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Abstract: In this paper, we present the lattice structures of neutrosophic theories. We prove that
Zhang-Zhang’s YinYang bipolar fuzzy set is a subclass of the Single-Valued bipolar neutrosophic set.
Then we show that the pair structure is a particular case of refined neutrosophy, and the number of
types of neutralities (sub-indeterminacies) may be any finite or infinite number.
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1. Introduction

First, we prove that Klement Dand Mesiar’s lattices [1] do not fit the general definition of
neutrosophic set, and we construct the appropriate nonstandard neutrosophic lattices of the first type
(as neutrosophically ordered set) [2], and of the second type (as neutrosophic algebraic structure,
endowed with two binary neutrosophic laws, infN and supN) [2].

We also present the novelties that neutrosophy, neutrosophic logic, set, and probability and
statistics, with respect to the previous classical and multi-valued logics and sets, and with the classical
and imprecise probability and statistics, respectively.

Second, we prove that Zhang-Zhang’s YinYang bipolar fuzzy set [3,4] is not equivalent with but a
subclass of the Single-Valued bipolar neutrosophic set.

Third, we show that Montero, Bustince, Franco, Rodríguez, Gómez, Pagola, Fernández, and
Barrenechea’s paired structure of the knowledge representation model [5] is a particular case of Refined
Neutrosophy (a branch of philosophy that generalized dialectics) and of the Refined Neutrosophic
Set [6]. We disprove again the claim that the bipolar fuzzy set (renamed as YinYang bipolar fuzzy set)
is the same of neutrosophic set as asserted by Montero et al [5].

About the three types of neutralities presented by Montero et al., we show, by examples and
formally, that there may be any finite number or an infinite number of types of neutralities n, or
that indeterminacy (I), as neutrosophic component, can be refined (split) into 1 ≤ n ≤ ∞ number of
sub-indeterminacies (not only 3 as Montero et al. said) as needed to each application to solve.

Also, we show, besides numerous neutrosophic applications, many innovatory contributions to
science were brought on by the neutrosophic theories, such as: generalization of Yin Yang Chinese
philosophy and dialectics to neutrosophy [7], a new branch of philosophy that is based on the dynamics
of opposites and their neutralities, the sum of the neutrosophic components T, I, F up to 3, the degrees
of dependence/independence between the neutrosophic components [8,9]; the distinction between
absolute truth and relative truth in the neutrosophic logic [10], the introduction of nonstandard
neutrosophic logic, set, and probability after we have extended the nonstandard analysis [11,12], the
refinement of neutrosophic components into subcomponents [6]; the ability to express incomplete
information, complete information, paraconsistent (conflicting) information [13,14]; and the extension
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of the middle principle to the multiple-included middle principle [15], introduction of neutrosophic
crisp set and topology [16], and so on.

2. Answers to Erich Peter Klement and Radko Mesiar

2.1. Oversimplification of the Neutrosophic Set

At [1], page 10 (Section 3.3) in their paper, related to neutrosophic sets, they wrote:
“As a straightforward generalization of the product lattice

(
I× I,≤comp

)
, for each n ∈ N, the n-dimensional

unit cube
(
In,≤comp

)
, i.e., the n-dimensional product of the lattice (I, ≤comp), can be defined by means of (1)

and (2).
The so-called “neutrosophic” sets introduced by F. Smarandache [93] (see also [94–97], which are based on

the bounded lattices
(
I3,≤I3

)
and

(
I3,≤I

3)
, where the orders ≤I3 and ≤I3 on the unit cube I3 are defined by the

Equations below.

