise and vague 

problems. But in Neutrosophic 
Cubic Graphs the number of the 

set of edges is the only one. When 

the number of edges is more than 
one then we need the concept of 

neutrosophic cubic structures. 

 
So, we used the concept of neutrosophic cubic sets in this paper with the 

concept of neutrosophic cubic structures. 

We have observed that by increasing the set of edges we can find more 
insight of the problem which is not possible through a single set of edges. 

In this paper we discussed the idea of neutrosophic cubic graph structures, 

and different operations on it such as Cartesian product, composition, P-
union, R-union, P-join, R-join, cross product, strong product and 

lexicographic product. We provided different examples and results related 

to these operations. We also observed that R-union of two neutrosophic 
cubic graph structures may not be a neutrosophic cubic graph structure. 

Further we provided applications of neutrosophic cubic graph structures. In 

future we will try to different kinds of neutrosophic cubic graphs structures 
and will explore more results related with the application in real life.  
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