Article · June 2019		
CITATIONS	IONS READS	
0	18	
1 author:		
	Narmada Devi Rathinam	
	VEL TECH UNIVERISTY , Chennai, India	
	34 PUBLICATIONS 30 CITATIONS	
	SEE PROFILE	
Some of the authors of this publication are also working on these related projects:		
Project	RESEARCH PAPERS View project	
Project	neutrosophic topology View project	
Project	neutrosopine topology view project	

R. Narmada Devi

Abstract: In this paper we introduce the new concept of an ordered neutrosophic fuzzy convergence bitopo-logical spaces (ONFCONVGBTS). Besides giving some interesting propositions. Tietze extension theorem for pairwise ordered NFlim extremally disconnected space(PONFlim EDS) is established.

Keywords: \mathcal{O} NF $\mathcal{C}\mathcal{O}$ NV \mathcal{G} BTS, $\mathcal{P}\mathcal{O}$ NFLIM $\mathcal{E}\mathcal{D}\mathcal{S}$, ordered τ_{lim_i} NFlim \mathcal{C} F, lower (resp. upper) τ_{lim_i} NFlim \mathcal{C} F, (i =1 or 2).

I. INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [12]. Fuzzy sets have applications in many fields such as information [8] and control [9]. The concept of an ordered L-fuzzy bitopological spaces was introduced and studied in [2]. There are several kinds of fuzzy set extensions in the fuzzy set theory, for example, intuitionistic fuzzy set, vague fuzzy set, interval-valued fuzzy sets, etc.

Tomasz Kubiaz[10,11] extended the Urysohn lemma and Tietze extension theorem for the L-fuzzy normal spaces. After the introduction of intuitionistic fuzzy sets and its topological spaces by Atanassov[1] and Coker[3], the concept of imprecise data called neutrosophic sets was introduced by Smarandache[4].

Later A. A. Salama [6,7] studied the neutrosophic topological space and neutrosophic filters. The concepts of separation axiom in an ordered neutrosophic bitopological space was studied by R.Narmada Devi[5].

In this paper, the concept of an ordered *NF* convergence bitopological space and pairwise ordered *NFlim* extremally disconnected spaces are introduced and studied. Some interesting propositions are discussed. Tietze extension theorem for pairwise ordered *NFlim* extremally disconnected spaces has been established.

II. PRELIMINARIES

Definition 2.1. [4] Let X be a nonempty set. A neutrosophic set A in X is defined as an object of the form $A = \{\langle x, T_A(x), I_A(x), F_A(x) \rangle : x \in X\}$ such that T_A , I_A

Revised Manuscript Received on June 07, 2019.

R. Narmada Devi, Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R& D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, India

Definition 2.2. [4] Let $A = \langle x, T_A(x), I_A(x), F_A(x) \rangle$ and $B = \langle x, T_B(x), I_B(x), F_B(x) \rangle$ be any two neutrosophic fuzzy sets in X. Then

- (i) $A \cup B = \langle x, T_{A \cup B}(x), I_{A \cup B}(x), F_{A \cup B}(x) \rangle$ where $T_{A \cup B}(x) = T_A(x) \vee T_B(x), I_{A \cup B}(x) = I_A(x) \vee I_B(x)$ and $F_{A \cup B}(x) = F_A(x) \wedge F_B(x)$.
- (ii) $A \cap B = \langle x, T_{A \cap B}(x), I_{A \cap B}(x), F_{A \cap B}(x) \rangle$ where $T_{A \cap B}(x) = T_A(x) \wedge T_B(x), I_{A \cap B}(x) = I_A(x) \wedge I_B(x)$ and $T_{A \cap B}(x) = T_A(x) \vee T_B(x)$.
- (iii) $A \subseteq B$ if $T_A(x) \le T_B(x)$, $I_A(x) \le I_B(x)$ and $F_A(x) \ge F_B(x)$, for all $x \in X$.
- (iv) The complement of *A* is defined as $C(A) = \langle x, T_{C(A)}(x), I_{C(A)}(x), F_{C(A)}(x) \rangle$ where $T_{C(A)}(x) = 1 T_A(x), I_{C(A)}(x) = 1 I_A(x)$ and $F_{C(A)}(x) = 1 F_A(x)$.
- (v) $0_N = \{ \langle x, 0, 0, 1 \rangle : x \in X \}$ and $1_N = \{ \langle x, 1, 1, 0 \rangle : x \in X \}$.

III. VIEW ON NF CONVERGENCE BITOPOLOGICAL SPACES

Notation 3.1.

- (i) Y: nonempty set
- (ii) $\mathfrak{F}, \mathfrak{G}$: neutrosophic fuzzy filters on Y
- (iii) $\mathbb{U}(Y)$: set of all neutrosophic fuzzy ultrafilters on X.
- (iv) $\mathbb{NF}_p(Y)$: set of all neutrosophic fuzzy prime filters on X
- (v) $\mathbb{NF}_m(\mathfrak{F})$: set of all minimal prime neutrosophic fuzzy filters finer than \mathfrak{F} .
- (vi) ζ^{Y} : set of all neutrosophic fuzzy sets on Y.
- (vii) $lim \mathcal{F}$, $lim \mathcal{G}$, $lim \mathcal{H}$, $lim \mathcal{H}$, $lim \mathcal{L}$: neutrosophic fuzzy sets on Y.

(viii) $\zeta^{\mathbb{R}}$: set of all neutrosophic fuzzy sets on the real line \mathbb{R} .

(ix) $\mathbb{NF}(Y)$: set of all neutrosophic fuzzy filters on Y.

Definition 3.1. A nonempty collection \mathfrak{F} of elements in the lattice ζ^Y is called a neutrosophic fuzzy filter on Y provided

- (i) $0_N \notin \mathfrak{F}$,
- (ii) $D,E \in \mathfrak{F}$ implies $D \cap E \in \mathfrak{F}$,
- (iii) If $D \in \mathfrak{F}$ and $E \in \zeta^Y$ with $D \subseteq E$, then $D \in \mathfrak{F}$.

Definition 3.2. A neutrosophic fuzzy filter \mathfrak{F} is said to be neutrosophic fuzzy prime filter (or) prime neutrosophic fuzzy filter whenever, $L \cup M \in \mathfrak{F}$ implies $L \in \mathfrak{F}$ or $M \in \mathfrak{F}$.

Definition 3.3. A base for a neutrosophic fuzzy filter is a nonempty subset \mathcal{B} of ζ^{Y} obeying (i) $0_{N} \notin \mathcal{B}$, (ii) $L, M \in \mathcal{B}$ implies $L \cap M \supseteq H$, for some $H \in \mathcal{B}$.

The neutrosophic fuzzy filter generated by \mathcal{B} is denoted by $[\mathcal{B}] = \{ B \in \zeta^{Y} : D \supseteq E, D \in \mathcal{B} \}.$

Definition 3.4. Let H be any neutrosophic fuzzy set on Y. The characteristic * set of $\mathfrak{F} \in \mathbb{NF}(Y)$ is defined by $c(\mathfrak{F}) = \bigcup_{H \in \mathfrak{F}} H$. Moreover, $c(\mathfrak{F}) = c(f\mathfrak{F})$.

Definition 3.5. Let $x_{r,p,s}$ be any *NFP*. A *NF* characteristic function of $x_{r,p,s}$ is denoted by

$$1_{x_{r,p,s}} = \langle x, T_{x_{r,p,s}}, I_{x_{r,p,s}}, F_{x_{r,p,s}} \rangle.$$

Definition 3.6. Any *NFS* $\alpha 1_{x_{r,p,s}}$ is of the form

 $\alpha 1_{x_{r,p,s}} = \langle y, \alpha T_{x_{r,p,s}}(y), \alpha I_{x_{r,p,s}}(y), \alpha F_{x_{r,p,s}}(y) \rangle$, where $r + p + s \le 3$ and $\alpha \in (0, 1)$.

