PYTHAGOREAN NEUTROSOPHIC b-OPEN & semi-OPEN SETS in PYTHAGOREAN NEUTROSOPHIC TOPOLOGICAL SPACES

Sneha T.A¹, F.Nirmala Irudayam²

Nirmala College for Women, Bharathiyar University 1

Nirmala College for Women, Bharathiyar University²

sneha.antony@outlook.com1

nirmalairudayam@ymail.com²

Abstract: In this paper we define the notion of Pythagorean neutrosophic b-open sets (resp. b-closed) and Pythagorean neutrosophic semi-open sets (resp. preopen and α -open). Their properties are investigated.

Keywords: PNS-Pythagorean neutrosophic set, PNTS-Pythagorean Neutrosophic Topological space, PNsOS-Pythagorean Neutrosophic semi-open set, PNpOS-Pythagorean Neutrosophic pre open set, PNbOS- Pythagorean Neutrosophic b open set, PNbCS- Pythagorean Neutrosophic b closed set, PNbcl(U)- Pythagorean Neutrosophic b closure of U, PNbint(U)- Pythagorean Neutrosophic b interior of U.

I. INTRODUCTION AND PRELIMINARIES

1.1 INTRODUCTION

The fuzzy set was introduced by Zadeh [16] in 1965. In 1968, Chang [4] defined the concept of fuzzy topological space and generalized some basic notions of topology. Intuitionistic fuzzy set was introduced by Atanassov [2,3] in 1983. Joung Kon Jeon et al. [8] introduced and studied the notions of Intuitionistic fuzzy α -continuity and pre-continuity. The concept of Neutrosophic set was introduced by Smarandache [10] and Wang et al [12] introduced the notion of interval neutrosophic set theory. The concept of crisp set and neutrosophic crisp set topological spaces were introduced by A.A. Salama and S.A. Albowi [9]. In 2013, Yager introduced the concept of Pythagorean membership grades in multicriteria decision making [15]. Later, Yager, Zahand and Xu [13] gave some basic operations for Pythagorean fuzzy number. Iswarya et.al. [7] studied the concept of neutrosophic semi-open sets [NSO] and neutrosophic semi-closed sets [NSC]. In 2017, Imran et.al. [6] introduced neutrosophic semi-open (resp. pre-open and α -open) functions and investigated their relations. Rao et.al. [11] introduced neutrosophic pre-open sets. P. Evanzalin Ebenanjar, H Jude Immaculate and C Bazil Wilfred [5] defined neutrosophic b-open sets in neutrosophic topological space and investigated their properities.

Through this paper, we introduce the concept of Pythagorean neutrosophic b-open (resp. b-closed), semi-open sets (resp. pre-open, α -open) and their properties are investigated.

1.2 PRELIMINARIES

Definition1: [16] A fuzzy set $A = \{\langle x, \mu_A(x) \rangle \mid x \in X\}$ in a universe of discourse X is characterized by a membership function, μ_A , as follows: $\mu_A : X \to [0,1]$.

Definition 2: [2, 3] Let X be a non empty set. Then A is called an Intuitionistic fuzzy set (in short, IFS) of X, if it is an object having the form $A = \{\langle x, \mu_A, \gamma_A \rangle x \in X \}$ where the function $\mu_A : X \to [0,1]$ and $\gamma_A : X \to [0,1]$ denote the degree of membership $\mu_A(x)$ and degree of non membership $\gamma_A(x)$ of each element $x \in X$ to the set A and satisfies the condition that, $0 \le \mu_A(x) + \gamma_A(x) \le 1$.

Definition 3: [10] Let X be a non empty set. Then A is called an neutrosophic set (in short,NS) of X, if it is an object having the form $A = \{\langle x, \mu_A, \sigma_A, \gamma_A \rangle : x \in X \}$ where the function $\mu_A : X \to [0,1], \sigma_A : X \to [0,1]$ and $\gamma_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$), degree of indeterminacy (namely $\sigma_A(x)$) and degree of non membership (namely $\gamma_A(x)$) of each element $x \in X$ to the set A and satisfies the condition that, $0 \le \mu_A(x) + \sigma_A(x) + \gamma_A(x) \le 3$.

