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Abstract. The problem of reducts is an interesting issue in all rough set models. In this paper, 
we propose the concept of the reduct in a single valued neutrosophic β-covering approximation 
space (SVN-β-CAS). Moreover, reducts in SVN-β-CASs are investigated while adding and 
removing some objects of the universe, respectively. Firstly, the notion of the reduct in a SVN-
β-CAS is presented. It can be seen as the generalization of the reduct in covering and fuzzy β-
covering approximation spaces. Then, two new SVN-β-CASs are presented while adding and 
removing some objects of the original universe. Finally, some properties of reducts of SVN β-
coverings are investigated while adding and removing some objects, respectively.  

1.  Introduction 
Ma [4] generalized fuzzy covering approximation spaces [1, 2, 3] to fuzzy β-covering approximation 
spaces by through replacing the value 1 with a parameter β. Inspired by Ma’s work, D’eer et al. [5, 6] 
studied fuzzy neighborhood operators and other work [7, 8]. Especially, Yang and Hu [9], [10], [11] 
established some fuzzy covering-based rough set models and presented the notion of reduct in fuzzy β-
covering approximation space. Then, Huang et al. [12] proposed a matrix approach for computing the 
reduct of a fuzzy β-covering.  

After extending fuzzy β-covering approximation spaces to SVN sets [13], [14], Wang and Zhang. 
[15], [16] presented SVN-β-CASs. Inspired by the work of Yang and Hu [9], [10], [11] and Huang et 
al. [12], we study the problem of reduct in SVN-β-CASs in this paper. On one hand, the notion of the 
reduct in a SVN-β-CAS, as the generalization of the reduct in covering and fuzzy β-covering 
approximation spaces, is presented. Some properties of the reduct are proposed. On the one hand, two 
new SVN-β-CASs are presented while adding and removing some objects of the original universe. 
Some properties of reducts of SVN β-coverings are investigated while adding and removing some 
objects, respectively. Moreover, some relationships between the original SVN-β-CAS and two new 
SVN-β-CASs are investigated, respectively. 

The rest of this paper is organized as follows. Section II reviews some fundamental definitions 
about SVN sets and SVN-β-CASs. In Section III, the notion of the reduct in a SVN-β-CAS is 
presented, as well as its properties. In Section IV, we present some definitions and properties for 
updating the reduct in the SVN-β-CAS while adding and removing objects. Section V is the 
conclusion and the further work.  

2.  Basic definitions 
This section recalls some fundamental definitions related to SVN sets and SVN covering-based rough 
sets. We call U is a universe which is a nonempty and finite set. 
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Definition 1. (SVN set [14]) Let U be a nonempty fixed set. A SVN set A in U is defined as an 
object of the following form:  

 
},:)(),(),(,{ UxxFxIxTxA AAA 

                                           (1) 
where TA: U → [0, 1], IA: U → [0, 1] and FA(x): U → [0, 1] are called the degree of truth, 
indeterminacy, and falsity memberships of the element x ∈ U to A, respectively. They satisfy 0 ≤ 
TA(x)+IA(x)+FA(x) ≤ 3 for all x ∈ U. SVN(U) is the family of all SVN sets in U.   

Specially, for two SVN numbers α = <a, b, c> and β = <d, e, f>, α ≤ β ⇔ a ≤ d, b ≥ e and c ≥ f. 
Some operations on SVN(U) are listed as follows [14]: for any A, B ∈ SVN(U), 

(1). A ⊆ B   TA(x) ≤ TB(x), IB(x) ≤ IA(x) and FB(x) ≤ FA(x) for all x ∈ U; 
(2). A = B   A ⊆ B and B ⊆ A; 
(3). A ∩ B = {⟨x, TA(x) ∧ TB(x), IA(x) ∨ IB(x), FA(x) ∨ FB(x)⟩: x ∈ U}; 
(4). A ∪ B = {⟨x, TA(x) ∨ TB(x), IA(x) ∧ IB(x), FA(x) ∧ FB(x)⟩: x ∈ U}; 
Then, Wang and Zhang [15] presented the definition of SVN-β-CAS.  
Definition 2. ([15]) Let U be a universe and SVN(U) be the SVN power set of U. For a SVN 

number β = <d, e, f>, we call C = {C1, C2, ꞏ ꞏ ꞏ, Cm}, with Ci ∈ SVN(U)(i = 1, 2, ..., m), a SVN β- 
covering of U, if for all x ∈ U, Ci ∈ C exists such that Ci(x) ≥1 β. We also call (U, C) a SVN-β-CAS. 