Notation 3.2. The collection of all neutrosophic fuzzy set of the form $\alpha 1_{x_{r,p,s}}$ is denoted by \mathfrak{E} .

Definition 3.7. Any *NF* filter generated by $\mathfrak E$ is denoted and defined by $[\mathfrak E] = \{ B \in \zeta^X : B \supseteq A, A \in \mathfrak E \}$, however $[\mathfrak E]$ is written as $\alpha 1_{x_{r,p,s}}$.

Definition 3.8. Given a nonempty set X, the pair (X, lim) is said to be a neutrosophic fuzzy convergence space (NFCONVGS) where $lim : \mathbb{NF}(X) \to \zeta^X$ provided:

- (i) For every $\mathfrak{F} \in \mathbb{NF}(X)$, $\lim \mathfrak{F} = \bigcap_{\mathfrak{G} \in \mathbb{NF}} \lim \mathfrak{G}$,
- (ii) For every $\mathfrak{F} \in \mathbb{NF}_p(X)$, $\lim \mathfrak{F} \subseteq c(\mathfrak{F})$,
- (iii) For every $\mathfrak{F}, \mathfrak{G} \in \mathbb{NF}_p(X), \mathfrak{F} \subseteq \mathfrak{G} \Rightarrow lim\mathfrak{G} \subseteq lim\mathfrak{F}$.
- (iv) For every $\alpha \in (0,1)$ and $\alpha 1_{x_{r,p,s}} \in \mathfrak{E}$,

$$\lim(1_{x_{r,p,s}}\alpha)\supseteq\alpha 1_{x_{r,p,s}}.$$

Definition 3.9. Let (X, lim) be a NFCONVGS. An operator $NFint: \zeta^X \to \zeta^X$ is defined by

 $NFint(lim\mathfrak{F}) = \bigcup \{lim\mathfrak{G} : lim\mathfrak{G} \subseteq lim\mathfrak{F}, \text{ for every }\}$

 $\mathfrak{G} \in \mathbb{U}(X)$ and $\mathfrak{F} \in \mathbb{NF}(X)$.

Definition 3.10. Let (X, lim) be any NFCONVGS. Then NFlim topology is defined by

 $\tau_{\lim} = \{ \lim \mathfrak{F} / NFint(\lim \mathfrak{F}) = \lim(\mathfrak{F}), \text{ for every } \mathfrak{F} \in \mathbb{NF}(X) \}.$

The pair (X, τ_{lim}) is said be a neutrosophic fuzzy convergence topological space(NFCONVGTS). Every member of NFlim topology is a neutrosophic fuzzy lim open set(NFlimOS).

The complement of a neutrosophic fuzzy *lim* open set is a neutrosophic fuzzy *lim* closed set(*NFlimCS*).

Definition 3.11. Let (X, τ_{lim}) be any NFCONVGTS and $lim_{\mathfrak{F}} \in \zeta^X$. Then the NFlim closure and NFlim interior of $lim_{\mathfrak{F}}$ are denoted and defined by

- (i) $NFlimcl(lim\mathfrak{F}) = \bigcap \{lim\mathfrak{G}: lim\mathfrak{G} \text{ is a } NFlimCS \text{ in } X \text{ and } lim\mathfrak{F} \subseteq lim\mathfrak{G} \},$
- (ii) $NFlimint(lim\mathfrak{F}) = \bigcup \{lim\mathfrak{G} : lim\mathfrak{G} \text{ is a } NFlimOS \text{ in } X \text{ and } lim\mathfrak{G} \subseteq lim\mathfrak{F} \}, \forall \mathfrak{G}, \mathfrak{F} \in \mathbb{NF}(X).$

Definition 3.12. An ordered neutrosophic fuzzy convergence topological space ($\mathcal{O}NF\mathbb{CONVG}TS$) is a triple (X, τ_{\lim}, \leq) where τ_{\lim} is a $NF\lim$ topology on X equipped with a partial order \leq .

Definition 3.13. Let (X, τ_{lim}, \leq) be an $\mathcal{C}NF\mathbb{CONVGTS}$. Then a neutrosophic fuzzy set $\lim \mathfrak{F}$ in (X, τ_{lim}, \leq) is said to be an

- (i) increasing neutrosophic fuzzy set (*increasing NFS*) if $x \le y$ implies $\lim_{\mathfrak{F}}(x) \subseteq \lim_{\mathfrak{F}}(y)$.

 That is, $T_{\lim_{\mathfrak{F}}}(x) \le T_{\lim_{\mathfrak{F}}}(y)$, $I_{\lim_{\mathfrak{F}}}(x) \le I_{\lim_{\mathfrak{F}}}(y)$ and $F_{\lim_{\mathfrak{F}}}(x) \ge F_{\lim_{\mathfrak{F}}}(y)$.
- (ii) decreasing neutrosophic fuzzy set (decreasing NFS) if $x \le y$ implies $\lim \mathfrak{F}(x) \supseteq \lim \mathfrak{F}(y)$.

That is, $T_{lim_{\mathfrak{F}}}(x) \geq T_{lim_{\mathfrak{F}}}(y)$, $I_{lim_{\mathfrak{F}}}(x) \geq I_{lim_{\mathfrak{F}}}(y)$ and $F_{lim_{\mathfrak{F}}}(x) \leq F_{lim_{\mathfrak{F}}}(y)$.

Definition 3.14. Let (X, τ_{lim}, \leq) be an $\mathcal{O}NF\mathbb{CONVG}TS$ and $lim\mathfrak{F}$ be any NFS in (X, τ_{lim}, \leq) .

Then we define the increasing-NF closure, decreasing-NFS closure, increasing-NFS interior and decreasing-NFS interior of $lim\mathfrak{F}$ respectively as follows:

- (i) $IncrNFcl(lim\mathfrak{F}) = \bigcap \{lim\mathfrak{G} : lim\mathfrak{G} \text{ is an} \\ increasingNFlimCS in } X \text{ and } lim\mathfrak{F} \subseteq lim\mathfrak{G} \},$
- (ii) $DecrNFcl(lim\mathfrak{F}) = \bigcap \{lim\mathfrak{G} : lim\mathfrak{G} \text{ is a} \\ decreasingNFlimCS in } X \text{ and } lim\mathfrak{F} \subseteq lim\mathfrak{G} \},$
- (iii) $IncrNFint(lim\mathfrak{F}) = \bigcup \{ lim\mathfrak{G} : lim\mathfrak{G} \text{ is an}$ $increasingNFlimOS \text{ in } X \text{ and } lim\mathfrak{F} \subseteq lim\mathfrak{G} \},$
- (iv) $DecrNFint(lim\mathfrak{F}) = \bigcup \{ lim\mathfrak{G} : lim\mathfrak{G} \text{ is an } decreasingNFlimOS \text{ in } X \text{ and } lim\mathfrak{G} \subseteq lim\mathfrak{F} \},$

for every \mathfrak{F} , $\mathfrak{G} \in \mathbb{NF}(X)$.

Proposition 3.1. For any neutrosophic fuzzy set $\lim \mathfrak{F}$ in an $\mathcal{O}NF\mathbb{CONVG}TS$, the following statements holds

- (i) $C(IncrNFcl(lim\mathfrak{F})) = DecrNFint(C(lim\mathfrak{F})),$
- (ii) $C(DecrNFcl(lim\mathfrak{F})) = IncrNFint(C(lim\mathfrak{F})),$
- (iii) $C(IncrNFint(lim\mathfrak{F})) = DecrNFcl(C(lim\mathfrak{F})),$
- (iv) $C(DecrNFint(lim\mathfrak{F})) = IncrNFcl(C(lim\mathfrak{F})).$

Proof:

We shall prove (i) only, (ii),(iii) and (iv) can be proved in a similar manner.