Definition 4: [14] Let X be a universal set. Then, a Pythagorean fuzzy set A, which is a set of ordered pairs over X, is defined by $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle : x \in X\}$ where the functions $\mu_A : X \to [0,1]$ and $\gamma_A : X \to [0,1]$ define the degree of membership and the degree of nonmembership, respectively, of the element $x \in X$ to A, which is a subset of X, and for every $x \in X : 0 \le (\mu_A(x))^2 + (\gamma_A(x))^2 \le 1$. Supposing $0 \le (\mu_A(x))^2 + (\gamma_A(x))^2 \le 1$, then there is a degree of indeterminacy of $x \in X$ to A defined by $\pi_A(x) = \sqrt{[(\mu_A(x))^2 + (\gamma_A(x))^2]}$ and $\pi_A(x) \in [0,1]$

Definition 5: [1] A Neutrosophic set A in a neutrosophic topological space (X, T) is called

- 1) A neutrosophic semi open set (briefly NsOS) if $A \subseteq Ncl$ (Nint(A)).
- 2) A Neutrosophic α -open set (briefly N α OS) if $A \subseteq Nint(Ncl\ (Nint(A)))$.
- 3) A Neutrosophic preopen set (briefly NpOS) if $A \subseteq Nint(Ncl(A))$.

Volume 9 Issue 1 2020 861 http://infokara.com/

A Neutrosophic set is called neutrosophic semi closed (resp. neutrosophic α -closed, neutrosophic pre closed) if the complement of A is a neutrosophic semi-open (resp. neutrosophic α -open, neutrosophic preopen).

Definition 6: [5] A NS U in a NTS Z is called

- (i) Neutrosophic b-open (NbO) set iff $U \subseteq Nint(N cl(U)) \bigcup Ncl(Nint(U))$
- (ii) Neutrosophic b-closed (NbC) set iff $U \supseteq Nint(N cl(U)) \cap Ncl(Nint(U))$

It is obvious that $NpO(Z) \cup NsO(Z) \subseteq NbO(Z)$. The inclusion cannot be replaced with equalities.

II. PYTHAGOREAN NEUTROSOPHIC SEMIOPEN, α -OPEN and PREOPEN SETS

Definition 2.1

Let X be a non-empty set. If r, t, s be real standard or non standard subsets of $]0^-,1^+[$ then the Pythagorean neutrosophic set $x_{r,t,s}$ is called a Pythagorean neutrosophic point (in short PNP) in X give by

$$x_{r,t,s}(x_p) = \begin{cases} (r,t,s), & \text{if } x = x_p \\ (0,0,1), & \text{if } x \neq x_p \end{cases}$$

for $x_p \in X$ is called the support of $x_{r,t,s}$, where r denotes the degree of membership value, t denotes the

degree of indeterminancy and s is the degree of non-membership value of x_{rts} .

Definition 2.2

A Pythagorean Neutrosophic set A in a Pythagorean neutrosophic topological space (X, T) is called

- 1) A Pythagorean neutrosophic semi open set (briefly PNsOS) if $A \subset PNcl$ (PNint(A)).
- 2) A Pythagorean Neutrosophic α -open set (briefly PN α OS) if $A \subseteq PNint(PNcl\ (PNint(A)))$.
- 3) A Pythagorean neutrosophic preopen set (briefly PNpOS) if $A \subset PNint(PNcl(A))$.

A Pythagorean Neutrosophic set is called Pythagorean neutrosophic semi closed (resp. Pythagorean neutrosophic α -closed, Pythagorean neutrosophic pre closed) if the complement of A is a Pythagorean neutrosophic semi-open (resp. Pythagorean neutrosophic α -open, Pythagorean neutrosophic preopen).

Volume 9 Issue 1 2020 862 http://infokara.com/

Proposition: 2.3

Let (X,T) be a Pythagorean neutrosophic topological space. If A is a Pythagorean neutrosophic α -open set then it is a Pythagorean neutrosophic semi-open set.

Proposition 2.4

Let (X,T) be a Pythagorean neutrosophic topological space. If A is a Pythagorean neutrosophic α -open set then it is a Pythagorean neutrosophic pre-open set.

Proposition 2.5

Let A be a Pythagorean neutrosophic set in a Pythagorean neutrosophic topological space (X,T). If B is a Pythagorean neutrosophic semi-open set such that $B \subseteq A \subseteq PN$ int(PNcl(B)), Then A is a Pythagorean neutrosophic α -open set.