3.  Reducts in SVN-β-CASs 
To solve the problem of under which conditions two coverings (or fuzzy β-coverings) generate the 
same rough upper and lower approximation operators, Zhu et al. [21] and Yang et al. [10] present the 
concept of reducible elements in different covering models. Inspired by their work, we propose the 
concept of the reduct in a SVN-β-CAS. Firstly, we present the concept of reducible elements in a SVN 
β-covering. 

Definition 3. Let (U, C) be a SVN-β-CAS and C ∈ C. If C can be expressed as a union of some 

SVN sets in C−{C}, C is called a SVN reducible element (SVNRE) in C; otherwise C is called a SVN 

irreducible element (SVNIE) in C.  

Example 1. Let },,,,{ 54321 xxxxxU  ,  C },,,{ 4321 CCCC and β = <0.5, 0.3, 0.4>, where 

,
)3.0,5.0,4.0()4.0,3.0,2.0()6.0,2.0,3.0()2.0,2.0,6.0(

4321

1 xxxx
C  ,

)3.0,5.0,4.0()4.0,3.0,1.0()6.0,4.0,3.0()2.0,3.0,6.0(

4321

2 xxxx
C 

 

,
)5.0,6.0,3.0()4.0,3.0,2.0()8.0,2.0,3.0()7.0,2.0,4.0(

4321

3 xxxx
C  .

)4.0,3.0,5.0()2.0,3.0,6.0()3.0,1.0,6.0()5.0,5.0,1.0(

4321

4 xxxx
C 

 
We can see that C is a SVN β-covering of U. Then C1 = C2 ∪ C3. Hence C1 is a SVNRE in C, and 

C − {C1} is also a SVN 
4.0,3.0,5.0

-covering of U. 
Then Properties 1 and 2 give some characterizations about removing several SVNREs in an SVN-

β-CAS. 
Proposition 1. Let (U,C) be a SVN-β-CAS and C ∈ C. If C is a SVNRE in C, then C− {C} is also 

a SVN β-covering of U. 

Proof. Suppose β = cba ,, and },...,,,{ 21 mCCCCC   , where C, Ci ∈ SVN(U) (i = 1, 2, ..., m). Since 

C is a SVNRE of C, .m

1

m

1 iiii CCC     Hence
axTxT

CiCiiCi



)()( m

1
m

1  ,  
bxIxI

CiCiiCi



)()( m

1
m

1  and 
cxFxF

CiCiiCi



)()( m

1
m

1   for any  x ∈ U. Therefore, C− {C} is also a SVN β-covering of U. 
Proposition 2. Let (U,C) be a SVN-β-CAS, C be a SVNRE in C and C1 ∈ C− {C}. Then C1 is a 

SVNRE in C SVN   SVN C1 is a SVNRE in C− {C}. 
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Proof. Suppose },...,,,{ 21 mCCCCC  , where C, Ci ∈SVN(U) (i = 1, 2, ..., m). Since C is a 

SVNRE in C,   Ci1, Ci2, ..., Cit ∈ C− {C} (1 < t ≤ m) such that ik

t

k CC 1  .  

( ): Since C1 is a SVNRE in C,   Cj1, Cj2, ..., Cjs ∈ C−{C1} (1 < s ≤ m) such that jp

s

p CC 11  
. 

Consider the following two cases:  

• Case 1: SVN },,...,,{ 21 jsjj CCCC  then C1 is a SVNRE in C− {C};  

• Case 2: Otherwise },,...,,{ 21 jsjj CCCC then  },1,2,...,{ sir  such that C = Cjr. Hence 
).( 1))()1(())()1((1 ik

t

kjp

s

rppjp

s

rpp CCCCC   
Therefore, C1 is a SVNRE in C− {C}. 

( ) It is immediate. 
Inspired by Properties 1 and 2, we present the notion of the reduct in a SVN-β-CAS. 
Definition 4. Let (U, C) be a SVN-β-CAS and D⊆ C. SVN D is the set of all SVNIEs, then D is 

called the reduct of C and denoted by Γ(C).  
Example 2. (Continued from Example 1) Γ(C) = {C2, C3, C4}. 

4. Reducts in SVN-β-CASs while adding and deleting some objects  
This section presents two new SVN-β-CASs while adding and removing some objects of the original 
universe. Moreover, some properties of reducts of SVN β-coverings are studies while adding and 
removing some objects. In this section, t denotes an integer which is more than 1. 