(i) Let $lim\mathfrak{F}$ be any neutrosophic fuzzy set in X. Then $IncrNFcl(lim\mathfrak{F}) = \bigcap \{ lim\mathfrak{G} : lim\mathfrak{G} \text{ is an } increasingNFlimCS \text{ in } X \text{ and } lim\mathfrak{F} \subseteq lim\mathfrak{G} \}, \text{ for every } \mathfrak{G}, \mathfrak{F} \in \mathbb{NF}(X).$

Taking complement on both sides, we have $C(IncrNFcl(lim\mathfrak{F})) = \bigcup \{C(lim\mathfrak{G}) : C(lim\mathfrak{G}) \text{ is a } decreasingNFlimOS \text{ in } X \text{ and } C(lim\mathfrak{G}) \subseteq C(lim\mathfrak{F})\}$

= $DecrNFint(C(lim\mathfrak{F}))$, for every \mathfrak{G} , $\mathfrak{F} \in \mathbb{NF}(X)$.

Definition 3.15. An ordered neutrosophic fuzzy convergence bitopological

space ($\mathcal{O}NF\mathbb{CONVG}BTS$)

is an OrderedNFCONVGTS

 $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ where τ_{lim_1} and τ_{lim_2} are the *NFlim* topologies on *X* equipped with a partial order \leq .

IV. CHARACTERIZATION OF PONFlimEDS

Definition 4.1. Let $(X, \ \tau_{lim_1}, \ \tau_{lim_2}, \ \leq)$ be an $\mathcal{O}NF\mathbb{CONVG}BTS$. Let $lim\mathfrak{F}$ be any τ_{lim_1} increasing resp. decreasing) NFlimOS in X. If $IncrNFcl\ \tau_{lim_2}$ $(lim\mathfrak{F})$ (resp.

DecrNFcl τ_{lim_2} (lim \mathfrak{F})) is τ_{lim_2} increasing (resp. decreasing) NFlimOS.

Then $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ is said to be τ_{lim_1} upper (resp. lower) *NFlim* extremally disconnected space. Similarly we can define τ_{lim_2} upper (resp. lower) *NFlim* extremally disconnected space.

Definition 4.2. An $\mathcal{O}NF\mathbb{CONVGBTS}$ $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ is said to be pairwise upper NFlim extremally disconnected ($\mathcal{PU}pperNFlim\mathcal{EDS}$) if it is both τ_{lim_1} upper NFlim extremally disconnected and τ_{lim_2} upper NFlim extremally disconnected.

Similarly we can define the pairwise lower NFlim extremally disconnected space(PLowerNFlimEDS).

Definition 4.3. An $\mathcal{O}NF\mathbb{CONVG}BTS$ $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ is said to be pairwise ordered NFlim extremally disconnected $(\mathcal{PONF}lim\mathcal{EDS})$ if it is both $\mathcal{PU}pperNFlim\mathcal{EDS}$ and $\mathcal{PL}owerNFlim\mathcal{EDS}$.

Proposition 4.1. For $\mathcal{O}\!NF\mathbb{CONVG}BTS$ $(X,\ \tau_{lim_1}\ ,\ \tau_{lim_2}\ ,\le)$, the following statements are equivalent:

- (i) $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ is PUpperNFlimEDS.
- (ii) $DecrNFint_{\tau_{lim_2}}$ ($lim\mathfrak{F}$) is a τ_{lim_2} decreasing NFlimCS, for each τ_{lim_1} decreasing NFlimCS $lim\mathfrak{F}$. Similarly, $DecrNFint_{\tau_{lim_1}}$ ($lim\mathfrak{F}$) is a τ_{lim_1} decreasing NFlimCS, for each τ_{lim_1} decreasing NFlimCS $lim\mathfrak{F}$.
- $$\begin{split} (\text{iii) } DecrNFcl_{\tau_{lim_{2}}}\left(C(IncrNFcl_{\tau_{lim_{2}}}\left(lim_{\mathfrak{F}}\right)\right)) \\ &= DecrNFint_{\tau_{lim_{2}}}\left(C(lim_{\mathfrak{F}})\right), \end{split}$$

for each τ_{lim} increasing NFlimOS lim \mathfrak{F} .

Similarly, $DecrNFcl_{\tau_{lim_1}}$ ($C(IncrNFcl_{\tau_{lim_1}}(lim_{\mathfrak{F}}))$) $= DecrNFint_{\tau_{lim_1}}$ ($C(lim_{\mathfrak{F}})$),

for each τ_{lim_2} increasing NFlimOS lim \mathfrak{F} .

(v) For each pair of τ_{lim_1} increasing $NFlimOS\ lim\mathfrak{F}$ and $\tau_{lim_2} \quad \text{decreasing} \quad NFlimOS \quad lim\mathfrak{G} \quad \text{with}$ $IncrNFcl_{\tau_{lim_2}}(lim\mathfrak{F}) \quad = \quad C(lim\mathfrak{G}),$ $DecrNFcl_{\tau_{lim_3}}(lim\mathfrak{G}) = C(IncrNFcl_{\tau_{lim_3}}(lim\mathfrak{F})).$

Similarly, for each pair of τ_{lim_2} increasing $NFlimOS\ lim\mathfrak{F}$ and τ_{lim_1} decreasing $NFlimOS\ lim\mathfrak{G}$ with $IncrNFcl_{\tau_{lim_1}}$ ($lim\mathfrak{F})=C(lim\mathfrak{G}),\ DecrNFcl_{\tau_{lim_1}}$ ($lim\mathfrak{F})=C(IncrNFcl_{\tau_{lim_1}}$ ($lim\mathfrak{F})$).

Proof:

(i) \Rightarrow (ii) Let $lim_{\mathfrak{F}}$ be any τ_{lim_1} decreasing NFlimCS. Then $C(lim_{\mathfrak{F}})$ is τ_{lim_1} increasing NFlimOS.

By assumption(i) $IncrNFcl_{\tau_{lim_2}}(C(lim\mathfrak{F}))$ is τ_{lim_2} increasing NFlimOS.

Since, $IncrNFcl_{\tau_{lim_{\gamma}}}$ $(C(lim_{\mathfrak{F}})) = C(DecrNFint_{\tau_{lim_{\gamma}}}(lim_{\mathfrak{F}})).$

Thus $DecrNFint_{\tau_{lim_2}}$ ($lim_{\mathfrak{F}}$) is τ_{lim_2} decreasing NFlimCS.

(ii)⇒(iii) Let $lim\mathfrak{F}$ be any τ_{lim_1} increasing NFlimOS. Then $C(lim\mathfrak{F})$ is τ_{lim_1} decreasing NFlimCS.

By assumption(ii) $DecrNFint_{\tau_{lim_2}}$ ($lim_{\mathfrak{F}}$) is τ_{lim_2} decreasing NFlimCS. Consider

$$\begin{split} DecrNFcl_{\tau_{lim_{2}}}\left(C(IncrNFcl_{\tau_{lim_{2}}}\left(lim\mathfrak{F}\right))\right) \\ = &DecrNFcl_{\tau_{lim_{2}}}\left(DecrNFint_{\tau_{lim_{2}}}\left(C(lim\mathfrak{F})\right)\right) \\ = &DecrNFint_{\tau_{lim_{2}}}\left(C(lim\mathfrak{F})\right). \end{split}$$

(iii) \Rightarrow (iv) For each pair of τ_{lim_1} increasing *NFlimOS lim* \mathfrak{F} and τ_{lim_2} decreasing *NFlimOS lim* \mathfrak{G} with $IncrNFcl_{\tau_{lim_2}}(lim\mathfrak{F}) = C(lim\mathfrak{G})$.

