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Abstract

In this paper, we study some of the properties of Pythagorean neutrosophic subring of a ring and prove

some results on these.Using some basic definitions,we derive the some important theorems.Intersection is

applied into the Pythagorean neutrosophic subring of a ring.
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1. Introduction

Fuzzy sets were introduced by Zadeh [19] and he discussed only membership

function.After the extensions of fuzzy set theory Atanassov [6] generalized this

concept and introduced a new concept called intuitionistic fuzzy set (IFS). Yager

[16] familiarized the model of Pythagorean fuzzy set.IFS has its greatest use in

practical multiple attribute decision making (MADM) problems,and the academic

research have achieved great development [16,17,18]. However, in the some practical

problems, the sum of membership degree and non-membership degree to which an

alternative satisfying attribute provided by decision maker(DM) may be bigger than

1, but their square sum is less than or equal to 1.Azriel Rosenfeld [7] was studied

about fuzzy rings.

In 2006, F.Smarandache introduced, for the first time, the degree of dependence

(and consequently the degree of independence) between the components of the

fuzzy set, and also between the components of the neutrosophic set. In 2016, the

refined neutrosophic set was generalized to the degree of dependence or

independence of subcomponents [13]. There are three special cases in neutrosophic

set.First,truth membership,falsity membership,indeterminacy are

independent.Second,truth membership and falsity membership are dependent and

indeterminacy is independent.Third,truth membership,falsity

1mathematicsgasc@gmail.com,2riyaraju1116@gmail.com Page 1 of 9



ISSN: 2456-8686, Volume 4, Issue 2, 2020:01-09
DOI: http://doi.org/10.26524/cm74

membership,indeterminacy are independent.We studied about second case. Jansi, 
Mohana and F.Smarandache[11] was introduced the concept of Pythagorean 
neutrosophic set [PN-set].That is,if truth membership and falsity membership are 
dependent and indeterminacy is independent under the restriction that the sum of 
truth membership,falsity membership and indeterminacy does not exceed 
2.Sometimes,we face many problems which cannot be handled by using this set,for 
example when T = 0.8, I = 0.9, F = 0.4.T and F are dependent that condition was T + 
F ≤ 1.Here T + F ≥ 1.Totally,the sum of truth membership,falsity membership and 
indeterminacy does exceed 2. We cannot used that set.At that time we use PN-

set.Also PN-set includes truth membership,falsity membership and indeterminacy 
but under the restriction their square sum of truth membership,falsity membership 
and indeterminacy does not exceed 2.That

is,T 2 + I2 + F 2 ≤ 2.We introduce the concept of Pythagorean neutrosophic subring 
and established some results.

2. Preliminaries

Definition 3.1 [19] Let X be a nonempty set.A fuzzy set A drawn from X is

defined as A = {(x : µA(x)) : x ∈ X},
where µA : X → [0, 1] is the membership function of the fuzzy set A.

Definition 3.2 (Pythagorean Fuzzy Set)[16] Let X be a non-empty set and I

the unit interval [0, 1].A PF set S is an object having the form

P = {(x, µP (x), vP (x)) : x ∈ X} where the function µP : X → [0, 1] and

vP : X → [0, 1] denote respectively the degree of membership and degree of

non-membership of each element x ∈ X to the set P, and

0 ≤ (µP (x))2 + (vP (x))2 ≤ 1 for each x ∈ X.

Definition 3.3 (Pythagorean neutrosophic set [PN]-sets)[11] Let X be a

non-empty set (universe).A PN sets A = {(x, PA(x), QA(x), RA(x))/x ∈ X} where

PA : X → [0, 1], QA : X → [0, 1] and RA : X → [1, 0] are the mappings such that

0 ≤ (PA(x))2 + (QA(x))2 + (RA(x))2 ≤ 2 and PA(x) denote the membership

degree,QA(x) denote the Indeterminacy and RA(x) denote the non-membership

degree.Here T and F are dependent neutrosophic components and I is an

independent neutrosophic components.

3. PN Subring of a Ring

Definition 4.1 Let A = {(X,PA(x), QA(x), RA(x)/x ∈ X} and
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B = {(X,PB(x), QB(x), RB(x)/x ∈ X} be two PN sets,then their operations are

defined as follows:

(1) Type 1:

A ∪B = {(x,max(PA(x), PB(x)),min(QA(x), QB(x)),min(RA(x), RB(x)) : x ∈ X}
Type 2:

A ∪B = {(x,max(PA(x), PB(x)),max(QA(x), QB(x)),min(RA(x), RB(x)) : x ∈ X}
(2) Type 1

:A ∩B = {(x,min(PA(x), PB(x)),max(QA(x), QB(x)),max(RA(x), RB(x)) : x ∈ X}
Type 2

:A ∩B = {(x,min(PA(x), PB(x)),min(QA(x), QB(x)),max(RA(x), RB(x)) : x ∈ X}.

