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Abstract—Fuzzy sets were initially proposed to address 

ambiguities and uncertainties. However, in certain cases, the 
fuzzy sets show some degree of uncertainty and risk, when the 
available data are either obtained from unreliable sources or 
related to future events. To solve this problem, the R-numbers 
methodology has been recently developed as a powerful approach 
to model the risk of fuzzy sets and numbers due to risk factors. In 
R-numbers, only the variability of x values has been taken into 
account in risk modeling of the fuzzy sets, but not their 
membership function. Moreover, one source of risk factors 
related to fuzzy sets and numbers merely has been considered. 
Therefore, this study presents a new concept called R-sets, in 
which different risk cases of a membership function due to both 
future events and unreliable information sources are 
investigated, and the governing mathematical relations are 
presented. Subsequently, to overcome previous limitations of R-
numbers, the R-sets are applied to develop a decision-making 
method, and it is tested by using a case study. 
 

Index Terms— R-numbers; decision-making; Risk of 
information; Future events risk; RS-TOPSIS 
 
 

I. INTRODUCTION 

N most engineering and decision-making problems, there is 
no way to avoid uncertainty. In some of these problems, the 

data to be analyzed are associated with some percentage of 
risk and error [1]. Risk and reliability are indicative of the 
accuracy and credibility of certain available information. 
Although risk gives, a general framework compared to 
reliability regarding information, both concepts are required 
for the data accuracy to avoid inappropriate outcomes, but the 
information reliability is usually determined by the prior 
performance and knowledge, whereas risks consider not only 
the earlier performance but also possible unseen situations [2]. 
Generally, the risk could be due to different reasons such as 
unreliable information sources or predicted/unpredicted 
effective factors related to the future events, where the 
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knowledge of present cannot be extrapolated in a definite and 
reliable way [3]. These sources of error are collectively known 
as risk factors. The risk factors affect the outcome of an 
evaluation, causing it to deviate from the predicted values [4]. 
There is an extended range of risk factors affecting 
engineering and decision-making problems, which mostly 
depend on the nature of the problem in question. The different 
sources of such factors for reliability prediction of a physical 
system are illustrated in Fig. 1 [5]. 

 
Fig. 1. The main risk factors of reliability prediction 

Fuzzy sets [6] are highly effective in addressing problems, 
in which the available data are not accurate but rather 
associated with some degree of ambiguity and vagueness. 
Therefore, in order to implement fuzzy sets, it is crucial to 
determine the reliability of the available data. So far, the fuzzy 
sets have been extended to different innovative approaches 
such as type 2 fuzzy sets [7], interval-valued fuzzy sets 
(IVFSs) [8], Z-numbers [9], intuitionistic fuzzy sets (IFSs) 
[10], neutrosophic sets (NSs) [11], hesitant fuzzy sets (HFSs) 
[12], picture fuzzy sets (PFSs) [13], cloud model [14], 
plithogenic sets (PLSs) [15], R-numbers [3], etc. Table 1 
describes different extensions of fuzzy sets and the proposed 
R-sets briefly.  

The R-numbers proposed by Seiti et al. [3], cope with 
different risk scenarios of fuzzy sets and numbers. In such an 
approach, two pessimistic-optimistic type 2 triangular fuzzy 
numbers (T2 TFNs) were developed as two types of R-
numbers for beneficial and non-beneficial values by 
considering fuzzy negative and positive risks, fuzzy negative 
and positive acceptable risks, and fuzzy risk perception. In this 
research, the negative and positive risks were defined as 
effects of risks, which makes the fuzzy data worse or better. 
Moreover, the acceptable negative and positive risks 
coefficients were used to specify the acceptable percentages of 
negative and positive risks. Finally, risk perception was 
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incorporated into R-numbers formulas as the error percentage 
of risk estimations in the cases where human experts provided 
the reported risk values. 

TABLE I 
The comparison of different fuzzy models with the proposed 

R-sets 

 
However, the R-numbers methodology presents a few 

noteworthy research gaps: 
1) As it mentioned in [3], the effects of risk factors on a 
specific fuzzy sets can be investigated in a three different 
cases, i.e., 1) the effects of risk on the membership function, 
2) the risk influences on the 𝑋 values, 3) the simultaneous 
impact of risk on the membership function and the 𝑋 values. 
Although, the R-numbers can model the risk of membership 
function or the 𝑋 values, the proposed methodology, and its 
relations have been extended mainly for the effects of the risk 
on the variability of 𝑋 values rather than the membership 
function. Therefore, it seems convenient to develop a new 
mathematical model to correctly study and model the risk 
scenarios of the membership function.   
2) The risk factors come from three different sources, i.e., 
predicted factors, unpredicted factors, and the unreliability of 
the information source (Fig. 1). Each risk source has different 
effects on fuzzy information and should be modeled 
differently. The R-numbers consider only one type of risk and 
have no clue for modeling the source and future events risks 
simultaneously.  

Due to the fact that real world decision making problems 
needs to fill previous gaps, this paper presents a new 
uncertainty modeling approach so-called R-sets, which can be 
used to explain and justify the errors and risks associated with 
membership functions through modeling the risks associated 
with information sources and future events. Moreover, the R-
sets methodology will be employed to extend the Technique 
for Order of Preference by Similarity to Ideal Solution 
(TOPSIS) to RS-TOPSIS and applied to failure modes and 

effect analysis problem. Before introducing R-sets, various 
risk configurations linked to the information source and future 
event risks are investigated in different cases such as 
optimistic and pessimistic modes and acceptable risks and 
mathematical relations are analytically described with their 
relationships expressed. 

The rest of this manuscript is organized as follows. Section 
2 briefly discusses the type 1 and type 2 fuzzy sets and R-
numbers. Section 3 comprehensively discusses the different 
risk modeling of fuzzy sets. Section 4 introduces the concept 
of R-sets and RS-TOPSIS methodology. In Section 5, an 
example of FMEA analysis using the proposed R-sets and RS-
TOPSIS is are provided to elucidate the applicability of R-sets 
in real problems. Finally, Section 6 makes conclusions and 
suggests future research directions. 

II. PRELIMINARIES 
In this section, we briefly discuss type 1 (T1) and type 2 

fuzzy sets (T2 FSs) and R-numbers as they are essential to 
have an insight of these to grasp the concept of R-sets.  

A. Fuzzy sets 
Fuzzy set A is a class with the membership grades in a 

universe of discourse 𝑋, where 𝑋 is a non-empty universe, 
either finite or infinite and it is defined by a membership 
function 𝜇𝐴(𝑥) which belongs to each element where 𝑥 ∈ 𝑋 
and 𝜇𝐴(𝑥) ∈ [0,1]. If 𝜇𝐴(𝑥)  = 1 describes that x is the full 
member of A, while 𝜇𝐴(𝑥) = 0 means non-membership, 
unlike the standard sets, other membership degrees are 
admitted [16]. In fact, FSs are generalizations of the classical 
sets represented by their membership functions. 

Definition 1. Fuzzy set 𝐴 in the universe of discourse 𝑋 can 
be defined as follows [17]: 
𝐴 =  {(𝑥, 𝜇𝐴(𝑥))| 𝑥 ∈ 𝑋}, (1) 
 where 
 𝜇𝐴(𝑥): 𝑋 → [0, 1]. (2) 

Other definitions have been proposed in the literature for 
describing 𝐴 such as 𝐴 = ∑ 𝜇𝐴(𝑥𝑖)/𝑥𝑖𝑛

=1  for finite universe of 
𝑋 and 𝐴 = ∫ 𝜇𝐴(𝑥𝑖)/𝑥𝑖

 
𝑋  for an infinite 𝑋 [17]. 

Definition 2. The operations of fuzzy sets between 𝐴 =
 {𝑥, 𝜇𝐴(𝑥)} and 𝐵 =  {𝑥, 𝜇𝑏(𝑥)} could be enlisted as follows 
[18].  
Union: 
𝐴 ∪ 𝐵 ⟺ 𝜇𝐴∪𝐵 = 𝜇𝐴⋁𝜇𝐵. (3) 

Intersection: 
𝐴 ∩ 𝐵 ⟺ 𝜇𝐴∩𝐵 = 𝜇𝐴 ∧ 𝜇𝐵. (4) 

Complement: 
𝐴̅ ⟺ 𝜇𝐴̅ = 1 − 𝜇𝐴. (5) 

Algebraic Product: 
𝐴.𝐵 ⟺ 𝜇𝐴.𝐵 = 𝜇𝐴𝜇𝐵. (6) 

Algebraic Sum: 
𝐴 + 𝐵 ⟺ 𝜇𝐴+𝐵 = 𝜇𝐴 + 𝜇𝐵 − 𝜇𝐴𝜇𝐵 =
1 − (1 − 𝜇𝐴)(1 − 𝜇𝐵). 

(7) 

How to address uncertainty 
Different fuzzy 

models 

Multiple membership functions HFS 

Upper and lower membership functions IVFSs 

Membership and non-membership functions IFSs 
Truth-membership function, indeterminacy-
membership function, falsity-membership function 

NSs 

Appurtenance degree of  fuzzy, intuitionistic or 
neutrosophic sets 

PLSs 

Positive membership function, neutral membership 
function, negative membership function 

PFSs 

Fuzzy reliability Z-numbers 
Type 2 triangular fuzzy numbers through fuzzy 
negative and positive risks, fuzzy negative and 
positive acceptable risks and fuzzy risk perception 

R-numbers 

Type 2 triangular fuzzy membership function through 
pessimistic and optimistic risks of the information 
source and influential factors and pessimistic and 
optimistic acceptable risks 

Proposed R-sets 
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Fuzzy numbers can be defined as a generalization of 
classical real numbers and can be considered as a nested stack 
of intervals [16]. Fuzzy numbers are able to model epistemic 
uncertainty and are essential in the fuzzy analysis, and have 
wide applications in fuzzy sets, and fuzzy logic [16]. One of 
the most widely used fuzzy numbers is triangular fuzzy 
numbers, which is briefly explained as follows. 

Definition 3. A triangular fuzzy number (TFN) 𝐴̃ on ℝ with 
a membership function µ𝐴�(𝑥): ℝ → [0, 1] can be described 
using (8) [3]. 

µ𝑨�(𝑥) =  �
(𝑥 − 𝑎1 ) (𝑎2 − 𝑎1 ),       𝑎1 ≤ 𝑥 < 𝑎2 ⁄
(𝑎3 − 𝑥) (𝑎3 − 𝑎2 ),     𝑎2 ≤ 𝑥 ≤ 𝑎3 ⁄
              0,                            𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

. 
 

(8) 

Here, 𝑎1 and 𝑎3 are the lower and upper bounds of the 
fuzzy number 𝐴̃, respectively, and 𝑎2 is the modal value. The 
TFN can also be defined as 𝐴̃ = (𝑎1, 𝑎2,  𝑎3).  

 

B. Type-2 fuzzy sets 
Type 2 fuzzy sets are an extension to T1 FSs, which their 

membership grades are themselves T1 FSs. The main 
advantage of T2 FSs is their capacity for dealing with the 
second-order uncertainties due to multiple sources [19]. The 
T2 FSs usually appear in two forms, i.e., the interval and 
generalized forms [20]. In interval T2 FS, each secondary 
membership grade is equal to one, but in the generalized T2 
FS (GT2 FS) the secondary membership degree of an element 
is defined by a value in  [0,1] which, handle much more 
uncertainty that is subtle and sophisticated. Generally, the R-
sets methodology is constructed based on GT2 FS [19], [20]. 
The main definitions and characteristics of GT2 FS are as 
follows. 

Definition 4. A T2 FS A ̃ can be defined by 𝜇𝐴� ∶ 𝑋 × 𝑈 →
𝑈, in which x is the primary variable of 𝐴̃ and 𝑋 is the 
universe of discourse of 𝑥. The 3-D membership function of 
𝐴 ̃ (𝜇𝐴�(𝑥,𝑢)) can be described through (9) [21]. 
𝐴̃ = ��( 𝑥 ,𝑢),𝜇𝐴�(𝑥,𝑢)�| 𝑥 ∈ 𝑋,𝑢 ∈ [0,1]�  (9) 

where 𝑢 is the secondary variable and 𝑢 ∈ [0,1]. Besides 
𝜇𝐴�(𝑥,𝑢) is recognized as secondary membership grade of 𝑥 
and the primary membership of is defined as 𝐽𝑥 =
{(𝑥,𝑢)|𝑢 ∈ [0,1], 𝜇𝐴�(𝑥,𝑢) > 0} 

Definition 5. The footprint of uncertainty (FOU) of 𝐴̃ is 2-
D support of 𝜇𝐴�(𝑥,𝑢) and is defined as follows [21]: 
𝐹𝐹𝐹�𝐴̃� = �(𝑥,𝑢)|𝑥 ∈ 𝑋𝑎𝑎𝑎 𝑢 ∈ �𝜇𝐴�(𝑥), 𝜇̅𝐴�(𝑥)��,               (10) 

where 

�
𝜇𝐴�(𝑥) = inf  {𝑢|𝑢 ∈ [0,1],𝜇𝐴� (𝑥,𝑢) > 0}  
𝜇̅𝐴�(𝑥) = sup  {𝑢|𝑢 ∈ [0,1], 𝜇𝐴� (𝑥,𝑢) > 0}

.  
 

 (11) 

Definition 6. The type 2 triangular fuzzy number 𝐴̃̃ can be 
defined using a triangular fuzzy number with fuzzy elements 
as follows [3]: 
𝐴̃̃ = �𝐴̃𝑙, 𝐴̃𝑚, 𝐴̃𝑢�   (12) 

where 𝐴̃𝑙 and 𝐴̃𝑢 are the fuzzy lower and upper bounds of 𝐴̃̃ 
and 𝐴̃𝑚 is the fuzzy modal value. 
 