By assumption (iii),

 $DecrNFcl_{\tau_{lim_{\gamma}}}$ $(C(IncrNFcl_{\tau_{lim_{\gamma}}}$ $(lim_{\mathfrak{F}})))$

 $= DecrNFint_{\tau_{lim_{\gamma}}} \ (C(lim_{\mathfrak{F}})).$

By using Proposition 3.1 and by the hypothesis, we have $DecrNFcl_{\tau lim_{\tau}}(lim\mathfrak{G})$

 $= DecrNFcl_{\tau_{lim_{2}}}(C(IncrNFcl_{\tau_{lim_{2}}}(lim\mathfrak{F})))$

= $DecrNFint_{\tau_{lim_2}}(C(lim\mathfrak{F}))$

= $C(IncrNFcl_{\tau_{lim_2}}(lim_{\mathfrak{F}}))$.

(iv)⇒(i) Let $lim\mathfrak{F}$ be any τ_{lim_1} increasing *NFlimOS*. Put $lim\mathfrak{G} = C(IncrNFcl_{\tau_{lim_2}}(lim\mathfrak{F}))$. Clearly, $lim\mathfrak{G}$ is τ_{lim_2} decreasing *NFlimOS*.

By assumption (iv), it follow that $DecrNFcl_{\tau_{lim_{2}}}(lim\mathfrak{G})=C(IncrNFcl_{\tau_{lim_{2}}}\ (lim\mathfrak{F})).$

That is, $C(IncrNFcl_{\tau_{lim_2}}(lim\mathfrak{F}))$ is τ_{lim_2} decreasing NFlimCS. This implies that $IncrNFcl_{\tau_{lim_2}}(lim\mathfrak{F})$ is τ_{lim_2} increasing NFlimOS. Thus, $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ is τ_{lim_1} upper NFlim extremally disconnected space.

Similarly, we can show that $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ is τ_{lim_2} upper *NFlim* extremally disconnected space.

2080

Hence $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ is $\mathcal{P}UpperNFlim\mathcal{EDS}$.

Proposition 4.2. An $\mathcal{ONFCONVGBTS}$ $(X, \tau_{lim_1}, \tau_{lim_2}, \tau_{lim_2}, \tau_{lim_1})$ is $\mathcal{PONFlimEDS}$ iff for each τ_{lim_1} decreasing NFlimOS $lim\mathfrak{F}$ and τ_{lim_2} decreasing NFlimCS $lim\mathfrak{G}$ such that $lim\mathfrak{F} \subseteq lim\mathfrak{G}$, we have $DecrNFcl_{\tau_{lim_1}}(lim\mathfrak{F})\subseteq DecrNFint_{\tau_{lim_1}}(lim\mathfrak{G})$.

Suppose $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ is $\mathcal{P}UpperNFlim\mathcal{EDS}$. Let $lim\mathfrak{F}$ be any τ_{lim_1} decreasing NFlimOS and $lim\mathfrak{G}$ be any τ_{lim_2} decreasing NFlimCS such that $lim\mathfrak{F} \subseteq lim\mathfrak{G}$. Then by (ii) of Proposition 4.1, $DecrNFint_{\tau}$ $(lim\mathfrak{G})$ is τ_{lim_1} decreasing NFlimCS.

Also, since $\lim \mathfrak{F}$ is $\tau_{\lim_{1}}$ decreasing NFlimOS and $\lim \mathfrak{F} \subseteq \lim \mathfrak{G} \subseteq Decr NFint_{\tau_{\lim_{1}}}(\lim \mathfrak{G})$. It follows that $Decr NFcl_{\tau_{\lim_{1}}}(\lim \mathfrak{F}) \subseteq Decr NFint_{\tau_{\lim_{1}}}(\lim \mathfrak{G})$.

Conversely, let $lim\mathfrak{G}$ be any τ_{lim_2} decreasing NFlimCS. By Definition 3.14, $DecrNFint\tau_{lim_1}$ ($lim\mathfrak{G}$) is τ_{lim_1} decreasing NFlimOS and $DecrNFint\tau_{lim_1}$ ($lim\mathfrak{G}$) $\subseteq lim\mathfrak{G}$. By assumption,

$$\begin{aligned} DecrNFcl_{\tau lim_{1}} & (DecrNFint_{\tau lim_{1}} & (lim\mathfrak{G})) \\ & \subseteq DecrNFint_{\tau lim_{1}} & (lim\mathfrak{G}). \end{aligned}$$

Also we know that

 $DecrNFint_{\tau_{lim.}}(lim\mathfrak{G})$

$$\subseteq DecrNFcl_{\tau_{lim_1}}(DecrNFint_{\tau_{lim_1}}(lim\mathfrak{G})).$$

Thus $DecrNFint_{\tau lim_i}$ $(lim\mathfrak{G})$

$$=\!\!DecrNFcl_{\tau_{lim_{1}}}(DecrNFint_{\tau_{lim_{1}}}(lim\mathfrak{G})).$$

Therefore, $DecrNFint_{\tau_{lim_1}}(lim\mathfrak{G})$ is τ_{lim_1} decreasing NFlimCS. Hence by (ii) of Proposition 4.1, it follows that $(X, \ \tau_{lim_1} \ , \ \tau_{lim_2} \ , \ \leq)$ is τ_{lim_1} upper NFlim extremally disconnected space. Similarly we can prove the other cases. Therefore, $(X, \tau_{lim_1} \ , \tau_{lim_2} \ , \leq)$ is $\mathcal{PONFlimEDS}$.

Notation 4.1. A *NFS* which is both increasing (resp. decreasing)*NFlimOS* and increasing (resp. decreasing) *NFlimCS* is increasing (resp. decreasing) *NFlim* clopen set.

Remark 4.1. Let $(X, \ \tau_{lim_1}, \ \tau_{lim_2}, \ \leq)$ be a $\mathcal{P}UpperNFlim\mathcal{E}D\mathcal{S}$. Let $\{\ lim_{\mathfrak{F}i}, \ C(lim_{\mathfrak{G}i}): \ i \in \mathbb{N} \ \}$ be a collection such that $lim_{\mathfrak{F}i}$'s are τ_{lim_1} decreasing NFlimOSs and $lim_{\mathfrak{G}i}$'s are τ_{lim_2} decreasing NFlimCSs.

Let $lim\mathfrak{F}$ and $C(lim\mathfrak{G})$ be τ_{lim_1} decreasing NFlimOS and τ_{lim_2} increasing NFlimOS respectively.

If $lim\mathfrak{F}_i\subseteq lim\mathfrak{F}\subseteq lim\mathfrak{G}_j$ and $lim\mathfrak{F}_i\subseteq lim\mathfrak{G}\subseteq lim\mathfrak{G}_j$ for all $i,j\in\mathbb{N}$, then there exists a τ_{lim_1} and τ_{lim_2} decreasing *NFlim* clopen sets $lim\mathfrak{F}_j$ such that

 $DecrNFcl_{\tau \lim_{i}}(lim\mathfrak{F}_{i}) \subseteq lim\mathfrak{H} \subseteq DecrNFint_{\tau \lim_{i}}(lim\mathfrak{G}_{j}),$ for all $i, j \in \mathbb{N}$.

Proof: By Proposition 4.2,

 $DecrNFcl_{\tau_{lim_1}}(lim\mathfrak{F}_i)$

$$\begin{split} &\subseteq DecrNFcl_{\tau_{lim_{1}}}\ (lim\mathfrak{F})\cap DecrNFint_{\tau_{lim_{1}}}\ (lim\mathfrak{G}) \\ &\subseteq DecrNFint_{\tau_{lim_{1}}}\ (lim\mathfrak{G}_{j}), \end{split}$$

for all $i, j \in \mathbb{N}$.