Definition 4.2 Let A = {(X,PA(x), QA(x), RA(x)/x ∈ X} be PN set,then the

complement of A is

Type 1:Ac = {(x,RA(x), 1−QA(x), PA(x)) : x ∈ X}.
Type 2:Ac = {(x,RA(x), QA(x), PA(x)) : x ∈ X}.

Definition 4.3 Let A = {(x, PA(x), QA(x), RA(x))/x ∈ X} and

B = {(x, PB(x), QB(x), RB(x))/x ∈ X} be two PN sets,then A ⊆ B if and only if

PA(x) ≤ PB(x), QA(x) ≥ QB(x), RA(x) ≥ RB(x).

and A = B if and only if A ⊆ B and B ⊆ A.

Definition 4.4 Let (R,+, ·) be a ring.A PN subset A of R is said to be a PN

subring of R if the following conditions are satisfied

(i)PA(x+ y) ≥ min {PA(x), PA(y)}
(ii)PA(xy) ≥ min {PA(x), PA(y)}
(iii)QA(x+ y) ≤ max {QA(x), QA(y)}
(iv)QA(xy) ≤ max {QA(x), QA(y)}
(v)RA(x+ y) ≤ max {RA(x), RA(y)}
(vi)RA(xy) ≤ max {RA(x), RA(y)}
for all x and y in R.

Theorem 4.5 Let A =
{

(x, PA(x), QA(x), RA(x))/x ∈ R
}

be a PN subring of a

ring R.Then PA(−x) = PA(x), QA(−x) = QA(x), RA(−x) = RA(x)

,PA(x) ≤ PA(e), QA(x) ≥ QA(e), RA(x) ≥ RA(e) for all x in R and the identity

element e in R.

Proof: Let x be in R.Now PA(x) = PA(−(−x)) ≥ PA(−x) ≥ PA(x).
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Therefore PA(x) = PA(−x) for all x in R.

QA(x) = QA(−(−x)) ≤ QA(−x) ≤ QA(x).

Therefore QA(x) = QA(−x) for all x in R.

RA(x) = RA(−(−x)) ≤ RA(−x) ≤ RA(x).

Therefore RA(x) = RA(−x) for all x in R.

Also, PA(e) = PA(x− x) ≥ min {PA(x), PA(x)} = PA(x).

Therefore PA(e) ≥ PA(x) for all x in R.

QA(e) = QA(x− x) ≤ max {QA(x), QA(x)} = QA(x).

Therefore QA(e) ≤ QA(x) for all x in R.

RA(e) = RA(x− x) ≤ max {RA(x), RA(x)} = RA(x).

Therefore RA(e) ≤ RA(x) for all x in R.

Theorem 4.6 Let A =
{

(x, PA(x), QA(x), RA(x))/x ∈ R
}

be a PN subring of a

ring R.Then

(i) PA(x+ y) = PA(e) implies that PA(x) = PA(y)for x and y in R

(ii)QA(x+ y) = QA(e) implies that QA(x) = QA(y)for x and y in R.

(iii)RA(x+ y) = RA(e) implies that RA(x) = RA(y)for x and y in R.

Proof: Now

PA(x) = PA(x+ y − y) ≥ min {PA(x+ y), PA(y)} = min {PA(e), PA(y)} = PA(y).

PA(y) = PA(y + x− x) ≥ min {PA(y + x), PA(x)} = min {PA(e), PA(x)} = PA(x).

Therefore PA(x) = PA(y) for x and y in R.

QA(x) = QA(x+ y − y) ≤ max {QA(x+ y), QA(y)} = max {QA(e), QA(y)}
= QA(y).

QA(y) = QA(y + x− x) ≤ max {QA(y + x), QA(x)} = max {QA(e), QA(x)}
= QA(x).

Therefore QA(x) = QA(y) for x and y in R.

RA(x) = RA(x+ y − y) ≤ max {RA(x+ y), RA(y)} = max {RA(e), RA(y)}
= RA(y).

RA(y) = RA(y + x− x) ≤ max {RA(y + x), RA(x)} = max {RA(e), RA(x)}
= RA(x).

Therefore RA(x) = RA(y) for x and y in R.

Theorem 4.7 Let A =
{

(x, PA(x), QA(x), RA(x))/x ∈ R
}

be a PN subring of a

ring R.

(i)If PA(x+ y) = 1,then PA(x) = PA(y) for x and y in R.

(ii)If QA(x+ y) = 0,then QA(x) = QA(y) for x and y in R.