 

Definition 7. Let us consider two T2 TFNs 𝐴̃̃  =

�
(𝑎11, 𝑎12, 𝑎13),
(𝑎21, 𝑎22, 𝑎23),
(𝑎31, 𝑎32, 𝑎33)

� and 𝐵��  = �
(𝑏11, 𝑏12, 𝑏13),
(𝑏21, 𝑏22, 𝑏23),
(𝑏31, 𝑏32, 𝑏33)

�, then we have: 

 

𝐴̃̃  ⊕𝐵�� = �
(𝑎11 + 𝑏11, 𝑎12 + 𝑏12, 𝑎13 + 𝑏13),
(𝑎21 + 𝑏21, 𝑎22 + 𝑏22, 𝑎23 + 𝑏23),
(𝑎31 + 𝑏31, 𝑎32 + 𝑏32, 𝑎33 + 𝑏33)

�,            (13) 

𝐴̃̃  ⊖𝐵�� = �
(𝑎11 − 𝑏13, 𝑎12 − 𝑏12, 𝑎13 − 𝑏11),
(𝑎21 − 𝑏23, 𝑎22 − 𝑏22, 𝑎23 − 𝑏21),
(𝑎31 − 𝑏33, 𝑎32 − 𝑏32, 𝑎33 − 𝑏31)

�,             (14)    

𝐴̃̃  ⊗𝐵�� = �
(𝑎11𝑏11, 𝑎12𝑏12, 𝑎13𝑏13),
(𝑎21𝑏21, 𝑎22𝑏22, 𝑎23. 𝑏23),
(𝑎31𝑏31, 𝑎32𝑏32, 𝑎33𝑏33)

�,                           (15) 

𝐴̃̃  ⊘𝐵�� =

⎝

⎜
⎜
⎛
�𝑎11
𝑏33 

, 𝑎12
𝑏32  

, 𝑎13
𝑏31
� ,

�𝑎21
𝑏23 

, 𝑎22
𝑏22

, 𝑎23
𝑏21  

� ,

�𝑎31
𝑏13

, 𝑎32
𝑏12

, 𝑎33
𝑏11 

� ⎠

⎟
⎟
⎞

.                                     (16) 

C. R-numbers 
R numbers method has been developed to explain or justify 

the errors and risks of future events associated with fuzzy 
numbers, although its application is not limited only to fuzzy 
numbers. The following are the main definitions of R-numbers 
methodology. 

Definition 8. The R-numbers for arbitrary fuzzy number 𝐵�  
with lower limit 𝑙𝐵�  and upper limit 𝑢𝐵�  in beneficial and non-
beneficial modes are denoted by 𝑅𝑏 �𝐵�� and 𝑅𝑐�𝐵�� and can be 
described as follows [3]: 
𝑅𝑏 �𝐵�� = �𝑅1𝑏 �𝐴̃�,  𝑅2𝑏 �𝐵��,  𝑅3𝑏 �𝐵���,  where          (17)  

⎩
⎪
⎨

⎪
⎧𝑅1𝑏  �𝐵�� = 𝑚𝑚𝑚 �𝐵� ⊗ �1 ⊖𝑚𝑚𝑚 � 𝑟̃−

1⊖𝑅𝑅� − , 𝜏� ⊗ (1 ⊖𝐴𝐴−�)� , 𝑙𝐵�� 

𝑅2𝑏 �𝐵�� = 𝐵�                                                                                                    

𝑅3𝑏  �𝐵�� = 𝑚𝑚𝑚 �𝐵� ⊗ �1 ⊕ 𝑟̃+

1⊖𝑅𝑅� + ⊗ (1 ⊖𝐴𝐴+�� , 𝑢𝐵��                    

0 < 𝑟̃− < 1, 𝑟̃+   > 0                                                                                   

,     

 

 

(18) 

and  
𝑅𝑐�𝐵�� = �𝑅1𝑐�𝐵��,𝑅2𝑐�𝐵��,𝑅3𝑐�𝐵���,  where                 (19)  

⎩
⎪
⎨

⎪
⎧𝑅1𝑐�𝐵�� = 𝑚𝑚𝑚 �𝐵� ⊗ �1 ⊖𝑚𝑚𝑚 � 𝑟̃+

1⊖𝑅𝑅� + , 𝜏�⊗ (1 ⊖𝐴𝐴+�)� , 𝑙𝐵��

𝑅2𝑐�𝐵�� = 𝐵�                                                                                                   ,

𝑅3𝑐�𝐵�� = 𝑚𝑚𝑚 �𝐵� ⊗ �1 ⊕ 𝑟̃−

1⊖𝑅𝑅� − ⊗ �1 ⊖𝐴𝐴−��� , 𝑢𝐵��                  

𝑟̃− > 1, 1 < 𝑟̃+   < 0                                                                                

  

 

 

(20) 

in which 𝜏 is a number infinitely close to one and 𝑟̃− and 𝑟̃+ 
are fuzzy negative and positive risks and are defined as the 
fuzzy error and risk, which leads the fuzzy numbers becomes 
worse or better in the future. The fuzzy amount of positive and 
negative risks that can be tolerated by decision-makers are 
denoted by 𝐴𝐴−� and 𝐴𝐴+�, respectively, and 𝑅𝑅�− and 𝑅𝑅�+ are 
experts' fuzzy risk perceptions related to negative and positive 
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risks. In these relations, 𝐴𝐴−� and 𝐴𝐴+� values are always 
between zero and one but the possible range of 𝑅𝑅�− and 𝑅𝑅�+ 
is defined as follows [3]: 

�
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸            0 < 𝑅𝑅�−,  𝑅𝑅� < 1
𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝐸𝐸𝐸𝐸𝐸𝐸𝐸                           0                
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸    −∞ < 𝑅𝑅�−,  𝑅𝑅� < 0

 . 
 

(21) 

Definition 9. The main algebraic operations between two 
R-numbers 𝑅(𝐴̃) and 𝑅(𝐵�) can be performed using (22) [3]. 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑅(𝐴̃) ⊕𝑅(𝐵�) = �𝑅1�𝐴̃� ⊕ 𝑅1 �𝐵��,  𝑅2 �𝐴̃� ⊕ 𝑅2�𝐵��,  𝑅3 �𝐴̃� ⊕ 𝑅3(𝐵)�

𝑅�𝐴̃� ⊖ 𝑅�𝐵�� = �𝑅1�𝐴̃� ⊖ 𝑅3�𝐵��,𝑅2�𝐴̃�⊖ 𝑅2�𝐵��,𝑅3�𝐴̃� ⊖ 𝑅1�𝐵���    

𝑅(𝐴) ⊗𝑅�𝐵�� = �𝑅1�𝐴̃� ⊗ 𝑅1�𝐵��,𝑅2(𝐴) ⊗𝑅2�𝐵��,𝑅3�𝐴̃� ⊗ 𝑅3�𝐵���     

𝑅(𝐴̃) ⊘𝑅(𝐵�) = �𝑅1�𝐴̃� ⊘ 𝑅3�𝐵��,𝑅2�𝐴̃�⊘ 𝑅2�𝐵��,𝑅3�𝐴̃� ⊘ 𝑅1�𝐵���    

,  

 

 

 

(22) 

III. RISK MODELING OF FUZZY SETS 
This section explores different schemes of risk modeling of 

fuzzy set membership functions considering two different 
cases, i.e., risk modeling of a membership function due to the 
risk of the information source and risk modeling of 
membership function due to future influential factors. 
Additionally, different configurations, arising, e.g., due to 
pessimistic and optimistic risks, in the two mentioned cases 
are also exemplified. Risk modeling due to the information 
source is discussed in Section 3.1, while due to the future 
influential factors is outlined in Section 3.2, risk modeling by 
taking simultaneously both information source risk and future 
events risk is investigated in Section 3.3, and other schemes of 
risk modeling of fuzzy sets are elaborated in Section 3.4.  

A. Risk modeling of fuzzy sets due to risk and error of 
information source 

Depending on the nature of the problem, a set of different 
cases may be considered in risk modeling of the specific 
membership function due to the existence of risk and error in 
the information source, which is comprehensively investigated 
in this section. For this purpose, three cases such as 
pessimistic, optimistic, and pessimistic-optimistic are 
considered in coming subsections. Depending on the nature of 
the information source and effective variables on the 
information source, either of the cases may occur. In a 
pessimistic case, the existence of risk and error of information 
source results in the obtained membership degree would be 
higher than the actual one, while in an optimistic case, the 
existence of risk leads to a decrease in the reported value of 
the source in contrast to the actual one, and the pessimistic-
optimistic mode represents the general form of the 
membership risk modeling, thus existing as a combination of 
the two previous cases. 

 
1) The pessimistic interval of the membership function 
thorough considering the pessimistic risk of the information 
source 

Assume that the presence of risk affecting the information 
source results in a higher output value than the actual value. In 
this case, the obtained value is higher than the exact value; 
thus, the data need to be discarded.  

Theorem 1. Let the maximum risk of an information source 
𝑆 in pessimistic mode be denoted as 𝑟𝑃𝑃  

𝑚𝑚𝑚 . Thus, for a fuzzy 
set 𝐴̃ = ��𝑥, 𝜇𝐴� (𝑥)��∀𝑥𝑥𝑥� that is obtained by an information 
source S, the discounted membership function, i.e., 𝜇𝑃𝑃𝐴� 

(𝑥), 
considering the risk of 𝑟𝑃𝑃  

𝑚𝑚𝑚 , is depicted as:  

�𝜇
𝑃𝑃

𝐴� 
(𝑥) =

𝜇𝐴�  (𝑥)

1+𝑟𝑃𝑃
 
𝑚𝑚𝑚

𝑟𝑃𝑃  
𝑚𝑚𝑚 > 0              

 , 
 

(23) 

where 𝜇𝑃𝑃𝐴� 
(𝑥) is the discounted (pessimistic) 𝜇𝐴� (𝑥). 

Proof. The risk or error of specific data can be defined as 
the deviation of the exact parameter from the obtained value, 
and it can be obtained as follows [22]:  

𝑟 = |𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣−𝐸𝐸𝐸𝐸𝐸 𝑣𝑣𝑣𝑣𝑣|
𝐸𝐸𝐸𝐸𝐸 𝑣𝑣𝑣𝑣𝑣

 . (24) 

In the pessimistic case, as the obtained membership degree 
is greater than the exact membership degree, we obtain from 
(24), 
𝜇𝐴� 

(𝑥)> 𝜇𝑃𝑃𝐴� 
(𝑥)

 
→ 

𝑟𝑃𝑃  
𝑚𝑚𝑚 =

𝜇𝐴�  (𝑥)−𝜇𝑃𝑃𝐴�  
𝜇𝑃𝑃𝐴�   

→𝜇𝑃𝑃𝐴� 
=

𝜇𝐴�  (𝑥)

(1+𝑟𝑃𝑃 
𝑚𝑚𝑚)

.                             (25) 

This proves the proposed relation.■ 
Furthermore, as the exact parameter is not known and the 

derived value of 𝜇𝑃𝑃𝐴� (𝑥) is determined from the maximum 
possible risk, which does not always occur in reality, we can 
describe an interval of pessimistic values for membership 
function that indicates the possible range of exact membership 
function in the presence of 𝑟𝑃𝑃  

𝑚𝑚𝑚.  
Definition 10. If the pessimistic interval of 𝜇𝐴� (𝑥) is 

indicated with 𝐼𝜇𝑃𝑃𝐴� 
(𝑥), the pessimistic fuzzy set 𝐴̃𝑃𝑃   is 

obtained in the same way as explained below: 
𝐴̃𝑃𝑃  = ��𝑥,  𝐼𝐼𝑃𝑃𝐴�(𝑥)� � ∀𝑥𝑥 𝑋�, (26) 

where 
𝐼𝐼𝑃𝑃𝐴�(𝑥) = �𝜇𝑃𝑃𝐴�,𝜇𝐴� (𝑥)�. (27) 

Example 1. Let 𝑋 be a set and 𝐴̃ a fuzzy set as: 
 𝑋 = {1 ,2, 3, 4}, 
𝐴̃ = {(1,0.2), (2,0.4), (3,0.5)}. 

By assuming a risk of 𝑟𝑃𝑃  
𝑚𝑚𝑚 = 0.2, the pessimistic fuzzy 

sets 𝐴̃𝑃𝑃 can be derived using (26) as follows: 
𝐴̃𝑃𝑃 = {(1, [0.167,0.2]), (2, [0.33,0.4]), (3, [0.416,0.5])}. 
 
2) The optimistic interval of membership function based on 
the optimistic risk of an information source 

Let us assume that depending on the historical data and 
other influential factors, the obtained membership function 
from the information source, 𝑆,  is lower than the actual 
values. In this case, if the aim is to obtain correct output 
values, then the reported values must be enhanced similarly as 
per the error.  

Theorem 2. Similar to the pessimistic mode, assume the 
maximum optimistic risk value of the membership degree by 
source 𝑆 to be 𝑟 𝑂𝑂

 
𝑚𝑚𝑚, thus taking into account the optimistic 

mode for the membership function, the inflated mode can be 
described as follows: 
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�
𝜇𝑂𝑂𝐴� 

(𝑥) = 𝑚𝑚𝑚 � 𝜇𝐴�(𝑥)
1−𝑟𝑂𝑂

 
𝑚𝑚𝑚

, 1�

0 ≤ 𝑟𝑂𝑂𝑚𝑚𝑚 < 1                           
, 

 
 (28) 

 
where 𝜇𝑂𝑂𝐴� 

(𝑥) is the inflated (optimistic) 𝜇𝐴� (𝑥).  

Proof. Since the obtained membership degree is smaller 
than the exact value from (24), we obtain, 

𝜇𝐴� (𝑥)< 𝜇𝑂𝑂𝐴� 
(𝑥)

 
→ 𝑟𝑂𝑂  

𝑚𝑚𝑚 =
𝜇𝑂𝑂𝐴�  −𝜇𝐴�  (𝑥)

𝜇𝑂𝑂𝐴�  

 
→𝜇𝑂𝑂𝐴� 

=
𝜇𝐴�  (𝑥)

(1−𝑟𝑂𝑂
 
𝑚𝑚𝑚)

 . 