Proof:

Since B is a Pythagorean Neutrosophic semi-open set, we have $B \subseteq PNcl(PN \operatorname{int}(B))$. Thus,

$$A \subseteq PN \operatorname{int}(PNcl(B)) \subseteq PN \operatorname{int}(PNcl(PNcl(PN \operatorname{int}(B)))) = PN \operatorname{int}(PNcl(PN \operatorname{int}(B)))$$

 $\subseteq PN \operatorname{int}(PNcl(PN \operatorname{int}(A)))$

And so A is a Pythagorean neutrosophic α -open set.

Lemma2.6

Any union of PN α -open sets (resp. Pythagorean neutrosophic pre-open sets) is a PN α -open sets. (resp., PNpOS).

Proof:

Let A be a PN α OS and B be another PN α OS. This implies $A \subseteq PN$ int(PNcl(A)), $B \subseteq PN$ int(PNcl(B)). Union of these two sets gives, PN int(PNcl(A)) $\bigcup PN$ int(PNcl(B)) $\Rightarrow PN$ int($PNcl(A \cup B)$). Thus $A \cup B$ is also PN α -open set.

Proposition 2.7

A Pythagorean neutrosophic set A in a Pythagorean neutrosophic topological space X is Pythagorean neutrosophic α - open(resp.Pythagorean neutrosophic pre - open) iff for every Pythagorean neutrosophic point $x_{r,t,s} \in A$ there exists a Pythagorean neutrosophic α - open(resp.Pythagorean neutrosophic pre - open) $B_{x_{r,t,s}}$ such that $x_{r,t,s} \in B_{x_{r,t,s}} \subseteq A$.

Proof:

If A is a Pythagorean neutrosophic α - open set (resp.Pythagorean neutrosophic pre - open set), then we may take $B_{x_{r,t,s}} = A$ for every $x_{r,t,s} \in A$. Conversely assume that for every Pythagorean neutrosophic point $x_{r,t,s} \in A$, there exists a neutrosophic α - open set (resp., Pythagorean neutrosophic pre - open set), $B_{x_{r,t,s}}$ such that $x_{r,t,s} \in B_{x_{r,t,s}}$ $\subseteq A$. Then, $A = \bigcup \{x_{r,t,s}/x_{r,t,s} \in A\} \subseteq \{B_{x_{r,t,s}}/x_{r,t,s} \in A\} \subseteq A$, and so $A = \bigcup \{B_{x_{r,t,s}}/x_{r,t,s} \in A\}$, which is a Pythagorean neutrosophic α - open set (resp., Pythagorean neutrosophic pre - open set) by Lemma 2.6 **Definition 2.8**

Let f be a function from a Pythagorean neutrosophic topological spaces (X, τ) and (Y, S). Then f is called

- (i) a Pythagorean Neutrosophic open function if f(A) is a Pythagorean neutrosophic open set in Y for every Pythagorean neutrosophic open set A in X.
- (ii) a Pythagorean neutrosophic α open function if f(A) is a Pythagorean Neutrosophic α -open set in Y for every Pythagorean neutrosophic open set A in X.
- (iii) a Pythagorean neutrosophic preopen function if f(A) is a Pythagorean neutrosophic preopen set in Y for every Pythagorean neutrosophic open set A in X.
- (iv) a Pythagorean semi-open function if f(A) is Pythagorean semi-open set in Y for every Pythagorean neutrosophic open set A in X.

Proposition 2.9

Let (X,T),(Y,S) and (Z,R) be three Pythagorean neutrosophic topological spaces, let $f:(X,T)\to (Y,S)$ and $g:(Y,S)\to (Z,R)$ be functions. If f is Pythagorean neutrosophic α -open and g is Pythagorean neutrosophic α -open (resp.,Pythagorean neutrosophic preopen), then $g\circ f$ is Pythagorean neutrosophic α -open (resp.,Pythagorean Neutrosophic preopen).

Proof: The proof is straightforward.

Proposition: 2.10

Let (X,T) and (Y,S) are Pythagorean neutrosophic topological spaces. If $f:(X,T)\to (Y,S)$ is Pythagorean neutrosophic α -open then it is Pythagorean neutrosophic semi open.

Proof:

Assume that f is Pythagorean neutrosophic α -open and let A be a Pythagorean neutrosophic open set in X. Then, f(A) is a Pythagorean neutrosophic α -open set in Y. It follows from (prop 2.1) that f(A) is a Pythagorean neutrosophic semi open set so that f is a Pythagorean neutrosophic semi open function.