(iii)If RA(x+ y) = 0,then RA(x) = RA(y) for x and y in R.
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Proof: Now PA(x) = PA(x+ y − y) ≥ min {PA(x+ y), PA(y)} = min {1, PA(y)}
= PA(y) = PA(−y) = PA(x− x− y) ≥ min {PA(x), PA(x+ y)} = min {PA(x), 1}
= PA(x) .

Therefore PA(x) = PA(y) for x and y in R.

Hence (i) is proved.

QA(x) = QA(x+ y − y) ≤ max {QA(x+ y), QA(y)} = max {0, QA(y)} = QA(y)

= QA(−y) = QA(x− x− y) ≤ max {QA(x), QA(x+ y)} = max {QA(x), 0}
= QA(x) .

Therefore QA(x) = QA(y) for x and y in R.

Hence (ii) is proved.

RA(x) = RA(x+ y − y) ≤ max {RA(x+ y), RA(y)} = max {0, RA(y)} = RA(y)

= RA(−y) = RA(x− x− y) ≤ max {RA(x), RA(x+ y)} = max {RA(x), 0}
= RA(x).

Therefore RA(x) = RA(y) for x and y in R.

Hence (iii) is proved.

Hence (iv) is proved.

Theorem 4.8 Let A =
{

(x, PA(x), QA(x), RA(x))/x ∈ R
}

be a PN subring of a

ring R.

(i)PA(xy−1) = 0, then either PA(x) = 0 or PA(y) = 0, for x and y in R.

(ii)QA(xy−1) = 0, then either QA(x) = 0 or QA(y) = 0, for x and y in R.

(iii)RA(xy−1) = 0, then either RA(x) = 0 or RA(y) = 0, for x and y in R.

(iv)(xy−1) = 0, then either (x) = 0 or (y) = 0, for x and y in R.

Proof: Let x and y in R.

(i)By the definition PA(xy−1) ≥ min {PA(x), PA(y)},
which implies that 0 ≥ min {PA(x), PA(y)} .
Therefore, either PA(x) = 0or PA(y) = 0.

(ii)By the definition QA(xy−1) ≤ max {QA(x), QA(y)},
which implies that 0 ≤ max {QA(x), QA(y)} .
Therefore, either QA(x) = 0or QA(y) = 0.

(iii)By the definition RA(xy−1) ≤ max {RA(x), RA(y)},
which implies that 0 ≤ max {RA(x), RA(y)} .
Therefore, either RA(x) = 0or RA(y) = 0.

Theorem 4.9 If A =
{

(x, PA(x), QA(x), RA(x))/x ∈ R
}

be a PN subring of R,then

(i)PA(xy) = PA(yx) if and only if PA(x) = PA(y−1xy),for x and y in R.

(ii) QA(xy) = QA(yx) if and only if QA(x) = QA(y−1xy),for x and y in R.

(iii)RA(xy) = RA(yx) if and only if RA(x) = RA(y−1xy),for x and y in R.
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Proof: Let x and y be in R.

Assume that PA(xy) = PA(yx), so,PA(y−1xy) = PA(y−1yx) = PA(x).

Therefore PA(x) = PA(y−1xy), for x and y in R.

Conversely, assume that PA(x) = PA(y−1xy),

we get,PA(xy) = PA(xyxx−1) = PA(yx).

Therefore PA(xy) = PA(yx), for x and y in R.

Hence PA(xy) = PA(yx) if and only if PA(x) = PA(y−1xy), for x and y in R.

Also assume that QA(xy) = QA(yx),so,QA(y−1xy) = QA(y−1yx) = QA(x).

Therefore QA(x) = QA(y−1xy), for x and y in R.

Conversely, assume that QA(x) = QA(y−1xy),

we get, QA(xy) = QA(xyxx−1) = QA(yx).

Therefore QA(xy) = QA(yx), for x and y in R.

Hence PA(xy) = PA(yx) if and only if QA(x) = QA(y−1xy), for x and y in R.

Also assume that RA(xy) = RA(yx),so,RA(y−1xy) = RA(y−1yx) = RA(x).

Therefore RA(x) = RA(y−1xy), for x and y in R.

Conversely, assume that RA(x) = RA(y−1xy),

we get, RA(xy) = RA(xyxx−1) = RA(yx).

Therefore RA(xy) = RA(yx), for x and y in R.

Hence RA(xy) = RA(yx) if and only if RA(x) = RA(y−1xy), for x and y in R.

Theorem 4.10 If A =
{

(x, PA(x), QA(x), RA(x))/x ∈ R
}

be a PN subring of R,

then

R2 = {x ∈ R/PA(x) = PA(e), QA(x) = QA(e), RA(x) = RA(e)} is a subring of R.