Letting $lim\mathfrak{H}=DecrNFcl_{\tau_{lim_1}}(lim\mathfrak{H})\cap DecrNFint_{\tau_{lim_1}}(lim\mathfrak{G})$ in the above, we have $lim\mathfrak{H}$ is τ_{lim_1} and τ_{lim_2} decreasing NFlim clopen set satisfying the required condition.

Proposition 4.3. Let $(X, \ \tau_{lim_1}, \ \tau_{lim_2}, \ \leq)$ be a $\mathcal{PONF}lim\mathcal{EDS}$. Let $\{\ lim\mathfrak{F}_q\ \}_{q\in\mathbb{Q}}$ and $\{\ lim\mathfrak{G}_q\ \}_{q\in\mathbb{Q}}$ be monotone increasing collections of τ_{lim_1} decreasing NFlimCSs and τ_{lim_2} decreasing NFlimCSs of $(X, \ \tau_{lim_1}, \ \tau_{lim_2}, \ \leq)$ respectively.

Suppose that $\lim \mathfrak{F}_{q_1} \subseteq \lim \mathfrak{G}_{q_2}$ whenever $q_1 < q_2$ (\mathbb{Q} is the set of all rational numbers). Then there exists a monotone increasing collection { $\lim \mathfrak{H}_q$ } $q \in \mathbb{Q}$ of τ_{\lim_1} and τ_{\lim_2} decreasing NFlim clopen sets of $(X, \tau_{\lim_1}, \tau_{\lim_2}, \leq)$ such that

$$\begin{split} \operatorname{DecrNFcl}_{\tau_{\lim_{1}}}\left(\lim\mathfrak{F}_{q_{1}}\right) &\subseteq \lim\mathfrak{H}_{q_{2}} \text{ and} \\ \lim\mathfrak{H}_{q_{1}} &\subseteq \operatorname{DecrNFint}_{\tau_{\lim_{1}}}\left(\lim\mathfrak{G}_{q_{2}}\right) \end{split}$$

whenever $q_1 < q_2$.

Proof:

Let us arrange all rational numbers into a sequence $\{q_n\}$ (without repetitions). For every $n \geq 2$, we shall define inductively a collection $\{lim\mathfrak{H}_{q_i} \ /1 \leq i \leq n\} \subset \zeta^X$ such that

$$DecrNFcl_{\tau_{\lim_{i}}}(lim\mathfrak{F}_{q_{i}})\subseteq lim\mathfrak{H}_{q_{i}} \text{ if } q < q_{i} \text{ and }$$

 $lim\mathfrak{H}_{q_i} \subseteq Decr NFint_{\tau_{lim_1}} \ (lim\mathfrak{G}_q) \ \text{if} \ q_i < q, \ \text{for all} \ i < n \ (\mathbf{S_n})$

By Proposition 4.2, the countable collections $\{DecrNFcl\tau_{lim_1}(lim\mathfrak{F}_q)\}$ and $\{DecrNFint_{\tau_{lim_1}}(lim\mathfrak{G}_q)\}$ satisfy $DecrNFcl_{\tau_{lim_1}}(lim\mathfrak{F}_{q_1})\subseteq DecrNFint_{lim_1}(lim\mathfrak{G}_{q_2})$ if $q_1< q_2$.

By Remark 4.1, there exists a τ_{lim_1} and τ_{lim_2} decreasing *NFlim* clopen set $lim\mathfrak{R}_1$ such that

Assume that τ_{lim_1} NFSs $lim\mathfrak{H}_{q_i}$ are already defined for i < n and satisfy $(\mathbf{S_n})$.

Define $lim \mathfrak{L} = \bigcup \{ lim \mathfrak{H}_{q_i} / i < n, q_i < q_n \} \cup lim \mathfrak{F}_{q_n} \text{ and }$ $lim \mathfrak{M} = \bigcap \{ lim \mathfrak{H}_{q_i} / j < n, q_j > q_n \} \cap lim \mathfrak{G}_{q_n}.$

Then we have that

 $DecrNFcl_{\tau_{lim_1}}(lim\mathfrak{H}_{q_i})$

 $\subseteq DecrNFcl_{\tau_{\lim_{i}}}(lim\mathfrak{L})\subseteq DecrNFint_{\tau_{\lim_{i}}}(lim\mathfrak{H}_{q_{j}}) \\$ and

 $DecrNFcl_{\tau_{lim_{1}}}(lim\mathfrak{H}_{q_{i}})$

 $\subseteq DecrNFint_{\tau_{lim_i}}(lim\mathfrak{M}) \qquad \subseteq \qquad DecrNFcl_{\tau_{lim_i}}(lim\mathfrak{H}_{q_j})$ whenever $q_i < q_n < q_i \ (i,j < n).$

As well as $\lim \mathfrak{F}_{\mathbf{q}} \subseteq DecrNFcl_{\tau_{\lim_{\mathbf{q}}}}(\lim \mathfrak{L}) \subseteq \lim \mathfrak{G}_{\mathbf{q}'}$ and $\lim \mathfrak{F}_{\mathbf{q}} \subseteq DecrNFint_{\tau_{\lim_{\mathbf{q}}}}(\lim \mathfrak{M}) \subseteq \lim \mathfrak{G}_{\mathbf{q}'}$ whenever $q < q_n < q'$.

This shows that the countable collections

{ $\lim \mathfrak{H}_{q_i} \mid i < n, \, q_i < q_n$ } \cup { $\lim \mathfrak{F}_q \mid q < q_n$ } and

 $\{\lim \mathfrak{H}_{q_j} \mid j < n, \ q_j > q_n \ \} \cup \{\lim \mathfrak{G}_q \mid q > q_n \ \} \text{ together with } lim \mathfrak{L} \text{ and } lim \mathfrak{M} \text{ fulfil the conditions of Remark 4.1.}$

Hence, there exists a τ_{lim_1} and τ_{lim_2} decreasing *NFlim* clopen set $lim\mathfrak{R}_n$ such that

 $DecrNFcl_{\tau lim}$ $(lim \mathfrak{R}_n) \subseteq lim \mathfrak{G}_q$ if $q_n < q$,

$$\begin{split} & lim \mathfrak{F}_q \subseteq \textit{DecrNFint}_{\tau_{\textit{lim}_1}}(\textit{lim}\mathfrak{K}_n) \text{ if } q < q_n \text{ , } \textit{DecrNFcl} \\ & \tau_{\textit{lim}_1}(\textit{lim}\mathfrak{H}_{1}) \subseteq \textit{DecrNFint}_{\tau_{\textit{lim}_1}}(\textit{lim}\mathfrak{K}_n) \text{ if } q_i < q_n \text{ , } \\ & \textit{DecrNFcl}_{\tau_{\textit{lim}_1}}(\textit{lim}\mathfrak{K}_n) \subseteq \textit{DecrNFint}_{\tau_{\textit{lim}_1}}(\textit{lim}\mathfrak{H}_q_i) \text{ if } q_n < q_j \\ & \text{where } 1 \leq i, j \leq n-1. \end{split}$$

Letting $\lim \mathfrak{H}_{q_n} = \lim \mathfrak{K}_n$ we obtain a $\tau_{\lim_1} NFSs$ $\lim \mathfrak{H}_{q_1}$, $\lim \mathfrak{H}_{q_2}$, $\lim \mathfrak{H}_{q_3}$,..., $\lim \mathfrak{H}_{q_n}$ that satisfy (S_n+1).

Therefore, the collection { $\lim \mathfrak{H}_{q_i}$ /i=1,2,...} has the required property. This completes the proof.

Definition 4.4. Let $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ and $(Y, \sigma_{lim_1}, \sigma_{lim_2}, \leq)$ be any two ONFCONVCBTSs.