III. PYTHAGOREAN NEUTROSOPHIC b-OPEN and b-CLOSED SETS

Definition3.1

A PNS U in a PNTS Z is called

- (i)Pythagorean neutrosophic b-open (PNbO) set iff $U \subseteq PNint(PN cl(U)) \bigcup PNcl(PNint(U))$
- (ii)Pythagorean neutrosophic b-closed (PNbC) set iff $U \supseteq PNint(PN \ cl(U)) \cap \ PNcl(PNint(U))$

It is obvious that $PNpO(Z) \cup PNsO(Z) \subset PNbO(Z)$. The inclusion cannot be replaced with equalities.

Theorem3.2

For a PNS U in a PNTS Z

- (i)U is a PNbO set iff \overline{U} is a PNbC set.
- (ii) U is a PNbC set iff \overline{U} is a PNbO set.

Proof: Obvious from the definition.

Definition: 3.3

Let (Z, τ) be a PNTS and U be a PNS over Z.

- (i)Pythagorean Neutrosophic b-interior of U briefly [PNbint(U)] is the union of all Pythagorean neutrosophic b-open sets of Z contained in U.That is, $PNbint(U) = \bigcup \{G: G \text{ is a } PNbO \text{ set in } Z \text{ and } G \subseteq U\}$
- (ii) Pythagorean neutrosophic b-closure of U briefly [PNbcl(U)] is the intersection of all Pythagorean neutrosophic b-closed sets of Z contained in U. That is, $PNbcl(U) = \bigcap \{H:h \text{ is a } PNbC \text{ set in } z \text{ and } K \supseteq U\}$.

Clearly PNbcl(U) is the smallest neutrosophic b-cloosed set over Z which contains U and PNbint(U) is the largest neutrosophic b-open set over Z which is contained in U.

Theorem3.4

Let U be a PNS in a PNTS Z. Then,

$$(i)(\overline{PNb\operatorname{int}(U)}) = PNbcl(\overline{U})$$

 $(ii)(\overline{PNbcl(U)}) = PNb\operatorname{int}(\overline{U})$

(i)Let U be PNS in PNTS. Now $PNbint(U) = \bigcup \{D:D \text{ is a } PNbO \text{ set in } Z \text{ and } D \subseteq U\}$

Then $(\overline{PNb \operatorname{int}(U)}) = [\bigcup \{\overline{D:D \operatorname{is a PNbO \operatorname{set in } Z \operatorname{and } D \subseteq U}}\}] = \bigcap \{\overline{D:D \operatorname{is a PNbC \operatorname{set in } Z \operatorname{and } (\overline{U})} \subseteq \overline{D}\}\}$ Replacing \overline{D} by M, we get $(\overline{PNb \operatorname{int}(U)}) = \bigcap \{\overline{D:D \operatorname{is a PNbC \operatorname{set in } Z \operatorname{and } (\overline{U})} \subseteq \overline{D}\}\}$ Replacing \overline{D} by M, we get $(\overline{PNb \operatorname{int}(U)}) = \bigcap \{M : M \operatorname{is a PNbC \operatorname{set in } Z \operatorname{and } M \supseteq (\overline{U})}\}$, $(\overline{PNb \operatorname{int}(U)}) = PNbcl(\overline{U})$ This proves (i). Analogously (ii) can be proved.

Theorem3.5

In a Pythagorean neutrosophic topological space Z

- (i)Every Pythagorean neutrosophic pre-open set is a Pythagorean neutrosophic b-open set.
- (ii)Every Pythagorean semi-open set is a Pythagorean neutrosophic b-open set.

Proof:

Let U br a PNpO set in a PNTS Z. Then $U \subseteq PN$ int PNcl(U) which implies $U \subseteq PN$ int $PNcl(U) \cup PN$ int $U \subseteq PN$ int $PNcl(U) \cup PNcl(U)$ int U. Thus U is PNbO set.

(ii) Let U be a PNsO set in a PNTS Z. Then $U \subseteq PNclPN$ int (U) which implies $U \subseteq PNclPN$ int $(U) \cup PN$ int $U \subseteq PNclPN$ int $U \cup PN$ int PNclU. Thus U is A PNbO set.