Proof: Here R2 =
{
x ∈ R/PA(x) = PA(e), QA(x) = QA(e), RA(x) = RA(e)

}
,by

Theorem 2.4.4,

PA(x−1) = PA(x) = PA(e), QA(x−1) = QA(x) = QA(e), RA(x−1) = RA(x) = RA(e)

and (x−1) = (x) = (e).

Therefore x−1 ∈ R2.

Now,PA(xy−1) ≥ min {PA(x), PA(y)} = min {PA(e), PA(e)} = PA(e),and

PA(e) = PA((xy−1)(xy−1)−1) ≥ min {PA(xy−1), PA(xy−1)} = PA(xy−1).

Hence PA(e) = PA(xy−1).

QA(xy−1) ≤ max {QA(x), QA(y)} = max {QA(e), QA(e)} = QA(e),

and QA(e) = QA((xy−1)(xy−1)−1) ≤ max {QA(xy−1), QA(xy−1)} = QA(xy−1).

Hence QA(e) = QA(xy−1).

RA(xy−1) ≤ max {RA(x), RA(y)} = max {RA(e), RA(e)} = RA(e),and

RA(e) = RA((xy−1)(xy−1)−1) ≤ max {RA(xy−1), RA(xy−1)}
= RA(xy−1).

Hence RA(e) = RA(xy−1).
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(xy−1) ≥ min {(x), (y)} = min {(e), (e)} = (e).

Theorem 4.11 Let R be a ring,If A =
{

(x, PA(x), QA(x), RA(x))/x ∈ R
}

be a PN

subring of R,then PA(xy) = min {PA(x), PA(y)},QA(xy) = max {QA(x), QA(y)},
RA(xy) = max {RA(x), RA(y)} for each x, y in R with

PA(x) 6= PA(y), QA(x) 6= QA(y), RA(x) 6= RA(y).

Proof: Assume that PA(x) > PA(y), QA(x) > QA(y), RA(x) > RA(y) and

QA(x) > QA(y).

Then

PA(y) = PA(x−1xy) ≥ min {PA(x−1), PA(xy)} = min {PA(x), PA(xy)}
= PA(xy) ≥ min {PA(x), PA(y)} = PA(y).

Therefore PA(xy) = PA(y) = min {PA(x), PA(y)}.
QA(y) = QA(x−1xy) ≤ max {QA(x−1), QA(xy)} = max {QA(x), QA(xy)}
= QA(xy) ≤ max {QA(x), QA(y)} = QA(y).

Therefore QA(xy) = QA(y) = max {QA(x), QA(y)}.
RA(y) = RA(x−1xy) ≤ max {RA(x−1), RA(xy)} = max {RA(x), RA(xy)}
= RA(xy) ≤ max {RA(x), RA(y)} = RA(y).

Therefore RA(xy) = RA(y) = max {RA(x), RA(y)}.

Theorem 4.12 If A =
{

(x, PA(x), QA(x), RA(x))/x ∈ R
}

and

B =
{

(x, PB(x), QB(x), RB(x))/x ∈ R
}

are two PN subring of a ring R,then their

intersection A ∩B is a PN subring of R.

Proof: Let A =
{

(x, PA(x), QA(x), RA(x))/x ∈ R
}

and

B = {(X,PB(x), QB(x), RB(x)) : x ∈ R}.
Let C = A ∩B and C = {(x, PC(x), QC(x), RC(x))/x ∈ R}.
Now,

PC(xy−1) = min {PA(xy−1), PB(xy−1)} ≥
min {min {PA(x), PA(y)} ,min {PB(x), PB(y)}}
≥ min {min {PA(x), PB(x)} ,min {PA(y), PB(y)}} = min {PC(x), PC(y)}.
Also,

QC(xy−1) = max {QA(xy−1), QB(xy−1)} ≤
max

{
max {QA(x), QA(y)} ,max {QB(x), QB(y)}

}
≤ max {max {QA(x), QB(x)} ,max {QA(y), QB(y)}} = max {QC(x), QC(y)}.
RC(xy−1) = max {RA(xy−1), RB(xy−1)} ≤
max {max {RA(x), RA(y)} ,max {RB(x), RB(y)}}
≤ max {max {RA(x), RB(x)} ,max {RA(y), RB(y)}} = max {RC(x), RC(y)}.
Hence A ∩B is a PN subring og R.
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4. Conclusion

In this paper, we define the Pythagorean neutrosophic subring of a ring and

investigate the relationship among these Pythagorean neutrosophic subring of a

ring. Some characterization theorems of Pythagorean neutrosophic subring of a ring

are obtained.
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