(29) 

Moreover, 𝜇𝑂𝑂𝐴�, could not be higher than one, so 

𝑚𝑚𝑚 �
𝜇𝐴�  (𝑥)

1−𝑟𝑂𝑂
 
𝑚𝑚𝑚

, 1� should be considered to satisfy this 
property. ■ 

Definition 11. According to Definition 10, the optimistic 
interval of 𝜇𝐴� (𝑥) and the optimistic set of 𝐴̃, as denoted by 
𝐼𝐼𝑂𝑂𝐴� 

 and 𝐴̃𝑂𝑂 are derived as follows: 

𝐴̃𝑂𝑂  = ��𝑥,  𝐼𝐼𝑂𝑂𝐴�(𝑥)� �∀𝑥𝑥 𝑋�,                          (30) 

where 
𝐼𝐼𝑂𝑂𝐴�(𝑥) = �𝜇𝐴� (𝑥),  𝜇𝑂𝑂𝐴� �.                               (31) 

Example 2. If we take like from Example 1 with a risk 
value of 𝑟𝑂𝑂  

𝑚𝑚𝑚 = 0.2, 𝐴̃𝑂𝑂 using (30), the final optimistic 
value can be obtained as follows. 
𝐴̃𝑂𝑂  = {(1, [0.2,0.25]), (2, [0.4,0.5]), (3, [0.5,0.825])}. 
 

3) The pessimistic-optimistic interval of membership function 
based on the risks of an information source 

Considering the various two cases, assume that a problem 
where fuzzy information obtained by 𝑛 different sources has a 
different percentage of error for each of them. For such a 
problem, in total, a set of 2𝑛 different cases can be considered, 
wherein each case may end up with a different result. 
Moreover, for many problems, in order to achieve robust 
results and decrease the number of cases to be examined, we 
need to consider a pessimistic-optimistic range of output 
values in the presence of risk. According to Definitions 10 and 
11, for the pessimistic-optimistic scenario, we can consider a 
range of pessimistic to optimistic values having the same 
degree of possibility, and it further contains the reported value.  

Definition 12. The pessimistic-optimistic interval of the 
fuzzy sets 𝐴̃  and the membership function 𝜇 

𝐴� 
 can be defined 

by considering the risks of  𝑟𝑃𝑃  
𝑚𝑚𝑚 and 𝑟𝑂𝑂  

𝑚𝑚𝑚 as follows: 
𝐴̃(𝑃−𝑂)𝑆

 = ��𝑥,  𝐼𝐼(𝑃−𝑂)𝑆
𝐴�(𝑥)� �∀𝑥𝑥 𝑋�, (32) 

𝐼𝐼(𝑃−𝑂)𝑆
𝐴� 

(𝑥) = �𝜇𝑃𝑃𝐴� 
(𝑥), 𝜇𝑂𝑂

𝐴� 
(𝑥)�, (33) 

𝑟𝑃𝑃  
𝑚𝑚𝑚 ≥ 0, (34) 

0 ≤ 𝑟𝑂𝑂  
𝑚𝑚𝑚 < 1, (35) 

where 𝐼𝐼(𝑃−𝑂)𝑆
𝐴� 

(𝑥) is the pessimistic-optimistic interval for 
𝜇𝐴� (𝑥), the pessimistic-optimistic fuzzy set is 𝐴̃(𝑃−𝑂)𝑆, and 
𝜇𝑃𝑃𝐴� 

and 𝜇𝑂𝑂𝐴� are obtained using (23) and (28), respectively. 
Definition 13. The membership function 𝐼𝐼(𝑃−𝑂)𝑆

𝐴� 
(𝑥) and 

the related fuzzy sets 𝐴̃(𝑃−𝑂)𝑆 can be described by using TFNs 
while taking the risks of 𝑟𝑃𝑃  

𝑚𝑚𝑚  and 𝑟𝑂𝑂  
𝑚𝑚𝑚  into account, so 

we have: 

𝐴̃(𝑃−𝑂)𝑆𝑆
 = ��𝑥, 𝜇�(𝑃−𝑂)𝑆𝑆

𝐴� 
(𝑥)� � ∀𝑥𝑥 𝑋�, (36) 

𝜇�𝑇𝑇−𝑂𝐴� 
(𝑥) = �𝜇𝑃𝑃𝐴� 

(𝑥), 𝜇𝐴� (𝑥), 𝜇𝑂𝑂
𝐴� 

(𝑥)�,  
(37) 

𝑟𝑃𝑃𝑚𝑚𝑚 ≥ 0, (38) 
0 ≤ 𝑟𝑂𝑂𝑚𝑚𝑚 < 1, (39) 

where 𝜇�𝑇𝑇−𝑂𝐴� 
(𝑥) and 𝐴̃(𝑃−𝑂)𝑆𝑆

  are the triangular fuzzy 
pessimistic-optimistic membership function and fuzzy set, 
respectively.  

Proof. In an interval-valued output set, all values of an 
interval have the same possibility of occurrence, though it is 
not a logical assumption. Indeed, the pessimistic and 
optimistic reported risks of the information source are 
determined based on maximum possible risks, which do not 
always occur in reality and can be observed only in the worst 
case. Therefore, we can say that the interval close to the 
reported value has a higher possibility. Thus, we can say that 
the initial evaluation value will have a higher degree of 
possibility, and when risk is increased, the values determined 
only by the same risk will eventually have a lower possibility, 
and at the end, the optimistic and pessimistic values will have 
the lowest possibilities to occur. In another approach, if these 
terms need to be expressed in degrees of possibility, one can 
utilize a TFN.■ 

One may consider a special case, where 𝑟𝑃𝑃  
𝑚𝑚𝑚  and 

𝑟𝑂𝑂  
𝑚𝑚𝑚 values are identical; in this case, the effective factors 

may equally improve or worsen the results. Moreover, the 
optimistic and pessimistic approaches represent special cases 
with zero 𝑟𝑃𝑃  

𝑚𝑚𝑚 or 𝑟𝑂𝑂  
𝑚𝑚𝑚 value, respectively.  

Example 3. Let us suppose again Example 1 with a risk 
value of 𝑟𝑂𝑂  

𝑚𝑚𝑚 = 0.2 and 𝑟𝑃𝑃  
𝑚𝑚𝑚 , 𝐴̃(𝑃−𝑂)𝑆𝑆 can be obtained 

as follows.  

𝐴̃(𝑃−𝑂)𝑆𝑆
 = �

�1, (0.167,0.2,0.25)�,
�2, (0.33,0.4,0.5)�,

�3, (0.417,0.5,0.825)�
�. 

 

B. Risk modeling of fuzzy sets due to the presence of future 
influential factors 

This section investigates different schemes of risk modeling 
of fuzzy sets. In this case, the risk may be caused due to the 
influential factors, which may be prevalent in the future. For 
this purpose, similar to Section 3.1, we consider three cases 
for risk modeling, i.e., pessimistic, optimistic, and pessimistic-
optimistic. 

 
1) Pessimistic set of membership function by considering 
future events risks 

If we assume that the values of the membership function are 
only worsened by a future risk or only pessimistic values are 
considered by the decision-maker, the risk values ranging 
from 0 to 1 can be taken into account, and one may end up 
with a pessimistic mode of fuzzy sets. 

Theorem 3. Suppose 𝐴̃  represents a fuzzy set of 𝑋, and 
𝑟 𝑃𝑃𝑚𝑚𝑚 represents the maximum possible pessimistic risk of 
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possible future events, in this case, the pessimistic 
membership function 𝜇𝐴� 

𝑃𝑃(𝑥) can then be derived by 
considering 𝑟 𝑃𝑃𝑚𝑚𝑚  as follows: 

�
𝜇𝐴� 

𝑃𝑃(𝑥) = (1 − 𝑟 𝑃𝑃𝑚𝑚𝑚). 𝜇𝐴� (𝑥)
0 ≤ 𝑟 𝑃𝑃𝑚𝑚𝑚 < 1                               

 . 
(40) 

Proof. The risk and error (r) values of  𝐸2 with respect to 
𝐸1 can be obtained using (41) [3]: 

𝑟 = �𝐸2−𝐸1�
𝐸1

 , (41) 

In the pessimistic case, the aim is to obtain 𝜇𝐴� 
𝑃𝑃(𝑥) caused 

by 𝑟 𝑃𝑃𝑚𝑚𝑚, since 𝜇𝐴� 
𝑃𝑃(𝑥) will be lower than 𝜇𝐴� (𝑥), by using  

(41), we have: 

𝜇𝐴� 
𝑃𝑃(𝑥) < 𝜇𝐴� (𝑥)

 
→ 𝑟 𝑃𝑃𝑚𝑚𝑚 =

𝜇𝐴�  
(𝑥)−𝜇𝐴�  

𝑃𝑃(𝑥)

𝜇𝐴�  
(𝑥)

 
→𝜇𝐴� 

𝑃𝑃(𝑥) = �1 − 𝑟 𝑃𝑃𝑚𝑚𝑚�. 𝜇𝐴� (𝑥). ■ 

(42) 

Definition 14. As described in Section 3.1.1, the pessimistic 
interval for membership function and the pessimistic fuzzy 
sets arising from 𝑟 𝑃𝑃𝑚𝑚𝑚  which are denoted by 𝐼𝜇𝐴� 

𝑃𝑃(𝑥) and 
𝐴̃𝑃𝑃  can be obtained as follows: 
𝐴̃𝑃𝑃  = ��𝑥, 𝐼𝜇𝐴� 

𝑃𝑃(𝑥)� � ∀𝑥𝑥 𝑋�, (43) 

where 
𝐼𝜇𝐴� 

𝑃𝑃(𝑥) = �𝜇𝐴� 
𝑃𝑃(𝑥), 𝜇𝐴� (𝑥)�. (44) 

Example 4. Let the risks associated with the membership 
function of fuzzy set 𝐴̃  in Example 1 be 𝑟 𝑃𝑃𝑚𝑚𝑚 = 0.2; the 
pessimistic set 𝐴̃𝑃𝑃 can be obtained as follows. 
𝐴̃ = {(1,0.2), (2,0.4), (3,0.5)}, 

𝐴̃𝑃𝑃 = {(1, [0.16,0.2]), (2, [0.32,0.4]), (3, [0.4,0.5])}. 
 
2) The optimistic interval of membership function 
considering future events risks 

Now we take another case where future effective factors can 
only improve the values, which are usually dependent on the 
degree to which the decision-maker is optimistic. In this mode, 
the associated risk with the future factors that can result in 
better solutions is called optimistic risk.  

Theorem 4. If the maximum optimistic risk is shown by 
𝑟𝑂𝑂𝑚𝑚𝑚 , the optimistic value of the membership function, i.e., 
𝜇𝐴� 

𝑂𝑂(𝑥) considering 𝑟𝑂𝑂𝑚𝑚𝑚  could be obtained as follows: 

𝜇𝐴� 
𝑂𝑂(𝑥) = 𝑚𝑚𝑚 ��1 + 𝑟 𝑂𝑂𝑚𝑚𝑚�. 𝜇𝐴� (𝑥),1�, (45) 

𝑟 𝑂𝑂𝑚𝑚𝑚 ≥ 0. (46) 

Proof. Since 𝜇𝐴� 
𝑂𝑂(𝑥) is greater than 𝜇𝐴� (𝑥), from (40), we 

have, 

𝜇𝐴� 
𝑂𝑂(𝑥) < 𝜇𝐴� (𝑥)

 
→ 𝑟 𝑂𝑂𝑚𝑚𝑚 =

𝜇𝐴�  
𝑂𝑂(𝑥)−𝜇𝐴�  

(𝑥)

𝜇𝐴�  (𝑥)

 
→𝜇𝐴� 

𝑂𝑂(𝑥) = (1 + 𝑟 𝑂𝑂𝑚𝑚𝑚). 𝜇𝐴� (𝑥). 

(47) 

Since max 𝜇𝐴� 
𝑂𝑂(𝑥) could not be greater than one; thus, we 

should consider 𝑚𝑚𝑚 ��1 + 𝑟 𝑂𝑂𝑚𝑚𝑚�. 𝜇𝐴� (𝑥),1�, so the 
proposed relation is proved. ■ 

Definition 15. The optimistic fuzzy set and optimistic 
interval of 𝜇𝐴� (𝑥) are derived using (48) and (49), 
respectively. 

𝐴̃𝑂𝐹  = ��𝑥, 𝐼𝜇𝐴� 
𝑂𝑂(𝑥)� � ∀𝑥𝑥 𝑋�, (48) 

where 
𝐼𝜇𝐴� 

𝑂𝑂(𝑥) = �𝜇𝐴� (𝑥), 𝜇𝐴� 
𝑂𝑂(𝑥)�, (49) 

in which, 𝐼𝜇𝐴� 
𝑂𝑂(𝑥) is an optimistic interval of the 

membership function, and 𝐴̃𝑂𝑂 is optimistic fuzzy set.  
Example 5. Referring to the reference set 𝑋 and fuzzy set 𝐴̃ 

in Example 1 and 𝑟𝑂𝑂𝑚𝑚𝑚 = 0.2, the optimistic set 𝐴̃𝑂𝑂  is 
obtained as follows: 
 𝐴̃ = {(1,0.2), (2,0.4), (3,0.5)}, 

𝐴̃𝑂𝑂 = {(1, [0.2,0.24]), (2, [0.4,0.48]), (3, [0.5,0.6])}. 
 
3) Pessimistic-optimistic approach 

In this condition, risk factors are expected to influence the 
membership function both pessimistically (𝑟𝑃𝑃𝑚𝑚𝑚) and 
optimistically (𝑟𝑂𝑂𝑚𝑚𝑚). As in the presence of risk, the 
existing and evaluated membership degree showed the highest 
degree of possibility, and the remaining points within the 
interval exhibit the minimum degree of possibility. Therefore, 
the pessimistic-optimistic range can be described using 
Definition 16. 