IV. PROPERTIES OF THE PYTHAGOREAN NEUTROSOPHIC B-INTERIOR AND B-CLOSURE OPERATOR WITH OTHER OPERATORS

Theorem4.1

Let U be a PNS in PNTS Z. Then

- (i) $PNsclU = U \cup PN$ int PNclU and PNsint $U = U \cap PNclPN$ int U
- (ii) $PNpclU = U \cup PNclPN$ int U and PNp int $U = U \cap PN$ int PNclU

Proof:

(i) $PNsclU \supseteq PN$ int $PNclPNsclU \supseteq PN$ int PNclU $U \bigcup PNsclU = PNsclU \supseteq U \bigcup PN$ int PNclU $So \ U \bigcup PN$ int $PNclU \subseteq PNsclU$ ------(1) $Also \ U \subseteq PNsclU, \ PN$ int $PNclU \subseteq PN$ int $PNclPNsclU \subseteq PNsclU$ $U \bigcup PN$ int $PNclU \subseteq PNsclU \bigcup U \subseteq PNsclU$ -------(2) $From \ (1) \ and \ (2), \ PNsclU = U \bigcup PN$ int PNclU

From (1) and (2), $PNsclU = U \cup PN$ int PNclU

 $PN \sin tU = U \cap PNclPN \text{ int } U \text{ can be proved by taking the complement of } PNsclU = U \cup PN \text{ int } PNclU$

 \mathbf{T}

This proves (i)

The proof for (ii) is analogous.

Theorem4.2

Let U be a PNS in PNTS. Then

(i)PNbclU = PNsclU \cap PNpclU

(ii)PNbintU = PNsintU \bigcup PNpintU

Proof:

(i)Since PNbclU is a PNbO set.

We have PNbclU \supseteq PNintPNcl(PNbclU) \cap PNclPNint(PNbclU) \supseteq PNintPNclU \cap PNclPNintU and also PNbclU \supseteq U \bigcup PNintPNclU \cap PNclPNintU = PNsclU \cap PNpclU

The reverse inclusion is clear. Therefore PNbclU = PNsclU \cap PNpclU

Analogously (ii) can be proved.

Theorem4.3

Let U be a PNS in PNTS. Then

(i) $PNsclPNsintU = PN sin tU \cup PN int PNclPN int U$

 $(ii)PNsintPNsclU = PNsclU \cap PNclPNint PNclU$

Proof:

We have $PNsclPNsintU = PNsintU \cup PN$ int PNcl(PNsintU) = PN sin $tU \cup PN$ int $(PNcl[U \cap PNclPN$ int U])

 $\subseteq PNsintU \cup PN$ int $[PNclU \cap PNcl(PNintU)] = PNsintU \cup PN$ int [PNcl(PNintU)]

To establish the opposite inclusion we observe that,

 $PNscl(PNsintU) = PNsintU \cup PN$ int $PNcl(PNsintU) \supseteq PNsintU \cup PN$ int PNcl(PNintU)

Therefore we have $PNsclPNsintU = PNsintU \cup PN$ int PNclPN int U.

This proves (i).

The proof for (ii) is analogous.

Theorem4.4

Let U be a PNS in PNTS. Then $(i)PNpclPNpint U = PNpint U \cup PNclPNint U$ $(ii)PNpint PNpclU = PNpclU \cap PNint PNclU$

Proof:

This proves that (i)
Analogously (ii) can be proved.

V. PYTHAGOREAN NEUTROSOPHIC CONTINUITY

Definition 5.1

Let f be a function from a Pythagorean neutrosophic topological space (X,T) to a Pythagorean neutrosophic topological space (Y,S). Then f is called a Pythagorean neutrosophic pre-continuous function if $f^{-1}(B)$ is a Pythagorean neutrosophic preopen set in X for every Pythagorean neutrosophic open set B in Y.

Proposition 5.2

For a function f from a Pythagorean neutrosophic topological spaces (X, T) to an (Y, S), the following are equivaent (i) f is Pythagorean neutrosophic pre - continuous.

- (ii) $f^{-1}(B)$ is a Pythagorean neutrosophic preclosed set in X for every Pythagorean neutrosophic closed set B in Y.
- (iii) $PNcl(PNint(f^{-1}(A))) \subseteq f^{-1}(PNcl(A))$ for every Pythagorean neutrosophic set A in Y.