Let $f:(X,\, \tau_{\lim_1}\,\,,\tau_{\lim_2}\,,\leq) \to (Y,\, \sigma_{\lim_1}\,\,,\sigma_{\lim_2}\,,\leq)$ be any NF function. Then f is said to be a

- (i) τ_{lim_1} increasing *NFlim* continuous function $(\tau_{lim_1} \text{ increasing } NFlimCF)$ if for every σ_{lim_1} (or) σ_{lim_2} *NFlimOS* $lim\mathfrak{F}$ in $(Y, \sigma_{lim_1}, \sigma_{lim_2}, \leq), f^{-1}$ $(lim\mathfrak{F})$ is a τ_{lim_1} increasing *NFlimOS* in $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$.
- (ii) τ_{lim_1} decreasing *NFlim* continuous function $(\tau_{lim_1}$ decreasing *NFlimCF*) if for every σ_{lim_1} (or) σ_{lim_2} *NFlimOS lim* $\mathfrak F$ in $(Y,\,\sigma_{lim_1}\,\,,\,\sigma_{lim_2}\,\,,\,\leq)$, f^{-1} ($lim\mathfrak F$) is a τ_{lim_1} decreasing *NFlimOS* in $(X,\,\tau_{lim_1}\,\,,\,\tau_{lim_2}\,\,,\,\leq)$.
- (iii) If f is both τ_{lim_l} increasing NFlimCF and τ_{lim_l} decreasing NFlimCF then it is said to be an ordered τ_{lim_l}

NFlim continuous function($\mathcal{O}\tau_{lim_1}NFlimCF$). Similarly we can define $\mathcal{O}\,\sigma_{lim_2}NFlimCF$.

V. TIETZE EXTENSION THEOREM FOR $\mathcal{PONFCONVGBTS}$

Definition 5.1. A *NF* real line $\mathbb{R}_{\mathbb{I}}(I)$ is the set of all monotone decreasing *NFS A* $\in \zeta^{\mathbb{R}}$ satisfying

$$\bigcup \{A(t) : t \in \mathbb{R}\} = 1^N \text{ and } \bigcap \{A(t) : t \in \mathbb{R}\} = 0^N$$

after the identification of an *NFSs* $A,B \in \mathbb{R}_{\mathbb{I}}(I)$ if and only if

$$A(t-) = B(t-)$$
 and $A(t+) = B(t+)$ for all $t \in \mathbb{R}$ where

$$A(t-) = \bigcap \{A(s) : s < t\} \text{ and } A(t+) = \bigcup \{A(s) : s > t\}.$$

The *NF* unit interval $\mathbb{I}_{\mathbb{I}}(I)$ is a subset of $\mathbb{R}_{\mathbb{I}}(I)$ such that $[A] \in \mathbb{I}_{\mathbb{I}}(I)$ if the degrees of membership, indeterminate-membership and nonmembership of A are defined by

$$T_{A}(t) = \begin{cases} 1, t < 0 \\ 0, t > 1 \end{cases}, \text{ and } I_{A}(t) = \begin{cases} 1, t < 0 \\ 0, t > 1 \end{cases}$$

$$F_{A}(t) = \begin{cases} 0, t < 0 \\ 1, t > 1 \end{cases}$$
 respectively.

The natural NF topology on $\mathbb{R}_{\mathbb{I}}(I)$ is generated from the subbasis $\{L^{\mathbb{I}}_t, R^{\mathbb{I}}_t : t \in \mathbb{R}\}$ where $L^{\mathbb{I}}_t, R^{\mathbb{I}}_t : \mathbb{R}_{\mathbb{I}}(I) \to \mathbb{I}_{\mathbb{I}}(I)$ are given by $L^{\mathbb{I}}_t[A] = C(A(t-))$ and $R^{\mathbb{I}}_t[A] = A(t+)$ respectively.

Definition 5.2. Let $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ be any $\mathcal{O}NFCONVGBTS$. A function $f: X \to \mathbb{R}_{\mathbb{I}}(I)$ is said be

- (i) lower $\tau_{lim_1} NFlimCF$ if $f^{-1}(R^{\mathbb{I}}_t)$ is τ_{lim_1} increasing or decreasing NFlimOS,
- (ii) upper τ_{lim_1} *NFlimCF* if $f^{-1}(L^{\mathbb{I}}_t)$ is τ_{lim_1} increasing or decreasing *NFlimOS*, for each $t \in \mathbb{R}$.

Similarly we can define lower τ_{lim_1} *NFlimCF* and upper τ_{lim_2} *NFlimCF* respectively.

Notation 5.1. Let X be any nonempty set and $\lim \mathfrak{F} \in \zeta^X$. Then for $x \in X$, $\langle T_{\lim \mathfrak{F}}(x), I_{\lim \mathfrak{F}}(x), F_{\lim \mathfrak{F}}(x) \rangle$ is denoted by $\lim \mathfrak{F}^N$.

Proposition 5.1. Let $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ be any ONFCONVGBTS and let $lim\mathfrak{F}$ be NFS in X.

Let
$$f: X \to \mathbb{R}_{\mathbb{I}}(I)$$
 be such that $f(x)(t) = \begin{cases} I^N & \text{if } t < 0 \\ \lim \mathfrak{F}^N & \text{if } 0 \le t \le 1 \\ 0^N & \text{if } t > 1 \end{cases}$

2082

for all $x \in X$ and $t \in \mathbb{R}$. Then f is lower (resp. upper) τ_{lim_1} NFlimCF iff $lim\mathfrak{F}$ is τ_{lim_1} increasing or decreasing NFlimOS (NFlimCS).

Proof:

$$f^{-I}(R^{\mathbb{I}}_t)(t) = \begin{cases} I_N & \text{if } t < 0 \\ \lim \mathcal{F} & \text{if } 0 \le t \le 1 \\ 0_N & \text{if } t > 1 \end{cases}$$

implies that f is lower τ_{lim_1} *NFlimCF* continuous function iff $lim\mathfrak{F}$ is τ_{lim_1} increasing or decreasing limOS.

$$f^{-1}(C(L^{\mathbb{I}}_{t}))(t) = \begin{cases} I_{N} \text{ if } t < 0 \\ lim_{\mathcal{F}} \text{ if } 0 \leq t \leq 1 \\ 0_{N} \text{ if } t > 1 \end{cases}$$

implies that f is upper τ_{lim_1} NFlimCF iff $lim\mathfrak{F}$ is τ_{lim_1} increasing or decreasing NFlimCS. Hence the proof is complete.

Definition 5.3. A *NF* characteristic function of a *NFS* $\lim_{\mathfrak{F}}$ in *X* is a map $\psi_{\lim_{\mathfrak{F}}}: X \to \mathbb{I}_{\mathbb{I}}(I)$ is defined by $\psi_{\lim_{\mathfrak{F}}}(x) = \lim_{\mathfrak{F}} \mathbb{I}_{\mathbb{F}}(X)$, for each $X \in X$.

Remark 5.1. Let $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ be any ONFCONVGBTS. Let $\psi_{lim_{\mathfrak{F}}}$ be NF characteristic function of a $NFS\ lim_{\mathfrak{F}}$ in X. Then $\psi_{lim_{\mathfrak{F}}}$ is lower (resp. upper) τ_{lim_1} NFlimCF iff $lim_{\mathfrak{F}}$ is τ_{lim_1} increasing or decreasing NFlimOS (NFlimCS).

Proof: The proof follows Proposition 5.1.