Definition 16. The pessimistic-optimistic fuzzy sets and 
pessimistic-optimistic interval for the membership function 
using a TFN are obtained using (50) and (51), respectively. 

𝐴̃(𝑃−𝑂)𝐹𝐹
 = ��𝑥, 𝜇�(𝑃−𝑂)𝐹𝐹

𝐴� 
(𝑥)� � ∀𝑥𝑥 𝑋�, (50) 

𝜇�(𝑃−𝑂)𝐹𝐹
𝐴� 

(𝑥) = �𝜇𝑃𝑃𝐴� (𝑥), 𝜇𝐴� (𝑥), 𝜇𝑂𝑂
𝐴� 

(𝑥)�, 
(51) 

0 ≤ 𝑟 𝑃𝑃𝑚𝑚𝑚 < 1, (52) 
𝑟 𝑂𝑂𝑚𝑚𝑚 ≥ 0, (53) 
where 𝜇�(𝑃−𝑂)𝐹𝐹

𝐴� 
and 𝐴̃(𝑃−𝑂)𝐹𝐹

 are the triangular fuzzy-valued 
pessimistic-optimistic set of 𝐴̃ and membership function 
𝜇𝐴� (𝑥), respectively. 

Example 6. Regarding Example 1 and by considering 
𝑟 𝑃𝑃𝑚𝑚𝑚 = 𝑟 𝑂𝑂𝑚𝑚𝑚 = 0.2, 𝐴̃(𝑃−𝑂)𝐹𝐹

  can be written as follows. 
𝐴̃ = {(1,0.2), (2,0.4), (3,0.5)}, 

𝐴̃(𝑃−𝑂)𝐹𝐹 = �
�1, (0.14,0.2,0.24)�,
�2, (0.28,0.4,0.48)�,
�3, (0.35,0.5,0.6)�

�. 

Similar to Section 3.1, in a special case, 𝑟𝑃𝑃𝑚𝑚𝑚 and 
𝑟𝑂𝑂𝑚𝑚𝑚  values could be equal. In this scenario, it is equally 
possible that the effective factors may improve or worsen the 
results. The next section presents a discussion on risk 
modeling of the fuzzy sets considering both simultaneously, 
the information risk and future risks. 

C. Modeling fuzzy pessimistic-optimistic interval considering 
both information and future event risk 

As outlined in the previous discourse, two kinds of risks can 
be considered for a specific membership function. The 
proposed relations between these two cases in a pessimistic-
optimistic mode are discussed in Sections 3.1.3 and 3.2.3.  

Definition 17. Let a problem be with the maximum 
pessimistic and optimistic risks of the source and the future 
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events taken as 𝑟𝑃𝑃𝑚𝑚𝑚 , 𝑟𝑂𝑂𝑚𝑚𝑚  𝑟𝑃𝑃𝑚𝑚𝑚 and 𝑟𝑂𝑂𝑚𝑚𝑚, 
respectively, now both risks can be modeled simultaneously 
on the membership function. If we define the model for a 
pessimistic-optimistic mode, T2 TFN with TFN elements for 
membership function and fuzzy sets can be obtained using 
(54) and (55), which are denoted by 𝐴̃̃(𝑃−𝑂)𝑇 and 
𝜇��(𝑃−𝑂)𝑇

𝐴� 
(𝑥), respectively. 

𝐴̃̃(𝑃−𝑂)𝑇
 = ��𝑥, 𝜇��(𝑃−𝑂)𝑇

𝐴�𝑘 
(𝑥)� � ∀𝑥𝜖 𝑋�, (54) 

𝜇�� (𝑃−𝑂)𝑇
𝐴� 

(𝑥) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜⎜
⎛

�1 − 𝑟 𝑃𝑃𝑚𝑚𝑚�. �
𝜇𝐴�  

(𝑥)

�1+𝑟𝑃𝑃 
𝑚𝑚𝑚�

� ,

�1 − 𝑟 𝑃𝑃𝑚𝑚𝑚�.𝜇𝐴�(𝑥),              
  

𝑚𝑚𝑚 ��1 − 𝑟 𝑃𝑃𝑚𝑚𝑚�. �
𝜇𝐴�  

(𝑥)

�1−𝑟𝑂𝑂 
𝑚𝑚𝑚�

� , 1�
⎠

⎟⎟
⎞

,

⎝

⎜⎜
⎛

�
𝜇𝐴�  

(𝑥)

�1+𝑟𝑃𝑃 
𝑚𝑚𝑚�

� ,

𝜇𝐴�(𝑥),   

𝑚𝑚𝑚 ��
𝜇𝐴�  

(𝑥)

�1−𝑟𝑂𝑂 
𝑚𝑚𝑚�

� , 1�
⎠

⎟⎟
⎞

,

⎝

⎜⎜
⎜
⎛
𝑚𝑚𝑚 ��1 + 𝑟 𝑂𝑂𝑚𝑚𝑚�. �

𝜇𝐴�  
(𝑥)

�1+𝑟𝑃𝑃 
𝑚𝑚𝑚�

� , 1� ,

𝑚𝑚𝑚 ��1 + 𝑟 𝑂𝑂𝑚𝑚𝑚�.𝜇𝐴� 
(𝑥), 1� ,

𝑚𝑚𝑚 ��1 + 𝑟 𝑂𝑂𝑚𝑚𝑚�. �
𝜇𝐴�  

(𝑥)

�1−𝑟𝑂𝑂 
𝑚𝑚𝑚�

� , 1  �⎠

⎟⎟
⎟
⎞

 

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

,          (55) 

where 
𝑟𝑃𝑃𝑚𝑚𝑚 , 𝑟𝑂𝑂𝑚𝑚𝑚 ≥ 0, (56) 
0 ≤ 𝑟𝑃𝑃𝑚𝑚𝑚 , 𝑟𝑂𝑂𝑚𝑚𝑚 < 1. (57) 

Proof. Let the obtained information from source 𝑆 be 
𝜇𝐴� (𝑥), since the obtained information from source 𝑆 is risky, 
we can obtain 𝜇�(𝑃−𝑂)𝑆𝑆

𝐴�(𝑥) by considering 𝑟𝑃𝑃𝑚𝑚𝑚  and 
𝑟𝑂𝑂𝑚𝑚𝑚  as follows: 

𝜇�(𝑃−𝑂)𝑆𝑆
𝐴�(𝑥) =

⎝

⎜⎜
⎛

�
𝜇𝐴�  

(𝑥)

�1+𝑟𝑃𝑃
 
𝑚𝑚𝑚�

� ,

𝜇𝐴�(𝑥),   

𝑚𝑚𝑚 ��
𝜇𝐴�  

(𝑥)

�1−𝑟𝑂𝑂
 
𝑚𝑚𝑚�

� , 1�
⎠

⎟⎟
⎞

. 

 

 

(58) 

 
Now 𝜇�(𝑃−𝑂)𝑆𝑆

𝐴�(𝑥) itself faces to pessimistic and optimistic 
risks of future events, i.e., 𝑟 𝑃𝑃𝑚𝑚𝑚 and 𝑟 𝑂𝑂𝑚𝑚𝑚 , so by using 
(51) and inserting (58) instead of 𝜇�(𝑃−𝑂)𝑆𝑆

𝐴�(𝑥), (55) is 
proved. ■ 
Example 7. The T2 TFN-described fuzzy sets (𝐴̃̃(𝑃−𝑂)𝑇) of 
Example 1 considering 𝑟𝑃𝑃𝑚𝑚𝑚 = 𝑟𝑂𝑂𝑚𝑚𝑚 =  𝑟𝑃𝑃𝑚𝑚𝑚 =
𝑟𝑂𝑂𝑚𝑚𝑚 = 0.2 is as follows: 
𝐴̃ = {(1,0.2), (2,0.4), (3,0.5)}, 
 𝑟𝑃𝑃𝑚𝑚𝑚 = 𝑟𝑂𝑂𝑚𝑚𝑚= 𝑟𝑃𝑃𝑚𝑚𝑚 = 𝑟𝑂𝑂𝑚𝑚𝑚 = 0.2, 

 𝐴̃̃(𝑃−𝑂)𝑇

= �
�1, (0.133,0.16,0.2), (0.166,0.2,0.25), (0.2,0.24,0.3)�,
�2, (0.267,0.32,0.4), (0.33,0.4,0.55), (0.4,0.48,0.6)�,   
�3, (0.33,0.4,0.5), (0.417,0.5,0.625), (0.5,0.6,0.75)�  

� 

 

D. Other configurations of risk modeling of fuzzy sets 
When it comes to the risk of a membership function, there 

might be other possible cases due to the nature of risk itself. In 
this section, we consider two additional concepts similar to R-
numbers. One of them is the acceptable risk, which shows 
how much risk is tolerable by the decision-makers for each 
evaluation, and another one is the risk perception of experts in 
evaluating the future-events risks which are used to modify the 
obtained risks by the experts. The comprehensive discussion 
about these issues can be found in [3]. Let us denote the 
acceptable risk by 𝐴𝐴 and the pessimistic and optimistic 
degrees of risk-taking by 𝐴𝐴𝑃 and 𝐴𝐴𝑂, respectively. Now, if 
we show the pessimistic and optimistic risk perceptions of the 
experts for pessimistic and optimistic future-events risks by 
𝑅𝑅𝑃𝑃 and 𝑅𝑅𝑂𝑂,  according to (18) and (20) we can rewrite 
(55) as follows. 
𝜇��𝑃−𝑂𝐴�𝑘  

(𝑥) =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎛

�1 −𝑚𝑚𝑚 �𝑟 
𝑃𝑃

𝑚𝑚𝑚
1−𝑅𝑅𝑃𝑃

, 𝜏� (1 − 𝐴𝐴𝑃)� . �
𝜇𝐴�  (𝑥)

�1+𝑟𝑃𝑃 
𝑚𝑚𝑚(1−𝐴𝐴𝑃)�

� ,

�1 −𝑚𝑚𝑚 �𝑟 
𝑃𝑃

𝑚𝑚𝑚
1−𝑅𝑅𝑃𝑃

, 𝜏� (1 − 𝐴𝐴𝑃)� . 𝜇𝐴� 
(𝑥),

 

𝑚𝑚𝑚 ��1 −𝑚𝑚𝑚 �𝑟 
𝑃𝑃

𝑚𝑚𝑚
1−𝑅𝑅𝑃𝑃

, 𝜏� (1 − 𝐴𝐴𝑃)� .�
𝜇𝐴�  (𝑥)

�1−𝑟𝑂𝑘𝑚𝑚𝑚(1−𝐴𝐴𝑂)�
� , 1�

⎠

⎟
⎟
⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎛

�
𝜇𝐴�  (𝑥)

�1+𝑟𝑃𝑃 
𝑚𝑚𝑚(1−𝐴𝐴𝑃)�

� ,

𝜇𝐴� 
(𝑥),

 

𝑚𝑖𝑖 ��
𝜇𝐴�  (𝑥)

�1−𝑟𝑂𝑂 
𝑚𝑚𝑚(1−𝐴𝐴𝑂)�

� , 1�
⎠

⎟
⎟
⎟
⎞

,

⎝

⎜
⎜
⎜
⎜
⎛
𝑚𝑚𝑚 ��1 + 𝑟 

𝑂𝑂
𝑚𝑚𝑚

1−𝑅𝑅𝑂𝑂
(1 − 𝐴𝐴𝑂)� .�

𝜇𝐴�  (𝑥)

�1+𝑟𝑃𝑃 
𝑚𝑚𝑚(1−𝐴𝐴𝑃)�

� , 1� ,

𝑚𝑚𝑚 ��1 + 𝑟 
𝑂𝑂

𝑚𝑚𝑚
1−𝑅𝑅𝑂𝑂

(1 − 𝐴𝐴𝑂)� . 𝜇𝐴� 
(𝑥), 1� ,

𝑚𝑚𝑚 ��1 + 𝑟 
𝑂𝑂

𝑚𝑚𝑚
1−𝑅𝑅𝑂𝑂

(1 − 𝐴𝐴𝑂)� . �
𝜇𝐴�  (𝑥)

(1−𝑟𝑂𝑂 
𝑚𝑚𝑚(1−𝐴𝐴𝑂))

� , 1�
⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

,  (59)     

 The 𝐴𝐴 values are expressed as a number between 0 and 1 
and 𝜏 is a value close to one. It should be noted that risk 
perceptions are used only when the risk values of future-
events are reported by human experts. The different values of 
risk perceptions for different types of experts are defined by 
using (21). 

All of the possible scenarios of the risk modeling of a 
membership function are illustrated in Fig. 2.

              

 
Fig. 2.  All possible configurations of taking risks of a membership function 

IV. R-SETS 
As discussed previously, in many fuzzy decision-making 

problems, the risk due to an information source or future risk 
factors results in deviations of fuzzy information from the 
actual data. The different scenarios of risk modeling in fuzzy 
sets are discussed in Section 3. This section sets out a general 
concept designated as R-sets to be applied on fuzzy sets in a 
pessimistic-optimistic scheme that considers all risk 

Downloaded from http://iranpaper.ir
http://www.itrans24.com/landing1.html



1063-6706 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2019.2955061, IEEE
Transactions on Fuzzy Systems

 
 

8 

configurations. This novel concept is expected to be useful in 
decision-making problems, where the membership degrees are 
strongly linked with risks and errors. The new algebraic 
operations for R-sets based on T2 FS are given in Section 4.1. 
The capabilities of the proposed approach are demonstrated in 
Section 4.2 by developing a multi-criteria framework based on 
TOPSIS method and the concept of R-sets. 