4.1 Reducts in SVN-β-CASs while adding some objects 
Firstly, we propose some new properties about reducts of SVN β-coverings while adding some objects 
of a universe. The notion of the increasing SVN-β-CAS is presented as follows. 

Definition 5. Let (U, C) be a SVN-β-CAS of U, where },...,,{ 21 nxxxU  and C }.,...,,{ 21 mCCC . (U+, 
C+) is called an increasing SVN-β-CAS from (U, C), where U+ = {x1, x2, ꞏꞏꞏ, xn, xn+1, ꞏꞏꞏ, xn+t}, C+ = 
{C1

+ , C2
+ , ꞏꞏꞏ, Cm

+}, and for any 1 ≤ j ≤ m, 

 


 




;1),()(

.1,))(1(

niixjCixjC

tninixjCm
j 

                                                     (2) 
The following proposition shows that an increasing SVN-β-CAS from the original SVN-β-CAS is 

also a SVN-β-CAS. 
Proposition 3. Let (U, C) be a SVN-β-CAS of U, where U = {x1, x2, ꞏꞏꞏ, xn} and C = {C1, C2, ꞏꞏꞏ, 

Cm}. Then (U+, C+) is also a SVN-β-CAS of U+. 

Proof. According to Definition 5,




 ))(1())(1( ixjC
m

jixjC
m

j 
for each i ∈ {1, 2, ꞏꞏꞏ, n}, and 




 ))(1( ixjC
m

j  for any i ∈ {n + 1, ꞏꞏꞏ, n + t}. Hence, (U+, C+) is also a SVN-β-CAS of U+ by Definition 
2. 

Example 3. (Continued from Example 1) From Example 1, C is a SVN β-covering of U (β ≤

4.0,3.0,5.0
), where U = {x1, x2, x3, x4} and C = {C1, C2, C3, C4}. Suppose U+ = {x1, x2, x3, x4, x5} 

and C = {C1
+, C2

+, C3
+, C4

+}, where 

,
)2.0,3.0,7.0()3.0,5.0,4.0()4.0,3.0,2.0()6.0,2.0,3.0()2.0,2.0,6.0(

54321

1 xxxxx
C  ,

)7.0,6.0,5.0()3.0,5.0,4.0()4.0,3.0,1.0()6.0,4.0,3.0()2.0,3.0,6.0(

54321

2 xxxxx
C 

 

,
)2.0,3.0,8.0()5.0,6.0,3.0()4.0,3.0,2.0()8.0,2.0,3.0()7.0,2.0,4.0(

54321

3 xxxxx
C 

  
.

)8.0,1.0,9.0()4.0,3.0,5.0()2.0,3.0,6.0()3.0,1.0,6.0()5.0,5.0,1.0(

54321

4 xxxxx
C 

 

According to Definitions 2 and 5, we know C+ is a SVN
4.0,3.0,5.0

-covering of U+. 
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The following proposition indicates the containing relation between a SVN-β-CAS and its 
increasing SVN-β-CAS. 

Proposition 4. Let (U, C) and (U+, C+) be two SVN-β-CASs, where C = {C1, C2, ꞏꞏꞏ, Cm} and C+ = 
{C1

+, C2
+, ꞏꞏꞏ, Cm

+}. SVN Ci
+ ⊆Cj

+
 for any i, j ∈ {1, 2, ꞏꞏꞏ, m}, then Ci ⊆ Cj. 

Proof. For any i, j ∈ {1, 2, ꞏꞏꞏ, m}, 
Ci

+ ⊆ Cj
+ ⇒ Ci

+ (x) ≤ Cj
+ (x), ∀x ∈ U⇒ Ci (x) ≤ Cj(x), ∀x ∈ U ⇒ Ci ⊆ Cj. 

We find a relationship about SVNREs between a SVN-β-CAS and its increasing SVN-β-CAS. 
Proposition 5. Let (U, C) and (U+, C+) be two SVN-β-CASs, where C = {C1, C2, ꞏꞏꞏ, Cm} and C+ = 

{C1
+, C2

+, ꞏꞏꞏ, Cm
+}. SVN Ci

+ is a SVNRE in C+, then Ci is a SVNRE in C for any i ∈ {1, 2, ꞏꞏꞏ, m}.  
Proof. It is immediate according to Definitions 3 and 5. 
By Proposition 4, we find that the converse of it does not hold, i.e., “If Ci is a SVNRE in C, then 

Ci
+

 is a SVNRE in C+ for any i ∈ {1, 2, ꞏꞏꞏ, m}.” is not true. For example, since C1 = C2 ∪ C3 in 
Example 3, C1 is a SVNRE in C. However, C1

+ is not a SVNRE in C+. Then, we give the following 
corollary by Proposition 4. 