Proof:

- $(i) \Rightarrow (ii)$ The Proof is straightforward.
- (ii) \Rightarrow (iii) Let A be a Pythagorean neutrosophic set in Y. Then PNcl(A) is Pythagorean neutrosophic closed. It follows from (ii) that $f^{-1}(PNcl(A))$ is a Pythagorean neutrosophic preclosed set in X so that

 $PNcl(PN\operatorname{int}(f^{-1}(A))) \subseteq PNcl(PN\operatorname{int}(f^{-1}(PNcl(A)))) \subseteq f^{-1}(PNcl(A)).$

 $(iii) \Rightarrow (i)$ Let A be a Pythagorean neutrosophic open set in Y. Then \overline{A} is a Pythagorean neutrosophic closed set in Y, and so $PNcl(PNint(f^{-1}(\overline{A}))) \subseteq f^{-1}(PNcl(\overline{A})) = f^{-1}(A)$. This implies that $\overline{PNint(PNcl(f^{-1}(A)))} = f^{-1}(A)$.

This implies that $\overline{PN \operatorname{int}(PNcl(f^{-1}(A)))} = PNcl(\overline{PNcl(f^{-1}(A))}) = PNcl(PN\operatorname{int}(\overline{f^{-1}(A)}))$

 $= PNcl(PNint(f^{-1}(\overline{A}))) \subseteq f^{-1}(\overline{A}) = \overline{f^{-1}(A)}$, and thus $f^{-1}(A) \subseteq PNint(PNcl(f^{-1}(A)))$. Hence $f^{-1}(A)$ is a Pythagorean neutrosophic precontinuous.

Definition5.3

Let $x_{r,t,s}$ be a Pythagorean neutrosophic point of a Pythagorean neutrosophic topological space (X,T). A Pythagorean neutrosophic set A of X is called Pythagorean neutrosophic neighbourhood of $x_{r,t,s}$ if there exists a Pythagorean neutrosophic open set B in X such that $x_{r,t,s} \in B \subseteq A$.

Proposition 5.4

- Let f be a function from a Pythagorean neutrosophic topological space (X,T) to a Pythagorean neutrosophic topological space (Y,S). Then the following assertions are equivalent.
- (i) f is a Pythagorean neutrosophic pre continuous function.
- (ii)For each Pythagorean neutrosophic point $x_{r,t,s} \in X$ and every Pythagorean neutrosophic neighbourhood A of $f(x_{r,t,s})$, there exists a Pythagorean neutrosophic preopen set B in X such that $x_{r,t,s} \in B \subseteq f^{-1}(A)$.
- (iii) For each Pythagorean neutrosophic point $x_{r,t,s} \in X$ and every Pythagorean neutrosophic neighbourhood A of $f(x_{r,t,s})$, there exists a Pythagorean neutrosophic preopen set B in X such that $x_{r,t,s} \in B$ and $f(B) \subseteq A$.

Proof:

- $(i) \Rightarrow (ii)$ Let $x_{r,t,s}$ be a Pythagorean neutrosophic point in X and let A be a Pythagorean neutrosophic neighbourhood of $f(x_{r,t,s})$. Then there exists a Pythagorean neutrosophic open set B in Y such that $f(x_{r,t,s}) \in B \subseteq A$. Since f is a Pythagorean neutrosophic pre-continuous function, we know that $f^{-1}(B)$ is a Pythagorean neutrosophic preopen set in X and $x_{r,t,s} \in f^{-1}(f(x_{r,t,s})) \subseteq f^{-1}(B) \subseteq f^{-1}(A)$. Consequently (ii) is valid.
- (ii) \Rightarrow (iii) Let $x_{r,t,s}$ be a Pythagorean neutrosophic point in X and let A be a Pythagorean neutrosophic neighbouhood of $f(x_{r,t,s})$. The condition (ii) implies that there exists a Pythagorean neutrosophic preopen set B in X such that $x_{r,t,s} \in B \subseteq f^{-1}(A)$ so that $x_{r,t,s} \in B$ and in X such that $f(B) \subseteq f(f^{-1}(A)) \subseteq A$.

Hence (iii) is true.

(iii) \Rightarrow (i)Let B be a Pythagorean neutrosophic open set in Y and let $x_{r,t,s} \in f^{-1}(B)$. Then $f(x_{r,t,s}) \in B$, and so B is a Pythagorean neutrosophic neighbourhood of $f(x_{r,t,s})$ since B is a Pythagorean neutrosophic open set. It follows from (iii) that there exists a Pythagorean neutrosophic pre - opwn set A in X such that $x_{r,t,s} \in A$ and $f(A) \subseteq B$ so that $x_{r,t,s} \in A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(B)$. Applying Proposition 2.4 induces that $f^{-1}(B)$ is a Pythagorean neutrosophic preopen set in X. Therefore, f is a Pythagorean neutrosophic pre - continuous function.