(x1, x2, x3) ≤I3 (y1, y2, y3)⇔x1 ≤ y1 AND x2 ≤ y2 AND x3 ≥ y3 (-13)

(x1, x2, x3) ≤
I3
(y1, y2, y3)⇔ x1 ≤ y1 AND x2 ≥ y2 AND x3 ≥ y3 (-14)

The authors have defined Equations (1) and (2) as follows: n∏
i=1

Li,≤comp

, where
(
Li,≤Li

)
are f uzzy lattices, f or all 1 ≤ i ≤ n (1)

(x1, x2, . . . , xn) ≤comp (y1, y2, . . . , yn)⇔ x1 ≤ y1 AND x2 ≤ y2 AND . . . AND xn ≤ yn (2)

The authors did not specify what type of lattices they employ: of the first type (lattice, as a partially
ordered set), or the second type (lattice, as an algebraic structure). Since their lattices are endowed
with some inequality (referring to the neutrosophic case), we assume it is as the first type.

The authors have used the notations:

I = [0, 1],

I2 = [0, 1]2,

I3 = [0, 1]3.

The order relationship ≤comp on I3 can be defined as:

(x1 , x2, x3) ≤comp (y1, y2, y3)⇔ x1 ≤ y1 and x2 ≤ y2 and x3 ≤ y3

The three lattices they constructed are denoted by KL1, KL2, KL3, respectively.

KL1 = (I3,≤comp), KL2 = (I3,≤I3), KL3 = (I3,≤I
3
)

Contain only the very particular case of standard single-valued neutrosophic set, i.e.,
when the neutrosophic components T (truth-membership), I (indeterminacy-membership), and
F (false-membership) of the generic element x(T, I, F), of a neutrosophic set N are single-valued (crisp)
numbers from the unit interval [0, 1].

The authors have oversimplified the neutrosophic set. Neutrosophic is much more complex. Their
lattices do not characterize the initial definition of the neutrosophic set ([10], 1998): a set whose elements
have the degrees of appurtenance T, I, F, where T, I, F are standard or nonstandard subsets of the
nonstandard unit interval: ]−0, 1+[, where ]−0, 1+[ overpasses the classical real unit interval [0, 1] to
the left and to the right.
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2.2. Neutrosophic Cube vs. Unit Cube

Clearly, their I3 = [0, 1]3 ( ]−0, 1+[3 that is our neutrosophic cube (Figure 1), where ]−0 = µ(−0)
is the left nonstandard monad of number 0, and 1+ = µ(1+) is the right nonstandard monad of
number 1.
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The unit cube I3 used by the authors does not equal the above neutrosophic cube. The neutrosophic
cube A’B’C’D’E’F’G’H’ was introduced by Dezert [17] in 2002.

2.3. The Most General Neutrosophic Lattices

The authors’ lattices are far from catching the most general definition of the neutrosophic set.
LetU be a universe of discourse, and M ⊂ U be a set. Then an element x(T(x), I(x), F(x)) ∈ M,

where T(x), I(x), F(x) are standard or nonstandard subsets of nonstandard interval: ]−Ω, Ψ+[, where
Ω ≤ 0 < 1 ≤ Ψ, with Ω, Ψ ∈ R, whose values Ω and Ψ depend on each application, and

]−Ω, Ψ+[=N
{
ε, a, a−, a−0, a+, a+0, a∓, a−0+

∣∣∣ ε, a ∈ [Ω, Ψ], ε is infinitesimal
}
,

where
m
a, m ∈

{
−,−0 ,+ ,+0 ,−+ ,−0+

}
are monads or binads [12].

It follows that the nonstandard neutrosophic mobinad real offsets lattices
(
]−Ω, Ψ+[,≤nonS

N

)
and(

]−Ω, Ψ+[, infN, supN,−Ω, Ψ+
)

of the first type and, respectively, of the second type are the most
general (non-refined) neutrosophic lattices.