A. R-sets: definitions and operations 
For an arbitrary fuzzy set {〈𝑥, 𝜇〉}, the corresponding R-set 

(𝑅𝑅(𝑥)) on 𝑋 are defined on the basis of a pessimistic-
optimistic membership function, 𝜇��𝑅𝑅, considering the entire 
set of risks R, containing risk parameters, i.e., maximum 
pessimistic and optimistic risks of information sources and 
future events, pessimistic and optimistic acceptable risks, and 
risk perceptions, i.e., we have 
𝑅 = {𝑟𝑃𝑃 

𝑚𝑚𝑚, 𝑟𝑂𝑂  
𝑚𝑚𝑚, 𝑟𝑃𝑃 

𝑚𝑚𝑚, 𝑟𝑂𝑂 
𝑚𝑚𝑚,𝐴𝐴𝑃,𝐴𝐴𝑂,𝑅𝑅𝑃𝑃 ,  𝑅𝑅𝑂𝑂}, (60) 

𝑅𝑅(𝑥) = {𝑥, 𝜇,𝑅} = {〈𝑥, 𝜇��𝑅𝑅〉}    for 𝑥 ∈ 𝑋, (61) 
where 

𝜇��𝑅𝑅 = �(𝜇𝑅𝑅11, 𝜇𝑅𝑅12,𝜇𝑅𝑅13), (𝜇𝑅𝑅21,𝜇𝑅𝑅22, 𝜇𝑅𝑅23), (𝜇𝑅𝑅31, 𝜇𝑅𝑅32, 𝜇𝑅𝑅33)�, 

and 
(62) 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝜇𝑅𝑅11 = �1−𝑚𝑚𝑚 �𝑟 𝑃𝑃𝑚𝑚𝑚

1−𝑅𝑅𝑃𝑃
, 𝜏� . (1 − 𝐴𝐴𝑃)� . � 𝜇

�1+𝑟𝑃𝑃  
𝑚𝑚𝑚.(1−𝐴𝐴𝑃)�

�
  
                      

𝜇𝑅𝑅12  = �1 −𝑚𝑚𝑚 �𝑟 𝑃𝑃𝑚𝑚𝑚
1−𝑅𝑅𝑃𝑃

, 𝜏� . (1 − 𝐴𝐴𝑃)� . 𝜇                                                         

𝜇𝑅𝑅13 = 𝑚𝑚𝑚��1−𝑚𝑚𝑚 �𝑟 𝑃𝑃𝑚𝑚𝑚
1−𝑅𝑅𝑃𝑃

, 𝜏� . (1 − 𝐴𝐴𝑃)� . � 𝜇
�1−𝑟𝑂𝑂  

𝑚𝑚𝑚.(1−𝐴𝐴𝑂)�
� , 1�     

𝜇𝑅𝑅21 = � 𝜇
�1+𝑟𝑃𝑃  

𝑚𝑚𝑚.(1−𝐴𝐴𝑃)�
�                                                                                           

𝜇𝑅𝑅22  = 𝜇                                                                                                                             

𝜇𝑅𝑅23 = 𝑚𝑚𝑚 �� 𝜇
�1−𝑟𝑂𝑂  

𝑚𝑚𝑚.(1−𝐴𝐴𝑂)�
� , 1�                                                                       

𝜇𝑅𝑅31 = 𝑚𝑚𝑚 ��1 + 𝑟 𝑂𝑂𝑚𝑚𝑚
1−𝑅𝑅𝑂𝑂

. (1− 𝐴𝐴𝑂)� . � 𝜇
�1+𝑟𝑃𝑃  

𝑚𝑚𝑚.(1−𝐴𝐴𝑃)�
� , 1  �                      

𝜇𝑅𝑅32  = 𝑚𝑚𝑚��1 + 𝑟 𝑂𝑂𝑚𝑚𝑚
1−𝑅𝑅𝑂𝑂

. (1 − 𝐴𝐴𝑂)� .𝜇, 1�                                                           

𝜇𝑅𝑅33 = 𝑚𝑚𝑚��1 + 𝑟 𝑂𝑂𝑚𝑚𝑚
1−𝑅𝑅𝑂𝑂

. (1 − 𝐴𝐴𝑂)� . � 𝜇
�1−𝑟𝑂𝑂  

𝑚𝑚𝑚.(1−𝐴𝐴𝑂�
� , 1�                         

   

 
 
 
 
 
 
 
 

(63)  

also 𝜇𝑅𝑅1, 𝜇𝑅𝑅12 ,𝜇𝑅𝑅13, 𝜇𝑅𝑅21, 𝜇𝑅𝑅22 , 𝜇𝑅𝑅23, 𝜇𝑅𝑅31, 𝜇𝑅𝑅32 , 𝜇𝑅𝑅33 ∶ 𝑋

 
→ [0,1]. 

Now, since 𝜇��𝑅𝑅 is a T2 TFN, we can obtain its secondary 
membership function. Let us suppose 𝜇��𝑅𝑅 =
(𝜇�𝑅𝑅1, 𝜇�𝑅𝑅2, 𝜇�𝑅𝑅3), where 

𝑢 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

µ𝜇�𝑅𝑅1(𝑥) =  �
(𝑥 − 𝜇𝑅𝑅11) (𝜇𝑅𝑅12 − 𝜇𝑅𝑅11),      𝜇𝑅𝑅11 ≤ 𝑥 < 𝜇𝑅𝑅12 ⁄
(𝜇𝑅𝑅13 − 𝑥) (𝜇𝑅𝑅13 − 𝜇𝑅𝑅12),     𝜇𝑅𝑅12 ≤ 𝑥 ≤ 𝜇𝑅𝑅13 ⁄

              0,                            𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

µ𝜇�𝑅𝑅2(𝑥) =  �
(𝑥 − 𝜇𝑅𝑅21) (𝜇𝑅𝑅22 − 𝜇𝑅𝑅21),       𝜇𝑅𝑅21 ≤ 𝑥 < 𝜇𝑅𝑅22 ⁄
(𝜇𝑅𝑅23 − 𝑥) (𝜇𝑅𝑅23 − 𝜇𝑅𝑅22),     𝜇𝑅𝑅22 ≤ 𝑥 ≤ 𝜇𝑅𝑅23 ⁄ .

              0,                            𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

µ𝜇�𝑅𝑅3(𝑥) =  �
(𝑥 − 𝜇𝑅𝑅31) (𝜇𝑅𝑅32 − 𝜇𝑅𝑅31),       𝜇𝑅𝑅31 ≤ 𝑥 < 𝜇𝑅𝑅32 ⁄
(𝜇𝑅𝑅33 − 𝑥) (𝜇𝑅𝑅33 − 𝜇𝑅𝑅32),     𝜇𝑅𝑅32 ≤ 𝑥 ≤ 𝜇𝑅𝑅33 ⁄

              0,                            𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

        (64) 

The secondary membership function of 𝜇��𝑅𝑅 which is denoted 
by µ𝜇��𝑅𝑅(𝑥,𝑢) can be defined by using (65) as follows  
µ𝜇��𝑅𝑅(𝑥, 𝑢) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
�

(𝑥 − 𝜇𝑅𝑅13) ( 𝜇𝑅𝑅21 − 𝜇𝑅𝑅13),    𝜇𝑅𝑅13 ≤ 𝑥 ≤ 𝜇𝑅𝑅21  ⁄
 1,                                       𝜇𝑅𝑅21 ≤ 𝑥 ≤ 𝜇𝑅𝑅23

(𝜇𝑅𝑅31 − 𝑥) (𝜇𝑅𝑅31 − 𝜇𝑅𝑅23),    𝜇𝑅𝑅23 ≤ 𝑥 ≤ 𝜇𝑅𝑅31 ⁄
0,                                          𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

       ∀𝑢, 0 ≤ 𝑢 ≤ 1 𝑎𝑎𝑎 𝜇�𝑅𝑅1 ∩ 𝜇�𝑅𝑅2 ∩ 𝜇�𝑅𝑅3 = ∅                     

�
                  1,                                      𝜇𝑅𝑅21 ≤ 𝑥 ≤ 𝜇𝑅𝑅23  
(𝜇𝑅𝑅31 − 𝑥) (𝜇𝑅𝑅31 − 𝜇𝑅𝑅23),    𝜇𝑅𝑅23 ≤ 𝑥 ≤ 𝜇𝑅𝑅31 ⁄

  0,                                        𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 
         ∀𝑢, 0 ≤ 𝑢 ≤ 1 𝑎𝑎𝑎 𝜇�𝑅𝑅1 ∩ 𝜇�𝑅𝑅2 ≠ ∅, 𝜇�𝑅𝑅2 ∩ 𝜇�𝑅𝑅3 = ∅ .

�
 (𝑥 − 𝜇𝑅𝑅13) ( 𝜇𝑅𝑅21 − 𝜇𝑅𝑅13),    𝜇𝑅𝑅13 ≤ 𝑥 ≤ 𝜇𝑅𝑅21  ⁄   

            1                                          𝜇𝑅𝑅21 ≤ 𝑥 ≤ 𝜇𝑅𝑅23
0,                                          𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

     ∀𝑢, 0 ≤ 𝑢 ≤ 1 𝑎𝑎𝑎 𝜇�𝑅𝑅1 ∩ 𝜇�𝑅𝑅2 = ∅,𝜇�𝑅𝑅2 ∩ 𝜇�𝑅𝑆3 ≠ ∅  

�1,                      𝜇𝑅𝑅21 ≤ 𝑥 ≤ 𝜇𝑅𝑅23
0,                            𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒                                                  ∀𝑢, 0 ≤ 𝑢 ≤ 1 𝑎𝑎𝑎 𝜇�𝑅𝑅1 ∩ 𝜇�𝑅𝑅2 ∩ 𝜇�𝑅𝑅3 ≠ ∅                    

 (65) 

 

Different cases in (65) are the special cases of 𝜇�𝑅𝑅1 ∩ 𝜇�𝑅𝑅2 ∩
𝜇�𝑅𝑅3 = ∅ which is displayed in Fig. (3) 

 

Fig. 3. The secondary membership function of R-sets when 𝜇�𝑅𝑅1 ∩ 𝜇�𝑅𝑅2 ∩
𝜇�𝑅𝑅3 = ∅    

The same algebraic operations as those applied to fuzzy sets 
(e.g., union, intersection, etc.) can also be derived for R-sets 
according to operation between T2 TFNs ((13)-(16)) and 
classic fuzzy sets ((3)-(7)). For R-sets 𝐴 and 𝐵, denoted as 
 𝑅𝑅𝐴(𝑥) and 𝑅𝑅𝐵(𝑥), respectively, the operations can be put 
forward as follows. 

Union: 
 𝑅𝑅𝐴(𝑥) ∪ 𝑅𝑅𝐵(𝑥) = �〈𝑥,𝑚𝑚𝑚�𝜇��𝑅𝑅𝑅,𝜇��𝑅𝑅𝑅�〉� = 

⎩
⎪
⎨

⎪
⎧
〈𝑥,

⎝

⎜
⎛
�𝑚𝑚𝑚(𝜇𝑅𝑅11𝐴,𝜇𝑅𝑅11𝐵),𝑚𝑚𝑚(𝜇𝑅𝑅12𝐴, 𝜇𝑅𝑅12𝐵),𝑚𝑚𝑚�(𝜇𝑅𝑅13𝐴, 𝜇𝑅𝑅13𝐵)�� ,

�𝑚𝑚𝑚(𝜇𝑅𝑅21𝐴,𝜇𝑅𝑅21𝐵),𝑚𝑚𝑚(𝜇𝑅𝑅22𝐴, 𝜇𝑅𝑅22𝐵),𝑚𝑚𝑚�(𝜇𝑅𝑅23𝐴, 𝜇𝑅𝑅23𝐵)�� ,

�𝑚𝑚𝑚(𝜇𝑅𝑅31𝐴,𝜇𝑅𝑅31𝐵),𝑚𝑚𝑚(𝜇𝑅𝑅32𝐴, 𝜇𝑅𝑅32𝐵),𝑚𝑚𝑚�(𝜇𝑅𝑅33𝐴,𝜇𝑅𝑅33𝐵)�� ⎠

⎟
⎞
〉

⎭
⎪
⎬

⎪
⎫

. (66) 

 
 
 

 

Intersection: 
 𝑅𝑅𝐴(𝑥) ∩ 𝑅𝑅𝐵(𝑥) = �〈𝑥,𝑚𝑚𝑚�𝜇��𝑅𝑅𝑅, 𝜇��𝑅𝑅𝑅�〉� = 

⎩
⎪
⎨

⎪
⎧

〈

𝑥, ��𝑚𝑚𝑚(𝜇𝑅𝑅11𝐴, 𝜇𝑅𝑅11𝐵),𝑚𝑚𝑚(𝜇𝑅𝑅12𝐴, 𝜇𝑅𝑅12𝐵),𝑚𝑚𝑚�(𝜇𝑅𝑅13𝐴, 𝜇𝑅𝑅13𝐵)���

�𝑚𝑚𝑚(𝜇𝑅𝑅21𝐴, 𝜇𝑅𝑅21𝐵),𝑚𝑚𝑚(𝜇𝑅𝑅22𝐴, 𝜇𝑅𝑅22𝐵),𝑚𝑚𝑚�(𝜇𝑅𝑅23𝐴,𝜇𝑅𝑅23𝐵)�� 

�𝑚𝑚𝑚(𝜇𝑅𝑅31𝐴,𝜇𝑅𝑅31𝐵),𝑚𝑚𝑚(𝜇𝑅𝑅32𝐴,𝜇𝑅𝑅32𝐵),𝑚𝑚𝑚�(𝜇𝑅𝑅33𝐴, 𝜇𝑅𝑅33𝐵)��

〉

⎭
⎪
⎬

⎪
⎫

.    (67) 

 
 
 

 

Complement: 
 𝑅𝑅𝐴(𝑥)���������� = �〈𝑥, 𝜇��̅𝑅𝑅𝑅〉� = �〈𝑥, �

(1 − 𝜇𝑅𝑅33, 1− 𝜇𝑅𝑅32, 1− 𝜇𝑅𝑅31), (1 − 𝜇𝑅𝑅23, 1 − 𝜇𝑅𝑅22, 1− 𝜇𝑅𝑅21),
(1 − 𝜇𝑅𝑅13, 1 − 𝜇𝑅𝑅12, 1− 𝜇𝑅𝑅11)                                                                 �

〉�.                   (68) 
 

⊕−Union: 
 𝑅𝑅𝐴(𝑥)⊕𝑅𝑅𝐵(𝑥) = {〈𝑥,𝜇��𝑅𝑅𝑅 + 𝜇��𝑅𝑅𝑅 − 𝜇��𝑅𝑅𝑅𝜇��𝑅𝑅𝑅〉} = 

�〈𝑥,�
(𝜇𝑅𝑅11𝐴 + 𝜇𝑅𝑅11𝐵 − 𝜇𝑅𝑅11𝐴𝜇𝑅𝑅11𝐵 ,𝜇𝑅𝑅12𝐴 + 𝜇𝑅𝑅12𝐵 − 𝜇𝑅𝑅12𝐴𝜇𝑅𝑅12𝐵 ,𝜇𝑅𝑅13𝐴 + 𝜇𝑅𝑅13𝐵 − 𝜇𝑅𝑅13𝐴𝜇𝑅𝑅13𝐵)
(𝜇𝑅𝑅21𝐴 + 𝜇𝑅𝑅21𝐵 − 𝜇𝑅𝑅21𝐴𝜇𝑅𝑅21𝐵 ,𝜇𝑅𝑅22𝐴 + 𝜇𝑅𝑅22𝐵 − 𝜇𝑅𝑅22𝐴𝜇𝑅𝑅22𝐵 ,𝜇𝑅𝑅23𝐴 + 𝜇𝑅𝑅23𝐵 − 𝜇𝑅𝑅23𝐴𝜇𝑅𝑅23𝐵)
(𝜇𝑅𝑅31𝐴 + 𝜇𝑅𝑅31𝐵 − 𝜇𝑅𝑅31𝐴𝜇𝑅𝑅31𝐵 ,𝜇𝑅𝑅32𝐴 + 𝜇𝑅𝑅32𝐵 − 𝜇𝑅𝑅32𝐴𝜇𝑅𝑅32𝐵 ,𝜇𝑅𝑅33𝐴 + 𝜇𝑅𝑅33𝐵 − 𝜇𝑅𝑅33𝐴𝜇𝑅𝑅33𝐵)

�〉�. (69) 

 
 
 

 

⊗−Intersection:  
 𝑅𝑅𝐴(𝑥) ⊗𝑅𝑅𝐵(𝑥) = {〈𝑥, 𝜇��𝑅𝑅𝑅. 𝜇��𝑅𝑅𝑅〉} = 

�〈�
𝑥, (𝜇𝑅𝑅11𝐴 . 𝜇𝑅𝑅11𝐵 , 𝜇𝑅𝑅12𝐴 . 𝜇𝑅𝑅12𝐵 ,𝜇𝑅𝑅13𝐴. 𝜇𝑅𝑅13𝐵)

(𝜇𝑅𝑅21𝐴 . 𝜇𝑅𝑅21𝐵 , 𝜇𝑅𝑅22𝐴 . 𝜇𝑅𝑅22𝐵 , 𝜇𝑅𝑅23𝐴. 𝜇𝑅𝑅23𝐵)
(𝜇𝑅𝑅31𝐴 . 𝜇𝑅𝑅31𝐵 , 𝜇𝑅𝑅32𝐴 . 𝜇𝑅𝑅32𝐵 , 𝜇𝑅𝑅33𝐴. 𝜇𝑅𝑅33𝐵)

�〉�.       (70) 

 
 
 

Defuzzification 
For the defuzzification process of 𝜇��𝑅𝑅𝑅, (71) and (72) can 

be employed. The defuzzification of 𝜇��𝑅𝑅𝑅 can be done first 
time using (68), and we can obtain [3]: 
𝐶𝐶𝐶1�𝜇��𝑅𝑅𝑅� 

=
[�(𝜇𝑅𝑅31, 𝜇𝑅𝑅32, 𝜇𝑅𝑅33) − (𝜇𝑅𝑅11, 𝜇𝑅𝑅12,𝜇𝑅𝑅13)�

+�(𝜇𝑅𝑅21, 𝜇𝑅𝑅22,𝜇𝑅𝑅23) − (𝜇𝑅𝑅11, 𝜇𝑅𝑅12, 𝜇𝑅𝑅13)�]
3 +� (𝜇𝑅𝑅11,𝜇𝑅𝑅12, 𝜇𝑅𝑅13) 

 

(71) 

Since the obtained value is somewhat fuzzy, another 
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9 

defuzzification operation is performed to determine a final 
crisp value, which is as follows [3]: 
𝐶𝐶𝐶2(𝜇��𝑅𝑅𝑅) = 1

9
(𝜇𝑅𝑅11 + 𝜇𝑅𝑅12 + 𝜇𝑅𝑅13 + 𝜇𝑅𝑅21 +

𝜇𝑅𝑅22 + 𝜇𝑅𝑅23 + 𝜇𝑅𝑅31 + 𝜇𝑅𝑅32 + 𝜇𝑅𝑅33). 

   (72) 

All of the operations mentioned above can easily be proven 
considering the operations applicable to basic fuzzy sets and 
TFNs. 

Example 8. Let 𝐴̃ = {(1,0.2)}, 𝐵� = {(1,0.5)}, 
 𝑅𝐴 = {0.3, 0.4, 0.2, 0.1, 0.2, 0.3, 0, 0}, 
and 𝑅𝐵 = {0.2, 0.1, 0.2, 0.1, 0.2,03,0,0}, then we have: 
𝐴̃ = {(1,0.2)},  
𝑟𝐴𝑃𝑃 = 0.3, 𝑟𝐴𝑂𝑂 = 0.4, 𝑟𝐴𝑃𝑃 = 0.2, 𝑟𝐴𝑂𝑂 = 0.1,𝐴𝐴𝐴

𝑃 = 0.2, 𝐴𝐴𝐴𝑂 =
0.3,𝑅𝑅𝑃𝑃 = 0 and 𝑅𝑅𝑂𝑂 = 0, 

 
 
→  𝑅𝑅𝐴(𝑥) = �

1, (0.135,0.168,0.233),
(0.161,0.2,0.278),

(0.172,0.214,0.297)
�, 

𝐵� = {(1,0.5)},  
𝑟𝐵𝑃𝑃 = 0.3, 𝑟𝐵𝑂𝑂 = 0.4, 𝑟𝐵𝑃𝑃 = 0.2, 𝑟𝐵𝑂𝑂 = 0.1,𝐴𝐴𝐵

𝑃 = 0.2,
𝐴𝐴𝐵𝑂 = 0.3 𝑅𝑅𝑃𝑃 = 0 and 𝑅𝑅𝑂𝑂 = 0, 

 
→  𝑅𝑅𝐵(𝑥) = �

1, (0.362,0.42,0.452),
(0.431,0.5,0.538),

(0.461,0.535,0.575)
�, 

 𝑅𝑅𝐴(𝑥) ∪ 𝑅𝑅𝐵(𝑥) = �
1, (0.362,0.42,0.452),

(0.431,0.5,0.538),
(0.461,0.535,0.575)

�, 

 𝑅𝑅𝐴(𝑥) ∩  𝑅𝑅𝐵(𝑥) = �
1, (0.135,0.168,0.233),

(0.161,0.2,0.278),
(0.172,0.214,0.297)

�, 

 𝑅𝑅𝐴(𝑥)���������� = �
1, (0.703,0.786,0.827),

(0.722,0.8,0.839),
(0.767,0.832,0.864)

�, 

 𝑅𝑅𝐴(𝑥) ⊕𝑅𝑅𝐵(𝑥) = �
1, (0.448,0.517,0.579),

(0.523,0.6,0.666),
(0.554,0.634,0.701)

�, 

 𝑅𝑅𝐴(𝑥) ⊗𝑅𝑅𝐵(𝑥) = �
1, (0.049,0.07,0.105),

(0.069,0.1,0.149),
(0.079,0.114,0.171)

�. 

 

B. RS-TOPSIS method 
A novel TOPSIS method, namely RS-TOPSIS, is proposed 

in this section. This method is based on R-sets methodology 
and includes followings different steps. 

Step 1. Forming the decision and weight matrices 
In this step, 𝑚 alternatives with respect to 𝑛 criteria are 

evaluated considering the fuzzy values and the fuzzy decision 
matrix and, in last, the fuzzy criteria weights are determined, 
which are denoted as 𝐷�𝑘 and 𝑊� , respectively. 
𝐷�𝑘 = �𝑠�𝑘𝑖𝑖�

𝑚×𝑛
   𝑖 = 1, … ,𝑚, 𝑗 = 1, … ,𝑛,  

𝑘 = 1, 2, 3 … ,𝐾, 

 
(73) 

(74) 𝑊� = �𝑤� 𝑗�1×𝑛
 𝑗 = 1, … ,𝑛. 

Step 2. Determining the risk matrices 
In the second step, the pessimistic and optimistic risk 

matrices of 𝐾 experts are defined considering the past 
performance and other factors such as age, education, etc., of 

the decision-makers. Moreover, the pessimistic and optimistic 
risk matrices of 𝑚 alternatives concerning 𝑛 criteria are 
determined by considering the opinions of each decision-
maker: 

(75) 𝑅𝑃𝑃 = �𝑟𝑃𝑃𝑘  �
1×𝐾

 𝑘 = 1, 2, … ,𝐾, 
(76) 𝑅𝑂𝑂 = �𝑟𝑂𝑂𝑘�

1×𝐾
  𝑘 = 1, 2, … ,𝐾, 

𝑅𝑘𝑃𝑃 = �𝑟𝑃𝑃𝑖𝑖
𝑘�
𝑚×𝑛

   𝑖 = 1, … ,𝑚, 𝑗 = 1, … ,𝑛, (77) 

𝑅𝑘𝑂𝑂 = �𝑟𝑂𝑂𝑖𝑖
𝑘�
𝑚×𝑛

      𝑖 = 1, … ,𝑚 , 𝑗 = 1, … ,𝑛, (78) 

where 𝑅𝑃𝑃  and 𝑅𝑂𝑂  are the pessimistic and optimistic risk 
matrices of 𝐾 experts and the pessimistic and optimistic risks 
matrices of evaluation of m alternatives respect to 𝑛 criteria by 
kth decision-maker are shown with 𝑅𝑘𝑃𝑃and 𝑅𝑘𝑂𝑂 , 
respectively. 

Step 3. Determining 𝐴𝐴 matrix 
Now, we focus on the expert opinions and organizational 

goals and prescribe pessimistic and optimistic 𝐴𝐴 matrices of 
𝑛 criteria. In this case, 𝐴𝐴𝑃 and 𝐴𝐴𝑂 indicate the pessimistic 
and optimistic 𝐴𝐴 matrices, respectively. 

(79) 𝐴𝐴𝑃 = �𝐴𝐴𝑃𝑗�1×𝑛
    𝑗 = 1, … ,𝑛, 

(80) 𝐴𝐴𝑂 = �𝐴𝐴𝑂𝑗�1×𝑛
    𝑗 = 1, … ,𝑛. 

Step 4. Defining the R-sets matrix (𝑅𝑆𝑘) 
In the fourth step, the R-sets decision matrix of 𝑘th 

decision-maker is constructed. Given 𝑠̃𝑘𝑖𝑖 in (78), risk 
matrices (75)–(78), and acceptable risk matrices (79) and (80), 
the R-sets matrix, i.e., 𝑅𝑘, is obtained. 
𝑅𝑆𝑘 = �𝑅𝑆𝑘(𝑠𝑘̃ 𝑖𝑖)�

𝑚×𝑛
               (81) 

where 𝑅𝑆𝑘(𝑠̃  
𝑖𝑖) indicates the R-sets value related to 𝑠̃𝑘𝑖𝑖. 

Step 5. Aggregating the R-sets matrix 𝑅𝑆𝑘 
Subsequently, 𝑅𝑆𝑘 should be aggregated to give 𝑅𝑆𝑇  using 

(82) as follows: 
(82) 𝑅𝑆𝑇 =⊕𝑘=1

𝐾 𝑅𝑆𝑘 , 

where 𝑅𝑆𝑇 = �𝑅𝑆𝑇(𝑠  ̃
𝑖𝑖)�

𝑚×𝑛
 and ⊕ is the algebraic sum of R-

sets, which is described by employing (66).  
Step 6. Normalizing the decision matrix  
In this step, the weighted matrix elements are normalized. If 

𝑅𝑆𝑇�𝑠̃ 
𝑖𝑖� = �

�𝑠𝑖𝑖11, 𝑠𝑖𝑖12,𝑠𝑖𝑖13�,
�𝑠𝑖𝑖21, 𝑠𝑖𝑖22,𝑠𝑖𝑖23�,
�𝑠𝑖𝑖31,𝑠𝑖𝑖32,𝑠𝑖𝑖33�

�, the normalized values 

are defined through (83) [3]: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝑅𝑆𝑁�𝑠  ̃
𝑖𝑖� =

⎝

⎜⎜
⎛

�𝑠𝑖𝑖11,𝑠𝑖𝑖12,𝑠𝑖𝑖13�
𝑐𝑖
+ ,

�𝑠𝑖𝑖21,𝑠𝑖𝑖22,𝑠𝑖𝑖23�
𝑐𝑖
+ ,

�𝑠𝑖𝑖31,𝑠𝑖𝑖32,𝑠𝑖𝑖33�
𝑐𝑖
+ ⎠

⎟⎟
⎞

;                            

𝑐𝑖+ = 𝑚𝑚𝑚𝑗 𝑠4𝑖𝑖   for beneficial criterion              

𝑅𝑆𝑁�𝑠  ̃
𝑖𝑖� =

⎝

⎜⎜
⎛

𝑎𝑖
−

�𝑠𝑖𝑖33,𝑠𝑖𝑖32,𝑠𝑖𝑖31�
,

𝑎𝑖
−

�𝑠𝑖𝑖23,𝑠𝑖𝑖22,𝑠𝑖𝑖21�
,

𝑎𝑖
−

�𝑠𝑖𝑖13,𝑠𝑖𝑖12,𝑠𝑖𝑖11� ⎠

⎟⎟
⎞

;                            

𝑎𝑖− = 𝑚𝑚𝑚𝑗 𝑠1𝑖𝑖 for non − beneficial criterion,

.                                                     (83) 

where 𝑅𝑆𝑁 denotes the normalized matrix. 
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Step 7. Weighting the normalized matrix 
Now, the weighted aggregated matrix (𝑅𝑆

𝑊) is obtained by 
employing (84) and (85). 