Definition: 5.5

Let f be a function from a Pythagorean neutrosophic topological space (X,T) to a Pythagorean neutrosophic topological space (Y,S). Then f is called a Pythagorean neutrosophic α - continuous funcion if $f^{-1}(B)$ is a Pythagorean neutrosophic α - open set in X for every Pythagorean neutrosophic open set B in Y.

Proposition 5.6

Let f be a function from a Pythagorean neutrosophic topological space (X,T) to a Pythagorean neutrosophic topological space (Y,S) that satisfies $PNcl(PNint(PNcl(f^{-1}(B)))) \subseteq f^{-1}(PNcl(B))$ for every Pythagorean neutrosophic set B in Y.Then f ia Pythagorean neutrosophic α - continuous function.

Proof:

Let B be a Pythagorean neutrosophic open set in Y. Then \overline{B} is a Pythagorean neutrosophic closed set in Y, which implies that from hypothesis that $PNcl(PNcl(f^{-1}(\overline{B})))) \subseteq f^{-1}(PNcl(\overline{B})) = f^{-1}(\overline{B})$. It follows that $\overline{PNint(PNcl(PNint(f^{-1}(B))))} = PNcl(\overline{PNcl(PNint(f^{-1}(B)))})$ $= PNcl(PNint(\overline{PNint(PNcl(f^{-1}(B)))}))$ $= PNcl(PNint(PNcl(f^{-1}(\overline{B})))) \subseteq f^{-1}(\overline{B})$

so that $f^{-1}(B) \subseteq PN \operatorname{int}(PNcl(PN \operatorname{int}(f^{-1}(B))))$ This shows that $f^{-1}(B)$ is a Pythagorean neutrosophic α - open set in X. Hence, f is a Pythagorean neutrosophic α - continuous function.

 $=\overline{\mathbf{f}^{-1}(B)}$

Proposition 5.7

Let f be a function from a Pythgorean neutrosophic topological space (X,T) to a Pythagorean neutrosophic space (Y,S). Then the following assertions are equivalent.

- (i)f ia Pythagorean neutrosophic α continuous.
- (ii)For each Pythagorean neutrosophic point $x_{r,t,s} \in X$ and every Pythagorean neutrosophic neighbourhood A of $f(x_{r,t,s})$, there exists a Pythagorean neutrosophic α open set B in X such that $x_{r,t,s} \in B \subseteq f^{-1}(A)$.
- (iii) For each Pythagorean neutrosophic point $x_{r,t,s} \in X$ and every Pythagorean neutrosophic neighbourhood A of $f(x_{r,t,s})$, there exists a Pythagorean neutrosophic α open set B in X such that $x_{r,t,s} \in B$ and $f(B) \subseteq A$.

Volume 9 Issue 1 2020 870 http://infokara.com/

Proof

 $(i) \Rightarrow (ii)$ Let $x_{r,t,s}$ be a Pythagorean neutrosophic point in X and let A be a Pythagorean neutrosophic neighbourhood of $f(x_{r,t,s})$. Then there exists a neutrosophic open set B in Y such that $f(x_{r,t,s}) \in B \subseteq A$. Since f is Pythagorean neutrosophic α - continuous, we know that $f^{-1}(B)$ is a Pythagorean neutrosophic α - continuous, we know that $f^{-1}(B)$ is a Pythagorean neutrosophic α - open set in X and $x_{r,t,s} \in f^{-1}(f(x_{r,t,s}))$ $\subseteq f^{-1}(A)$. Consequently (ii) is valid.

(ii) \Rightarrow (iii)Let $x_{r,t,s}$ be a Pythagorean neutrosophic point in X and let A be a Pythagorean neutrosophic neighbourhood of $f(x_{r,t,s})$. The condition (ii) implies that there exists a Pythagorean neutrosophic α - open set B in X such that $x_{r,t,s} \in B \subseteq f^{-1}(A)$ so that $x_{r,t,s} \in B$ and $f(B) \subseteq f(f^{-1}(A)) \subseteq A$. Hence (iii) is true.

(iii) \Rightarrow (i)Let B be a Pythagorean neutrosophic open set in Y and let $x_{r,t,s} \in f^{-1}(B)$. Then $f(x_{r,t,s}) \in B$, and so B is a Pythagorean neutrosophic neighbourhood of $f(x_{r,t,s})$ since B is Pythagorean neutrosophic open set. It follows from (iii) that there exists a Pythagorean neutrosophic α - open set A in X such that $x_{r,t,s} \in A$ and $f(A) \subseteq B$ so that $x_{r,t,s} \in A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(B)$. Applying Proposition 2.4 induces that $f^{-1}(B)$ is a Pythagorean neutrosophic α - continuous function.