Proposition 5.2. Let $(X, \ \tau_{lim_1}, \ \tau_{lim_2}, \ \leq)$ be any ONFCONVGBTS. Then the following conditions are equivalent

- (i) $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ is PONFlimEDS.
- (ii) If $g, h: X \to \mathbb{R}_{\mathbb{I}}(I)$, g is lower τ_{lim_1} NFlimCF, h is upper τ_{lim_2} NFlimCF and $g \subseteq h$, then there exists increasing τ_{lim_1} and τ_{lim_2} NFlimCF $f: X \to \mathbb{R}_{\mathbb{I}}(I)$ such that $g \subseteq f \subseteq h$.
- (iii) If $C(lim\mathfrak{F})$ is increasing τ_{lim_2} NFlimOS and $lim\mathfrak{G}$ is decreasing τ_{lim_1} NFlimOS such that $lim\mathfrak{G} \subseteq lim\mathfrak{F}$, then there exists an increasing τ_{lim_1} and τ_{lim_2} NFlimCF $f: X \rightarrow \mathbb{R}_{\mathbb{I}}(I)$ such that $lim\mathfrak{G} \subseteq f^{-1}(C(L^{\mathbb{I}}_1)) \subseteq f^{-1}(R^{\mathbb{I}}_0) \subseteq lim\mathfrak{F}$.

Proof:

(i) \Rightarrow (ii) Define $\lim \mathfrak{F}_r = h^{-1}$ ($L^{\mathbb{I}}_r$) and $\lim \mathfrak{G}_r = g^{-1}$ ($C(R^{\mathbb{I}}_r)$), for all $r \in \mathbb{Q}$ (\mathbb{Q} is the set of all rationals). Clearly, $\{\lim \mathfrak{F}_r\}_{r \in \mathbb{Q}}$ and $\{\lim \mathfrak{G}_r\}_{r \in \mathbb{Q}}$ are monotone increasing families of decreasing $\tau_{\lim_{n \to \infty} NFlimOSs}$ and decreasing $\tau_{\lim_{n \to \infty} NFlimOSs}$ respectively. Moreover $\lim \mathfrak{F}_r \subseteq \lim \mathfrak{G}_s$ if r < s.

By Proposition 4.3, there exists a monotone increasing family $\{lim\mathfrak{H}_r\}_{r\in\mathcal{Q}}$ of τ_{lim_1} and τ_{lim_2} decreasing NFlim clopen sets of $(X,\ \tau_{lim_1},\ \tau_{lim_2},\ \leq)$ such that $DecrNFcl_{\tau_{lim_1}}(lim\mathfrak{F}_r)\subseteq lim\mathfrak{H}_s$ and

 $\lim \mathfrak{H}_r \subseteq Decr NFint_{\tau_{\lim}}$ ($\lim \mathfrak{G}_s$) whenever r < s ($r,s \in \mathbb{Q}$).

Letting $lim\mathfrak{V}_t = \underset{r < t}{\mathbb{I}} \{C(lim\mathfrak{H}_r)\}$ for all $t \in \mathbb{R}$, we define a monotone decreasing family $\{lim\mathfrak{V}_t \mid t \in R\} \subseteq \zeta^X$.

Moreover we have

 $IncrNFcl_{\tau_{lim_1}}(lim\mathfrak{V}_t) \subseteq IncrNFint_{\tau_{lim_1}}(lim\mathfrak{V}_s)$ whenever s < t. We have,

$$\begin{split} & \underset{t \in \mathbb{R}}{\mathbf{Y}} \quad lim \mathfrak{V}_t = \underset{t \in \mathbb{R}}{\mathbf{Y}} \quad \underset{r < t}{\mathbf{I}} \quad C(lim \mathfrak{H}_r) \\ & \cong \underset{t \in \mathbb{R}}{\mathbf{Y}} \quad \underset{r < t}{\mathbf{I}} \quad C(lim \mathfrak{H}_r) \\ & = \underset{t \in \mathbb{R}}{\mathbf{Y}} \quad \underset{r < t}{\mathbf{I}} \quad g^{-1} \left(R^{\mathbb{I}}_r \right) \\ & = \underset{t \in \mathbb{R}}{\mathbf{Y}} \quad g^{-1} \left(C(L^{\mathbb{I}}_t) \right) = g^{-1} \left(\underset{t \in \mathbb{R}}{\mathbf{Y}} \quad C(L^{\mathbb{I}}_t) \right) = 1_N \end{split}$$

Similarly, $\lim_{t \in \mathbb{R}} \lim \mathfrak{V}_t = 0_N$. Now define a function $f: X \to \mathbb{R}_{\mathbb{I}}(I)$ possessing required conditions.

Let $f(x)(t) = \lim \mathfrak{V}_t(x)$, for all $x \in X$ and $t \in \mathbb{R}$. By the above discussion, it follows that f is well defined.

To prove f is increasing τ_{lim_1} and τ_{lim_2} NFlimCF. Observe that $\underset{s>t}{Y} \lim \mathfrak{V}_s = \underset{s>t}{Y} \operatorname{IncrNFint}_{\tau_{lim_1}}(\lim \mathfrak{V}_s)$ and $\underset{s<t}{\mathbb{I}} \lim \mathfrak{V}_s = \underset{s<t}{\mathbb{I}} \operatorname{IncrNFcl}_{\tau_{lim_1}}(\lim \mathfrak{V}_s)$. Then $f^{-1}(R^{\mathbb{I}}_t) = \underset{s>t}{Y} \operatorname{IncrNFint}_{\tau_{lim_1}}(\lim \mathfrak{V}_s)$ is τ_{lim_1} increasing or decreasing NFlimOS and $f^{-1}(L^{\mathbb{I}}_t) = \underset{s<t}{\mathbb{I}} \lim \mathfrak{V}_s = \underset{s<t}{\mathbb{I}} \operatorname{IncrNFcl}_{\tau_{lim_1}}(\lim \mathfrak{V}_s)$ is τ_{lim_1} increasing or decreasing NFlimCS. Hence f is increasing τ_{lim_1} NFlimCF.

Similarly, we can prove f is increasing τ_{lim_2} NFlimCF in same manner. Therefore, f is increasing τ_{lim_1} and τ_{lim_2} NFlimCF.

To conclude the proof it remains to show that $g \subseteq f \subseteq h$. That is $g^{-1}(C(L_t^{\mathbb{I}})) \subseteq f^{-1}(C(L_t^{\mathbb{I}})) \subseteq h^{-1}(C(L_t^{\mathbb{I}}))$ and $g^{-1}(R_t^{\mathbb{I}}) \subseteq f^{-1}(R_t^{\mathbb{I}}) \subseteq h^{-1}(R_t^{\mathbb{I}})$ for each $t \in \mathbb{R}$. We have,

$$g^{-1}(C(L^{\mathbb{I}}_{t})) = \underset{s < t}{\mathbf{I}} \quad g^{-1}(C(L^{\mathbb{I}}_{s}))$$

$$= \underset{s < t}{\mathbf{I}} \quad \underset{r < s}{\mathbf{I}} \quad g^{-1}(R^{\mathbb{I}}_{r})$$

$$= \underset{s < t}{\mathbf{I}} \quad \underset{r < s}{\mathbf{I}} \quad C(lim\mathfrak{G}_{r})$$

$$\subseteq \underset{s < t}{\mathbf{I}} \quad \underset{r < s}{\mathbf{I}} \quad C(lim\mathfrak{H}_{r})$$

$$= \lim_{s < t} \lim \mathfrak{V}_s = f^{-1}(C(L^{\mathbb{I}}))$$

and

$$f^{-1}\left(C(L^{\mathbb{I}}_{t})\right) = \underset{s < t}{\mathbb{I}} \lim \mathfrak{V}_{s}$$

$$= \underset{s < t}{\mathbb{I}} \underset{r < s}{\mathbb{I}} C(\lim \mathfrak{H}_{r})$$

$$\subseteq \underset{s < t}{\mathbb{I}} \underset{r < s}{\mathbb{I}} C(\lim \mathfrak{H}_{r})$$

$$= \underset{s < t}{\mathbb{I}} \underset{r < s}{\mathbb{I}} h^{-1}\left(C(L^{\mathbb{I}}_{r})\right)$$

$$= \underset{s < t}{\mathbb{I}} h^{-1}\left(C(L^{\mathbb{I}}_{s})\right) = h^{-1}\left(C(L^{\mathbb{I}}_{t})\right)$$