(84) 𝑅𝑆𝑊 = �𝑅𝑆𝑊(𝑠  ̃
𝑖𝑖)�

𝑚×𝑛
 , 

(85) ∀𝑖 , 𝑗  𝑅𝑊𝑆(𝑠̃𝑖𝑖) = 𝑤�𝑗 ⊗ 𝑅𝑆𝑁(𝑠  ̃
𝑖𝑖). 

Step 8. Determining the FPISs and FNISs  
In this step, the fuzzy positive ideal solutions (FPISs) set, 

𝐴+, and fuzzy negative ideal solution (FNISs) set, 𝐴−, for each 
criterion are defined. Let’s suppose 

𝑅𝑆𝑁�𝑠  ̃
𝑖𝑖� = �

�𝑠𝑁𝑖𝑖11, 𝑠𝑁𝑖𝑖12, 𝑠𝑁𝑖𝑖13�,
�𝑠𝑁𝑖𝑖21, 𝑠𝑁𝑖𝑖22, 𝑠𝑁𝑖𝑖23�,
�𝑠𝑁𝑖𝑖31, 𝑠𝑁𝑖𝑖32, 𝑠𝑁𝑖𝑖33�

�, FPISs and FNISs sets 

can be determined according to the following relations: 

�𝐴
+ = {𝑣�1

+, 𝑣�2
+, … 𝑣�𝑛+}

𝐴− = {𝑣�1
−, 𝑣�2

−, … 𝑣�𝑛−} , 
(86) 

where 𝑣�𝑗+ and 𝑣�𝑗− are FIPS and FNIS for jth criterion and are 
obtained according to the minimum and maximum fuzzy 
values of alternatives as follows [5]: 

�
𝑣�𝑗+ = 𝑚𝑚𝑚𝑖 𝑠

𝑁
𝑖𝑖33

𝑣�𝑗− = 𝑚𝑚𝑚𝑖 𝑠
𝑁
𝑖𝑖11

 . (87) 

Step 9. Distance calculation of each option from FPISs 
and FNISs 

The distances between each of the alternatives from each 
FPIS and each FNIS are denoted by 𝑑𝑖 + and 𝑑𝑖 − and obtained 
as follows: 

�
𝑑𝑖 

+ =  ∑ 𝑑�𝑢�𝑖𝑖, 𝑣�𝑗+�𝑛
𝑗=1    , 𝑖 = 1,2, … ,𝑚

𝑑𝑖 
− =  ∑ 𝑑�𝑢�𝑖𝑖, 𝑣�𝑗−�𝑛

𝑗=1    , 𝑖 = 1,2, … ,𝑚
 ,                   (88) 

(85) 

The distance between two T2 TFNs 𝐴̃̃ =

�
(𝑎11, 𝑎12, 𝑎13),
(𝑎21, 𝑎22, 𝑎23),
(𝑎31, 𝑎32, 𝑎33)

� and 𝐵�� = �
(𝑏11, 𝑏12, 𝑏13),
(𝑏21, 𝑏22, 𝑏23),
(𝑏31, 𝑏32, 𝑏33)

� can be 

determined as follows [5]: 
𝑑 �𝐴̃̃,𝐵��� =

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�

1
6

⎝

⎜
⎜
⎜
⎛
���1

6
� ((𝑎11 − 𝑏11)2 + 4(𝑎12 − 𝑏12)2 + (𝑎13 − 𝑏13)2)� + 

�4��1
6
� ((𝑎21 − 𝑏21)2 + 4(𝑎22 − 𝑏22)2 + (𝑎23 − 𝑏23)2)�+ 

��(1
6
)((𝑎31 − 𝑏31)2 + 4(𝑎32 − 𝑏32)2 + (𝑎33 − 𝑏33)2)�

 

⎠

⎟
⎟
⎟
⎞

.    (89)  

Step 9. Determining the closeness coefficient  
Eventually, following the below relationship, we can obtain 

closeness coefficient (𝐶𝐶𝑖) for i-th option: 
𝐶𝐶𝑖 = 𝑑𝑖 

−

𝑑𝑖 
−+𝑑𝑖 

+       𝑖 = 1,2, … ,𝑚. (90) 

Step 10. Ranking the alternatives 
In this step, the alternatives are ranked in descending order 

according to 𝐶𝐶𝑖. The steps of the proposed method are 
illustrated in Fig. 4. 

 

 
Fig. 4.  Flowchart of the proposed R-TOPSIS model 

V. ILLUSTRATIVE EXAMPLE AND COMPARISONS 
In this section, a case studies failure mode and effect 

analysis (FMEA) is presented with the results of different 
scenarios compared which demonstrates the capabilities of the 
proposed RS-TOPSIS method in solving decision-making 
problems under risk and uncertainty.  

A. Case study (FMEA analysis) 
One of the most popular industrial analysis techniques is 

FMEA, which works by ranking potential failure modes based 
on the Risk Priority Number (RPN) measure. The RPN is 
evaluated by multiplying the major risk factors, namely, 
occurrence (𝑂), severity (𝑆), and detection (𝐷) [2]. Since this 
analysis has to be performed before actually designing the 
process or product, the risk factors cannot be predicted 
accurately [2]. Various FMEA models have been proposed to 
deal with data uncertainty, including rough set-based FMEA 
model [23], neutrosophic FMEA model [24], hesitant FMEA 
model [25], intuitionistic FMEA model [26], FMEA cloud 
model [27], etc. 

In this part, the proposed RS-TOPSIS model was evaluated 
on an ocean-fishing vessel as a case study. For this purpose, 
FMEA was applied for structure, propulsion, electrical, and 
auxiliary systems of the vessel. A possible failure of any of 
these systems may end up with an injury to the crew and other 
negative impacts. For each failure mode, the entire spectrum 
of signals and warnings needs to be investigated. The fuzzy 
assessments for different failure modes with respect to 
different risk factors by two experts are given in Table 5. In 
case of doubt, due to information deficiency, the experts 
assign two values (i.e., pessimistic and optimistic risks) to 
each risk factor. Moreover, according to past performance of 
the experts and their education and expertise, two risk factors 
as maximum optimistic and pessimistic risks are ascribed to 
each expert (Table 2). Further, for each evaluation, two 
pessimistic and optimistic risk values arising during a future 
event are also specified by each expert (Table 2). The 
pessimistic and optimistic acceptable risks are also determined 
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on the basis of the organizational goals and expert opinions 
(Table 3). In this example, the risk perceptions of experts 

considered being zero.

TABLE II 
The fuzzy evaluation matrix and related risks reported by two experts 

Expert 1  𝒓𝑷𝑷𝒎𝒎𝒎 = 𝟎.𝟐, 𝒓𝑶𝑶𝒎𝒎𝒎 = 𝟎.𝟓 
𝑰𝑰 𝑶 𝒓𝑷𝑷𝒎𝒎𝒎 𝒓𝑶𝑶𝒎𝒎𝒎 𝑺 𝒓𝑷𝑷𝒎𝒎𝒎 𝒓𝑶𝑶𝒎𝒎𝒎 𝑫 𝒓𝑷𝑷𝒎𝒎𝒎 𝒓𝑶𝑶𝒎𝒎𝒎 
𝑭𝟏 0.1 0.1 0.2 0.15 0.4 0.2 0.3 0.3 0.1 
𝑭𝟐 0.3 0.2 0.3 0.35 0.25 0.3 0.5 0.2 0.5 
𝑭𝟑 0.2 0.2 0.5 0.25 0.1 0.3 0.3 0 0 
𝑭𝟒 0.5 0.3 0 0.15 0.3 0.3 0.1 0.2 0.2 
𝑭𝟓 0.6 0.4 0.05 0.4 0.4 0.2 0.35 0.1 0.1 
𝑭𝟔 0.3 0.5 0.1 0.6 0.5 0.5 0.1 0.25 0 

Expert 2   𝒓𝑷𝑷𝒎𝒎𝒎 = 𝟎.𝟑, 𝒓𝑶𝑶𝒎𝒎𝒎 = 𝟎.𝟒 
𝑭𝟏 0.3 0.2 0 0.3 0 0.1 0.2 0.2 0.1 
𝑭𝟐 0.3 0.6 0.1 0.35 0.25 0 0.3 0.25 0.1 
𝑭𝟑 0.25 0 0 0.25 0.1 0.1 0.2 0.1 0.25 
𝑭𝟒 0.2 0.05 0.1 0.15 0.1 0.25 0.5 0 0 
𝑭𝟓 0.6 0.25 0 0.3 0.05 0.2 0.6 0.25 0.3 
𝑭𝟔 0.4 0 0.2 0.5 0.3 0.4 0.3 0.2 0 

 
TABLE III 

The acceptable risk matrix 
 
 
 
 

As the first step, R-sets are determined for each 
evaluation using (62) and (63) (Table 4), and then the 

evaluations are integrated via (69). Table 5 shows the 
aggregated results for the failure probabilities of all periods. 
Subsequently, 𝐶𝐶𝑖 values are obtained by calculating the 
distance from PNISs and FNISs, respectively. The results of 
the ranking procedure are enlisted in Table 6. 

 

 
TABLE IV 

 

The obtained R-sets matrices 
 

 

AR 𝑶  𝑺  𝑫  
Pessimistic acceptable risk (𝑨𝑨𝑷) 0.2 0.3 0.3 
Optimistic acceptable risk (𝑨𝑨𝑶) 0.1 0.1 0.2 

𝑫  𝑺  𝑶   
Expert 1 

((0.208,0.237,0.397), 
(0.263,0.3,0.5), 
(0.284,0.324,0.54)  

((0.094,0.108,0.196), 
(0.131,0.15,0.272), 
(0.155,0.177,0.321))  

((0.079,0.092,0.167), 
(0.086,0.1,0.182), 
(0.102,0.118,0.214))  

𝑭𝟏  

((0.377,0.43,0.716), 
(0.439,0.5,0.833), 
(0.614,0.7,1))  

((0.253,0.288,0.525), 
(0.307,0.35,0.636), 
(0.390,0.444,0.808))  

((0.217,0.252,0.458), 
(0.259,0.3,0.545), 
(0.328,0.381,0.692))  

𝑭𝟐  

((0.263,0.3,0.5), 
(0.263,0.3,0.5), 
(0.263,0.3,0.5))  

((0.203,0.232,0.422), 
(0.219,0.25,0.454), 
(0.278,0.317,0.577))  

((0.145,0.168,0.305), 
(0.172,0.2,0.363), 
(0.25,0.29,0.527))  

𝑭𝟑  

((0.075,0.086,0.143), 
(0.088,0.1,0.167), 
(0.101,0.116,0.193))  

((0.103,0.118,0.215), 
(0.131,0.15,0.272), 
(0.167,0.190,0.346))  

((0.327,0.38,0.690), 
(0.431,0.5,0.909), 
(0.547,0.635,1))  

𝑭𝟒  

((0.285,0.325,0.542), 
(0.307,0.35,0.583), 
(0.331,0.378,0.63))  

((0.252,0.288,0.524), 
(0.350,0.4,0.727), 
(0.414,0.472,0.858))  

((0.351,0.408,0.741), 
(0.517,0.6,1), 
(0.540,0.627,1))  

𝑭𝟓  

((0.072,0.083,0.138), 
(0.088,0.1,0.167), 
(0.088,0. 1,0.167)) 

((0.342,0.39,0.709), 
(0.526,0.6,1), 
(0.763,0.87,1))  

((0.155,0.18,0.327), 
(0.259,0.3,0.545), 
(0.281,0.327,0.595))  

𝑭𝟔  

Expert 2 
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TABLE V 

The aggregated matrix 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The effectiveness of the proposed model in various 

scenarios of the problem was tested by using the following 
four other cases:  
Case 1: Risks of experts are not considered (𝑟𝑃𝑃𝑚𝑚𝑚 =
 𝑟𝑂𝑂𝑚𝑚𝑚 = 0). 
Case 2: Risks of evaluations are not considered (𝑟𝑃𝑃𝑚𝑚𝑚 =
 𝑟𝑂𝑂𝑚𝑚𝑚 = 0). 
Case 3: 𝐴𝐴 is considered to be zero (𝐴𝐴𝑃 = 𝐴𝐴𝑂 = 0). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Case 4: The problem is risk-free (𝑟𝑃𝑃𝑚𝑚𝑚 =  𝑟𝑂𝑂𝑚𝑚𝑚 =
𝑟𝑃𝑃𝑚𝑚𝑚 =  𝑟𝑂𝑂𝑚𝑚𝑚 = 0). 