Proposition 5.8

Let f be a function from a Pythagorean neutrosophic topological space (X,T) to a Pythagorean neutrosophic topological space (Y,S). If f is Pythagorean neutrosophic α - continuous, then it is Pythagorean neutrosophic semi - continuous.

Proof:

Let B be a Pythagorean neutrosophic openset in Y.Since f is Pythagorean neutrosophic α - continuous, f⁻¹(B) is a Pythagorean neutrosophic semiopen set in X.It follows from Prop 2.1 that f⁻¹(B) is a Pythagorean neutrosophic semiopen set in X so that f is a Pythagorean neutrosophic semi - continuous function.

Proposition 5.9

Let f be a function from a Pythagorean neutrosophic topological space (X,T) to a Pythagorean neutrosophic topological space (Y,S). If f is Pythagorean neutrosophic α - continuous, then it is Pythagorean neutrosophic pre - continuous.

VI.CONCLUSION

In this paper we have introduced Pythagorean b-open (resp.-closed) sets and also semi-open (resp. pre-open, alpha-open) sets. We have discussed Pythagorean Neutrosophic continuity and we also compared the properties of Pythagorean neutrosophic b-interior and b-closure operator with other operators.

REFERENCES:

1. Arockiarani.I, Dhavaseelan.R, Jafari.S and Parimala.M, "On some new notations and functions in neutrosophic topological spaces", Neutrosophic sets and systems 16 pp 16-9 (2017).

- 2. K.T.Atannasov, "Intuitionistic Fuzzy Sets". Fuzzy sets and Systems 20(1), (1986) 87-96.
- 3. K.T. Atanassov, "Intuitionistic fuzzy sets", Springer Physica- Verlag, Heidelberg (1999).
- 4. Chang.C.L (1968), "Fuzzy topological spaces". J Math Anal Appl 24(1):182-190.
- 5. Evangelin.P, Jude.H.Immaculate, C.Bazil Wilfred, "On Neutrosophic b-open sets in Neutrosophic topological space", Journal of Physics, (2018).
- Imran QH, Smarandache.F,Riad.K.Al-Hamido and Dhavaseelan.R, "On neutrosophic semi α -open sets", Neureosophic sets and Systems (18) pp 37-42,
 (2017).
- 7. Iswarya.P and Bageerthi.K, "On *Neuttrosophic semi-open sets in Neutrosophic topological spaces*", International Journal of Mathematical Trends and Technology 37(3) pp 214-223 (2016).
- Joung Kon Jeon, Young Bae jun, Jin Hun Park, "Intuitionistic fuzzy α -continuity and Intuitionistic Fuzzy pre-continuity", International Journal of Mathematics and Mathematical Sciences, 19 (2005) 3091-3101.
- 9. A.A Salama and S.A .Albowi, "Neutrosophic set and Neutrosophic Topological Spaces", IOSR Journal of Mathematics, Volume 3, Issue 4 (Sep-Oct 012) PP 31-35
- 10. F.S.Smarandache, "A Unifying Field in Logics- Neutrosophy: Neutrosophic Probability, Set and Logic". Rehoboth: American Research Press, (1999).
- 11. Venkateswara Rao V, Srinivasa Rao, "*Neutrosophic pre-open and neutrosophic pre-closed sets in Neutrosophic topology*", International Jouranal of Chem Tech Research 10(10) pp 449-458, (2017).
- 12. H.Wang, F.Smarandache, Zhang.Y.Q, R.Sunderraman, "Interval Neutrosophic sets and Logic: Theory and Applications in Computing", Hexis, Phoenix AZ, (2005).
- 13. Z.S.Xu and R.R Yagar, "Some Geometric Aggregation Operators based on Intuitionistic fuzzy sets," Int J Gen Syst (2006) 35,417-433.
- 14. Yager RR, Abbasov A.M, "Pythagorean membership grades, complex numbers and decision making", Int J Intell Syst 2013; 28:436-452.
- 15. Yager R.R, "Pythagorean membership grades in multicriteria decision making", IEEE Trans Fuzzy Syst 2014; 22: 958-965.
- 16. L.A. Zadeh, "Fuzzy sets", Inform and control 8(1965).