Similarly,

$$g^{-1}(R^{\mathbb{I}}_{t}) = \underset{s>t}{Y} g^{-1}(R^{\mathbb{I}}_{s})$$

$$= \underset{s>t}{Y} \qquad \underset{r>s}{Y} g^{-1}(R^{\mathbb{I}}_{r})$$

$$= \underset{s>t}{Y} \qquad \underset{r>s}{Y} C(lim\mathfrak{G}_{r})$$

$$\subseteq \underset{s>t}{Y} \qquad \underset{r

$$= \underset{s>t}{Y} lim\mathfrak{V}_{s} = f^{-1}(R^{\mathbb{I}}_{t})$$$$

and

$$f^{-1}(R^{\mathbb{I}}_{t}) = \underset{s>t}{Y} \lim \mathfrak{D}_{s}$$

$$= \underset{s>t}{Y} \quad \underset{r < s}{I} C(\lim \mathfrak{H}_{r})$$

$$\subseteq \underset{s>t}{Y} \quad \underset{r>s}{Y} C(\lim \mathfrak{F}_{r})$$

$$= \underset{s>t}{Y} \quad \underset{r>s}{h^{-1}(C(L^{\mathbb{I}}_{r}))}$$

$$= \underset{s>t}{Y} \quad h^{-1}(R^{\mathbb{I}}_{s}) = h^{-1}(R^{\mathbb{I}}_{t})$$

Hence, the condition (ii) is proved.

(ii) \Rightarrow (iii) Let $C(lim\mathfrak{F})$ be an increasing τ_{lim_2} NFlimOS and $lim\mathfrak{G}$ be a decreasing τ_{lim_1} NFlimOS such that $lim\mathfrak{G} \subseteq lim\mathfrak{F}$. Then $\psi lim\mathfrak{G} \subseteq \psi lim\mathfrak{F}$ where $\psi lim\mathfrak{G}$ and $\psi lim\mathfrak{F}$ are lower τ_{lim_1} NFlimCF and upper τ_{lim_2} NFlimCF respectively.

By (ii), there exists increasing τ_{lim_1} and τ_{lim_2} $NFlimCF\ f: X \to \mathbb{R}_{\mathbb{I}}(I)$ such that $\psi_{lim\mathfrak{G}} \subseteq f \subseteq \psi_{lim\mathfrak{F}}$. Clearly, $f(x) \in \mathbb{I}_{\mathbb{I}}(I)$ for all $x \in X$ and $lim\mathfrak{G} = \psi^{-1}_{lim\mathfrak{G}}(C(L^{\mathbb{I}}_1)) \subseteq f^{-1}(C(L^{\mathbb{I}}_1))$ $\subseteq f^{-1}(R^{\mathbb{I}}_0) \subseteq \psi^{-1}_{lim\mathfrak{F}}(R^{\mathbb{I}}_0) = lim\mathfrak{F}$.

Therefore, $\lim \mathfrak{G} \subseteq f^{-1}(C(L_1^{\mathbb{Z}})) \subseteq f^{-1}(R_0^{\mathbb{Z}}) \subseteq \lim \mathfrak{F}$.

(iii) \Rightarrow (i) Since $f^{-1}(C(L_1^{\mathbb{F}}))$ and $f^{-1}(R_0^{\mathbb{F}})$ are decreasing τ_{lim_1} *NFlimCS* and decreasing τ_{lim_2} *NFlimOS* respectively. By Proposition 4.2, $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ is $\mathcal{PONFlimEDS}$.

Notation 5.2. Let (X, τ_{lim}) be any NFCONVGTS. Let $A \subset X$. Then $NFlim\chi_A$ is of the form $\langle x, \chi_A(x), \chi_A(x), 1 - \chi_A(x) \rangle$. **Proposition 5.3.** Let $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$ is PONFlimEDS. Let $A \subset X$ such that $lim\chi_A$ is τ_{lim_1} and τ_{lim_2} NFlimOS in X respectively.

Let $f:(A, \tau_{lim_1}/A, \tau_{lim_2}/A) \to \mathbb{I}_{\mathbb{I}}(I)$ be an increasing τ_{lim_1} and τ_{lim_2} *NFlimCF*. Then f has an increasing τ_{lim_1} and τ_{lim_2} *NFlim* continuous extension over $(X, \tau_{lim_1}, \tau_{lim_2}, \leq)$.

Proof:

Let $g,h:X\to \mathbb{I}_{\mathbb{I}}(I)$ be such that g=f=h on A and $g(x)=0^N$, $h(x)=1^N$ if $x\notin A$. For every $t\in \mathbb{R}$, We have,

$$g^{-1}(R^{\mathcal{I}}_{t}) = \begin{cases} \lim \mathcal{F}_{t} & \lim \chi_{A}, t \geq 0 \\ I_{N}, t < 0 \end{cases}$$

where $\lim \mathfrak{F}_t$ is τ_{\lim_1} increasing or decreasing NFlimOS such that $\lim \mathfrak{F}_t/A = f^{-1} \left(R^{\mathbb{I}}_t\right)$ and

$$h^{-1}(L^{\mathbb{I}}_{t}) = \begin{cases} \lim \mathcal{G}_{t} & \lim \chi_{A}, t \leq I \\ I_{N}, t > I \end{cases}$$

where $\lim \mathfrak{G}_t$ is τ_{\lim_t} increasing or decreasing NFlimOS such that $\lim \mathfrak{G}_t/A = f^{-1}(L^{\mathbb{I}}_t)$. Thus g is lower $\tau_{\lim_t} NFlimCF$ and h is upper $\tau_{\lim_t} NFlimCF$ such that $g \subseteq h$.

Hence by Proposition 5.2, there exists an increasing τ_{lim_1} and τ_{lim_2} *NFlimCF F*: $X \to \mathbb{I}_{\mathbb{I}}(I)$ such that $g(x) \subseteq F(x) \subseteq h(x)$ for all $x \in X$. Hence for all $x \in A$, $f(x) \subseteq F(x) \subseteq f(x)$. So that *F* is the required extension of *f* over *X*.

REFERENCES

- K.T.Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20(1986), 87–96.
- G.Balasubramanian, On Ordered L-fuzzy Bitopological Spaces, The Journal of Fuzzy Mathematics, Vol.8, No.1, (2000).
- D.Coker, An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets and Systems, 88(1997), 81–89.
- Florentin Smarandache, Neutrosophy and Neutrosophic Logic, First International Conference on Neutrosophy, Neutrosophic Logic set, Probability and Statistics, University of New Mexico, Gallup, NM87301, USA(2002).
- R. Narmada Devi, R. Dhavaseelan, S. Jafari, On Separation Axioms in an Ordered Neutrosophic Bitopological Space, Neutrosophic Sets and Systems, 18(2017), 27–36.
- A. A. Salama and S. A. Alblowi, Neutrosophic Set ans Neutrosophic Topological Spaces, ISOR Journal of Mathematics, 3(2012), No.6,31– 35.
- A. A. Salama and H. Alagamy, Neutrosophic Filters, International Journal of Computer Science Engineering and Information Technology Research (IJCSEITR), Vol. 3, No. 1,(2013), 307–312.
- 8. P.Smets, The Degree of Belief in a Fuzzy Event,Information Sciences,25(1981),1–19.
- M.Sugeno, An Introductory Survey of Control, Information Sciences, 36(1985), 59–83.
- Tomasz Kubiak, L-fuzzy Noraml spaces and Tietze extension theorem, J. Math. Anal. Appl.,25(1987),141–153.
- Tomasz Kubiak, Extending Continuous L-Real Functions, Math. Japonica, 31, No.6(1986), 875–887.
- 12. L.A.Zadeh, Fuzzy Sets, Information and Control, 9(1965), 338-353.