Corollary 1. Let (U, C) and (U+, C+) be two SVN-β-CASs, where C = {C1, C2, ꞏꞏꞏ, Cm} and C+ = 
{C1

+, C2
+, ꞏꞏꞏ, Cm

+}. If Ci is an SVNIE in C, then Ci
+ is an SVNIE in C+ for any i ∈ {1, 2, ꞏꞏꞏ, m}. 

Proof. It is immediate by Proposition 4. 
Example 4. (Continued from Example 3) C2, C3 and C4 are SVNIEs in C. C2

+, C3
+

 and C4
+ are 

SVNIEs in C+. 
By Corollary 1, the converse of it does not hold, i.e., “If Ci

+ is an SVNIE in C+, then Ci is an 
SVNIE in C for any i ∈ {1, 2, ꞏꞏꞏ, m}.” is not true. For example, C1

+ is an SVNIE in C+ in Example 3. 
However, C1 is a SVNRE in C. Based on Corollary 1, we propose Theorem 1. 

Theorem 1. Let (U, C) and (U+, C+) be two SVN-β-CASs. Then 
|)(||)(|  CC .                                                             (3) 

Proof. By Definition 5, Γ(C) and Γ(C+) are families of all SVNIEs of C and C+, respectively. 
Hence, it is immediate by Corollary 1. 

Note that |Γ(C)| and |Γ(C+)| denote the cardinality of Γ(C) and Γ(C+) , respectively. 
Example 5. (Continued from Example 3) Γ(C) = {C2, C3, C4}, Γ(C+) = {C1

+, C2
+, C3

+, C4
+}. 

Hence, |Γ(C)| = 3 and |Γ(C+)| = 4, i.e., |Γ(C)| ≤ |Γ(C+)|. 

4.2 Reducts in SVN-β-CASs while removing some objects 
We present the concept of declining SVN-β-CAS in the following definition.   

Definition 6. Let (U, C) be a SVN-β-CAS of U, where },...,,{ 21 nxxxU  and C }.,...,,{ 21 mCCC . We 
call (U-, C-) a declining SVN-β-CAS from (U, C), where U- = {x1, x2, ꞏꞏꞏ, xn-t}, C- = {C-

1 , C-
2 , ꞏꞏꞏ, C-

m}, 
and Cj

-(xi)=Cj(xi) for any 1 ≤ i ≤ n-t, 1 ≤ j ≤ m. 
The following proposition shows that the removing SVN-β-CAS is also a SVN-β-CAS. 
Proposition 6. Let (U, C) be a SVN-β-CAS of U, where U = {x1, x2, ꞏꞏꞏ, xn} and C = {C1, C2, ꞏꞏꞏ, 

Cm}. Then (U-, C-) is also a SVN-β-CAS of U-. 

Proof. Suppose U = {C1, C2, ꞏꞏꞏ, Cm-t}. By Definition 6, 
 ))(1())(

-

1( ixjC
m

jixjC
m

j 
for any i ∈ {1, 

2, ꞏꞏꞏ, n-t}. Hence, (U-, C-) is also a SVN-β-CAS of U- by Definition 2. 

Example 6. Let U = {x1, x2, x3, x4, x5}, C = {C1, C2, C3, C4}and β = 
0.43.06.0 ，，

), where 

,
)2.0,0.3,7.0()0.3,5.0,4.0()0.4,3.0,2.0()0.6,2.0,3.0()0.2,3.0,7.0(

54321
1 xxxxx

C  ,
)7.0,0.6,0.5()0.3,5.0,4.0()0.4,3.0,1.0()0.6,4.0,3.0()0.2,3.0,7.0(

54321

2 xxxxx
C 

 
,

)0.2,3.0,8.0()5.0,0.6,3.0()0.4,3.0,2.0()0.8,2.0,3.0()0.7,2.0,4.0(

54321

3 xxxxx
C  .