 
Fig. 5. Spearman’s coefficient 

 

((0.213,0.258,0.379), 
(0.248,0.3,0.441), 
(0.267,0.324,0.476))  

((0.248,0.3,0.469), 
(0.248,0.3,0.469), 
(0.293,0.354,0.553))  

((0.148,0.184,0.288), 
(0.161,0.2,0.312), 
(0.161,0.2,0.312))  

𝑭𝟏  

((0.205,0.248,0.346), 
(0.248,0.3,0.441), 
(0.267, 0.324,0.476))  

((0.269,0.326,0.509), 
(0.289,0.35,0.547), 
(0.445,0.539,0.842))  

((0.242,0.3,0.469), 
(0.242,0.3,0.469), 
(0.296,0.368,0.574))  

𝑭𝟐  

((0.192,0.232,0.342), 
(0.207,0.25,0.368), 
(0.248, 0.3,0.441))  

((0.207,0.25,0.390), 
(0.207,0.25,0.390), 
(0.207,0.25,0.390))  

((0.074,0.092,0.144), 
(0.080,0.1,0.156), 
(0.102,0.127,0.198))  

𝑭𝟑  

((0.059,0.072,0.106), 
(0.083,0.1,0.147), 
(0.096, 0.116,0.170))  

((0.115,0.140,0.218), 
(0.124,0.15,0.234), 
(0.130,0.157,0.245))  

((0.323,0.4,0.625), 
(0.403,0.5,0.781), 
(0.440,0.545,0.851))  

𝑭𝟒  

((0.409,0.495,0.727), 
(0.496,0.6,0.882), 
(0.614, 0.744,1.094))  

((0.248,0.3,0.469), 
(0.248,0.3,0.469), 
(0.304,0.368,0.574))  

((0.406,0.504,0.787), 
(0.484,0.6,0.938), 
(0.506,0.627,0.980))  

𝑭𝟓  

((0.284,0.344,0.505), 
(0.330,0.4,0.588), 
(0.330, 0.4,0.588))  

((0.355,0.43,0.672), 
(0.413,0.5,0.781), 
(0.413,0.5,0.781))  

((0.165,0.204,0.319), 
(0.242,0.3,0.469), 
(0.307,0.381,0.595))  

𝑭𝟔  

 𝑶  𝑺  𝑫  
𝑭𝟏  ((0.216,0.256,0.406), 

(0.233,0.28,0.437), 
(0.246, 0.294,0.46))  

((0.319,0.376,0.573), 
(0.347,0.405,0.614), 
(0.402, 0.468,0.697))  

((0.376,0.433,0.625), 
(0.446,0.51,0.721), 
(0.476, 0.543,0.759)) 

𝑭𝟐  ((0.406,0.476,0.712), 
(0.438,0.51,0.759), 
(0.527, 0.608,0.869))  

((0.454,0.520,0.766), 
(0.507,0.577,0.835), 
(0.661, 0.744,0.970))  

((0.504,0.571,0.820), 
(0.578,0.65,0.907), 
(0.717, 0.798,1))  

𝑭𝟑  ((0.208,0.244,0.405), 
(0.239,0.28,0.463), 
(0.327, 0.380,0.621))  

((0.368,0.424,0.648), 
(0.380,0.437,0.668), 
(0.428, 0.488,0.742))  

((0.404,0.463,0.671), 
(0.416,0.475,0.684), 
(0.446, 0.51,0.721))  

𝑭𝟒  ((0.544,0.628,0.884), 
(0.660,0.75,0.980), 
(0.746, 0.833,1))  

((0.207,0.241,0.386), 
(0.239,0.278,0.443), 
(0.275, 0.317,0.506))  

((0.130,0.152,0.234), 
(0.163,0.19,0.289), 
(0.187, 0.218,0.331))  

𝑭𝟓  ((0.615,0.706,0.945), 
(0.750,0.84,1), 
(0.772, 0.860,1))  

((0.438,0.502,0.747), 
(0.512,0.58,0.855), 
(0.592, 0.666,0.940))  

((0.578,0.659,0.875), 
(0.651,0.74,0.950), 
(0.742, 0.840,0.035))  

𝑭𝟔  ((0.294,0.347,0.541), 
(0.438,0.51,0.759),  
(0.502, 0.583,0.836))  

((0.576,0.652,0.905), 
(0.722,0.8,1), 
(0.861, 0.935,1))  

((0.336,0.398,0.573), 
(0.389,0.46,0.657), 
(0.389, 0.46,0.657))  
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Fig. 6.  Results of sensitivity analysis for 𝑟𝑂𝑂𝑚𝑚𝑚                                      Fig. 7.  Results of sensitivity analysis for 𝑟𝑃𝑃𝑚𝑚𝑚  

 
TABLE VI 

 

Comparison of different scenarios 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table 6 present the results of the above four described 
cases, indicating discrepancies emerging from different risk 
configurations in the problem. Further, Spearman's 
correlation coefficients between the results of the proposed 
models and the four scenarios, namely, without considering 
the source risks, without considering the evaluations risks, 
without AR, and without risks are illustrated in Fig. 5. 
1) Sensitivity analysis of different risk values 

In this section, the aim is to investigate the sensitivity of 
different values of risk parameters 
(𝑟𝑃𝑃𝑚𝑚𝑚 ,  𝑟𝑂𝑂𝑚𝑚𝑚 ,  𝑟𝑃𝑃𝑚𝑚𝑚 , and 𝑟𝑂𝑂𝑚𝑚𝑚 ) on the ranking 
results, hence, for each risk parameter three different 
sensitivity levels (𝛼), i.e., 𝛼 = 0.25,𝛼 = 0.5, and 𝛼 = 0.75 
are considered while other parameters are assumed to be 
constant. Now, for each risk level by multiplication of each 
sensitivity level into the reported risk value, the 
corresponding closeness coefficient and ranking values are 
calculated, and the results of all cases are compared with 
each other. It is noteworthy that 𝛼 = 1 is the same as the 
default case study. The related outcomes for each level of 
sensitivity case are shown in Table 7. Moreover, the 
different ranking results of each risk parameters in each 
sensitivity level are depicted by Figs. 6-9. 

B. Discussion and managerial implications 
• Risk factors behave as influential operators and cause 

deviations between the assessed numbers and the real ones. 
The proposed R-sets can consider the deviated and primary 
evaluated values of fuzzy membership function due to risks 
of the information source and the future events 

simultaneously by taking into account different degrees of 
possibility through pessimistic-optimistic T2 TFNs. It can 
be employed that when the membership values posed to 
great risk or the outputs of different sources are conflicting; 
the organizations might select the robust results using the 
R-sets methodology. 

• In real-world problems, the maximum pessimistic and 
optimistic risks of an information source can be determined 
based on static or dynamic measures. In the static approach, 
the mentioned risks can be determined using past historical 
records of the studied source. In the dynamic method, the 
risks can be quantified by investigating the affecting risk 
factors on the source or using dynamic measures when 
there are multiple information sources such as distance [28] 
or entropy measures [29]. 

• The R-sets methodology has been developed based on T2 
TFNs and R-numbers concepts such as future-events risks, 
acceptable  risks, and risk perception. Moreover, it uses 
some R-numbers operations such as distance measures and 
defuzzification techniques for fuzzy ranking and decision-
making, similar what has been proposed in RS-TOPSIS 
method. As it discussed in Introduction the main 
differences between proposed R-sets and R-numbers are 
that R-sets has been proposed to model variability of 
membership function instead of the 𝑥 values and the R-sets 
consider the risks of the information sources too. Moreover, 
unlike R-numbers, in R-sets the pessimistic and optimistic 
risks are defined as the influential factors, which make the 
membership function becomes lesser and higher, 

Without risk 𝑨𝑨 = 𝟎  Without 
considering the 
evaluations risks 

Without 
considering the 
source risks 

Default case 𝑰𝑰 

Rank 𝐶𝐶𝑖  Rank 𝐶𝐶𝑖  Rank 𝐶𝐶𝑖  Rank 𝐶𝐶𝑖 Rank 𝐶𝐶𝑖 
5 1.195 5 1.289 5 1.268 6 1.2 6 1.273 𝐹1 
3 1.375 2 1.85 3 1.814 3 1.768 2 1.842 𝐹2  
6 1.292 4 1.312 4 1.276 5 1.207 4 1.291 𝐹3  
4 1.217 6 1.283 6 1.267 4 1.224 5 1.273 𝐹4  
1 2.16 1 2.193 1 2.196 1 2.168 1 2.202 𝐹5  
2 1.177 3 1.831 2 1.825 2 1.775 3 1.829 𝐹6  
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respectively, so different relations are not defined for 
beneficial and non-beneficial values. Hence, the decision-
makers should define the pessimistic and optimistic risks 
according to this definition. 

• As proposed in this study, R-sets can be used to address 
various risk scenarios. Accordingly, the proposed 
methodology can be adopted, and organizations and 
decision-makers can define these parameters considering 
the acceptable degree of optimistic/pessimistic risk in real 
applications. 

• Similar to R-number methodology, different outcomes were 
obtained in the presented case studies, when the R-sets 
methodology was used. This highlights the flexibility and 
efficiency of the method in terms of risk-related problems. 
Therefore, the outcome of the R-sets can be considered as a 
robust solution. 

• The effects of different risk levels in the second case study 
were investigated by performing sensitivity analysis and 
comparing them; it is observed that different values of risk 
parameters (the pessimistic and optimistic source and future 
events risks) lead to different results. Moreover, the results 
show that the most discrepancies between the results in 
various sensitivity analyses have occurred in the case of 
𝑟𝑂𝑂𝑚𝑚𝑚 and 𝑟𝑂𝑂𝑚𝑚𝑚, due to the high level of these risk 
parameters respect to 𝑟𝑃𝑃𝑚𝑚𝑚  and 𝑟𝑃𝑃𝑚𝑚𝑚 . Besides, it is 
seen that in all cases and for all risk values, 𝐹𝐹5 is the most 
critical failure mode. 

• The R-sets methodology could be best for problems with 
fuzzy membership functions and high levels of precision, 
such as safety or environment-related problems where a 
wrong decision could have serious consequences. 
 

 
Fig. 8.  Results of sensitivity analysis for 𝑟𝑂𝑂𝑚𝑚𝑚  

 
Fig. 9.  Results of sensitivity analysis for 𝑟𝑃𝑃𝑚𝑚𝑚  

 

 
 

TABLE VII 
Results of different sensitivity levels 

Sensitivity 
level (𝜶) 

Type of 
risk Results 𝑭𝟏  𝑭𝟐  𝑭𝟑  𝑭𝟒  𝑭𝟓  𝑭𝟏𝟏  

0.25  

𝒓𝑶𝑶𝒎𝒎𝒎   
𝑪𝑪𝒊 1.188 1.751974 1.197912 1.211905 2.141294 1.754751 
Rank 6 3 5 4 1 2 

𝒓𝑷𝑷𝒎𝒎𝒎   
𝑪𝑪𝒊 1.297179 1.871297 1.314066 1.296927 2.237908 1.861651 
Rank 5 2 4 6 1 3 

𝒓𝑶𝑶𝒎𝒎𝒎  
𝑪𝑪𝒊 1.268812 1.81745 1.281396 1.266719 2.187541 1.818137 
Rank 5 3 4 6 1 2 

𝒓𝑷𝑷𝒎𝒎𝒎  
𝑪𝑪𝒊 1.192231 1.756597 1.199564 1.217275 2.149283 1.764965 
Rank 6 3 5 4 1 2 

0.5   

𝒓𝑶𝑶𝒎𝒎𝒎   
𝑪𝑪𝒊 1.211957 1.779708 1.222724 1.230366 2.163281 1.778338 
Rank 6 2 5 4 1 3 

𝒓𝑷𝑷𝒎𝒎𝒎  
𝑪𝑪𝒊 1.289513 1.860712 1.306829 1.289684 2.224872 1.850661 
Rank 6 2 4 5 1 3 

𝒓𝑶𝑶𝒎𝒎𝒎 
𝑪𝑪𝒊 1.271292 1.825731 1.285672 1.269991 2.191701 1.822224 
Rank 5 2 4 6 1 3 

𝒓𝑷𝑷𝒎𝒎𝒎 
𝑪𝑪𝒊 1.278517 1.844268 1.295258 1.279875 2.204683 1.836986 
Rank 6 2 4 5 1 3 

0.75   

𝒓𝑶𝑶𝒎𝒎𝒎  
𝑪𝑪𝒊 1.240555 1.80981 1.254001 1.251402 2.183015 1.803572 
Rank 6 2 4 5 1 3 

𝒓𝑷𝑷𝒎𝒎𝒎   
𝑪𝑪𝒊 1.282536 1.850708 1.300197 1.282811 2.212072 1.840164 
Rank 6 2 4 5 1 3 

𝒓𝑶𝑶𝒎𝒎𝒎 
𝑪𝑪𝒊 1.273742 1.833667 1.289907 1.273175 2.19572 1.826247 
Rank 5 2 4 6 1 3 

𝒓𝑷𝑷𝒎𝒎𝒎 
𝑪𝑪𝒊 1.277348 1.84278 1.29468 1.278118 2.202192 1.833654 
Rank 6 2 4 5 1 3 
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VI. CONCLUSION 
The decision-making problems, particularly those are based 

on unreliable information or future events, usually, carry some 
level of risk and error, which emphasizes the need for defining 
a confidence factor in such cases. As fuzzy data can capture 
well the ambiguities and uncertainties, in this work, we 
propose a new concept called R-sets to describe the risk linked 
with the fuzzy membership function. The proposed R-sets 
model considers all possible risk scenarios of the fuzzy sets 
membership function, and take both information source and 
future event risks into account and the other control 
parameters, such as risk appetite (risk-taking degree) to 
achieve better and robust results. The novelty of this concept 
is that the pessimistic and optimistic risks inherent in an 
information source and the effective factors of the pessimistic 
and optimistic risks of a membership function can be well 
defined. The concept of R-sets was grounded on the 
pessimistic and optimistic intervals in the form of T2 TFNs, 
and its general mathematical relationships were presented. 
Finally, a new approach called RS-TOPSIS methodology was 
proposed taking the R-sets method as the framework to solve 
decision-making problems. Further, a case study of FMEA 
risk analysis was presented to demonstrate the reliability of the 
proposed methodology. 

The proposed concept can be used to address the problems, 
where membership function contains risks and errors. 
However, our model does not address the determination and 
quantification of such risks, which can be explored in future 
research. Moreover, due to the fact of the relations of the 
extensions of fuzzy sets [30, 31], R-sets can be applied to 
other fuzzy models (e.g., intuitionistic fuzzy sets, hesitant 
fuzzy sets, and neutrosophic sets), future studies may explore 
the development of R-sets for them.  
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1 All the 
risks 

𝑪𝑪𝒊 1.273 1.842 1.291 1.272 2.202 1.829 
 Rank 6 2 4 5 1 3 
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