)8.0,1.0,0.6()0.4,3.0,8.0()0.2,3.0,6.0()0.3,1.0,6.0()0.5,5.0,1.0(

54321

4 xxxxx
C 

 
According to Definition 2, we know C is a SVN β-covering of U. Let U− = {x1, x2, x3, x4} and C- = 

{C1
-, C2

-, C3
-, C4

-}, where 
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,
)3.0,5.0,4.0()4.0,3.0,2.0()6.0,2.0,3.0()2.0,2.0,7.0(

4321

-

1 xxxx
C  ,

)3.0,5.0,4.0()4.0,3.0,1.0()6.0,4.0,3.0()2.0,3.0,7.0(

4321

-
2 xxxx

C 
 

,
)5.0,6.0,3.0()4.0,3.0,2.0()8.0,2.0,3.0()7.0,2.0,4.0(

4321

-
3 xxxx

C  .
)4.0,3.0,8.0()2.0,3.0,6.0()3.0,1.0,6.0()5.0,5.0,1.0(

4321

-
4 xxxx

C 
 

According to Definitions 2 and 6, we know C- is a SVN 
0.43.06.0 ，，

-covering of U-. 
Then, Proposition 7 shows the containing relation between a SVN-β-CAS and its declining SVN-β-

CAS. 
Proposition 7. Let (U, C) and (U-, C-) be two SVN-β-CASs, where C = {C1, C2, ꞏꞏꞏ, Cm} and C- = 

{C1
- , C2

- , ꞏꞏꞏ, Cm
-}. If Ci ⊆Cj for any i, j ∈ {1, 2, ꞏꞏꞏ, m}, then Ci

- ⊆ Cj
-. 

Proof. For any i, j ∈ {1, 2, ꞏꞏꞏ, m}, 
Ci ⊆ Cj ⇒ Ci (x) ≤ Cj (x), ∀x ∈ U ⇒ Ci

-(x) ≤ Cj
- (x), ∀x ∈ U ⇒ Ci

- ⊆ Cj
-. 

Proposition 8 shows a relationship about SVNREs between a SVN-β-CAS and it’s declining SVN-
β-CAS as follows. 

Proposition 8. Let (U, C) and (U-, C-) be two SVN-β-CASs, where C = {C1, C2, ꞏꞏꞏ, Cm} and C- = 
{C1

- , C2
- , ꞏꞏꞏ, Cm

-}. If Ci is a SVNRE in C, then Ci
- is a SVNRE in C- for any i ∈ {1, 2, ꞏꞏꞏ, m}.  

Proof. It is immediate by Definitions 3 and 6. 
Inspired by Proposition 8, we find that the converse of it does not hold, i.e., “SVN Ci

- is a SVNRE 
in C, then Ci is a SVNRE in C for any i ∈ {1, 2, ꞏꞏꞏ, m}.” is not true. For example, since C1

- = C2
- ∪ 

C3
- in Example 6, C1

- is a SVNRE in C-. However, C1 is not a SVNRE in C. Based on Proposition 8, 
we present the following corollary. 

Corollary 2. Let (U, C) and (U-, C-) be two SVN-β-CASs, where C = {C1, C2, ꞏꞏꞏ, Cm} and C- = 
{C1

- , C2
- , ꞏꞏꞏ, Cm

-}.  If Ci
-
 is an SVNIE in C-, then Ci is an SVNIE in C for any i ∈ {1, 2, ꞏꞏꞏ, m}. 

Proof. It is immediate by Proposition 8. 
Example 7. (Continued from Example 6) C2

-, C3
- and C4

- are SVNIEs in C-. C2, C3 and C4 are 
SVNIEs in C. 

Based on Corollary 2, we give the following theorem. 
Theorem 2. Let (U, C) and (U-, C-) be two SVN-β-CASs. Then 

|)(||)(| - CC  .                                                             (3) 
Proof. By Definition 5, Γ(C) and Γ(C-) are families of all SVNIEs of C and C-, respectively. Hence, 

it is immediate by Corollary 2. 
Example 8. (Continued from Example 6) Γ(C) = {C1, C2, C3, C4}, Γ(C-) = {C2

- , C3
- , C4

-}. Hence, 
|Γ(C)| = 4 and |Γ(C-)| = 3. That is to say, |Γ(C-)| ≤ |Γ(C)|. 

5. Conclusion 
In this paper, we propose the concept of the reduct in a SVN-β-CAS. It will be helpful to solve other 
problems in SVN covering-based rough set models. Moreover, reducts in SVN-β-CASs are 
investigated while adding and removing some objects of the universe. In future, updating the reduct 
while adding and deleting objects at the same time will be done. 
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