While the most general refined neutrosophic lattices of the first type is:
(
]−Ω, Ψ+[,≤nonS

nN

)
, where

≤
nonS
nN is the n-tuple nonstandard neutrosophic inequality dealing with nonstandard subsets, defined as:

(T1(x), T2(x), . . . , Tp(x); I1(x), I2(x), . . . , Ir(x); F1(x), F2(x), . . . , Fs(x) ) ≤nonS
nN (T1(y),

T2(y), . . . , Tp(y); I1(y), I2(y), . . . , Ir(y); F1(y), F2(y), . . . , Fs(y)) iff

T1(x) ≤nonS
nN T1(y), T2(x) ≤nonS

nN T2(y), . . . , Tp(x) ≤nonS
nN Tp(y)

I1(x) ≥nonS
nN I1(y), I2(x) ≥nonS

nN I2(y), . . . , Ir(x) ≥nonS
nN Ir(y)

F1(x) ≥nonS
nN F1(y), F2(x) ≥nonS

nN F2(y), . . . , Fs(x) ≥nonS
nN Fs(y)
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2.4. Distinction between Absolute Truth and Relative Truth

The authors’ lattices are incapable of making distinctions between absolute truth (when T =

1+ >N 1) and relative truth (when T = 1) in the sense of Leibniz, which is the essence of nonstandard
neutrosophic logic.

2.5. Neutrosophic Standard Subset Lattices

Their three lattices are not even able to deal with standard subsets [including intervals [8], and
hesitant (discrete finite) subsets] T, I, F ⊆ [0, 1], since they have defined the 3D-inequalities with
respect to single-valued (crisp) numbers: x1, x2, x3 ∈ [0, 1] and y1, y2, y3 ∈ [0, 1].

In order to deal with standard subsets, they should use inf/sup, i.e.,

(T1, I1, F1) ≤ (T2, I2, F2)⇔

infT1 ≤ infT2 and supT1 ≤ supT2,
infI1 ≥ infI2 and supI1 ≥ supI2,
and infF1 ≥ infF2 and supF1 ≥ supF2

[I have displayed the most used 3D-inequality by the neutrosophic community.]

2.6. Nonstandard and Standard Refined Neutrosophic Lattices

The Nonstandard Refined Neutrosophic Set [2,6,12], defined on ]−0, 1+[n, strictly includes their
n-dimensional unit cube (In), and we use a nonstandard neutrosophic inequality, not the classical
inequalities, to deal with inequalities of monads and binads, such as ≤nonS

nN and ≤nonS
N .

Not even the Standard Refined Single-Valued Neutrosophic Set [6] (2013) may be characterized
with KL1, KL2, and KL3 nor with

(
In, ≤comp

)
, since the n-D neutrosophic inequality is different from

n-D ≤comp, and from n-D extensions of ≤I3 or ≤I3 respectively, as follows:
Let T be refined into T1, T2, . . . , Tp;
I be refined into I1, I2, . . . , Ir;
and F be refined into F1, F2, . . . , Fs;
with p, r, s ≥ 1 are integers, and p + r + s = n ≥ 4, produced the following n-D

neutrosophic inequality.
Let x

(
Tx

1, Tx
2, . . . , Tx

p; Ix
1, Ix

2, . . . , Ix
r ; Fx

1, Fx
2, . . . , Fx

s

)
, and y

(
Ty

1 , Ty
2 , . . . , Ty

p ; Iy
1 , Iy

2 , . . . , Iy
r ; Fy

1 , Fy
2 , . . . , Fy

s

)
.

Then:

x ≤N y⇔


Tx

1 ≤ Ty
1 , Tx

2 ≤ Ty
2 , . . . , Tx

p ≤ Ty
p ;

Ix
1 ≥ Iy

1 , Ix
2 ≥ Iy

2 , . . . , Ix
r ≥ Iy

r ;
Fx

1 ≥ Fy
1 , Fx

2 ≥ F, . . . , Fx
s ≥ Fy

s .


2.7. Neutrosophic Standard Overset/Underset/Offset Lattice

Their three lattices KL1, KL2 and KL3 are no match for neutrosophic overset (when the neutrosophic
components T, I, F > 1), nor for neutrosophic underset (when the neutrosophic components T, I, F < 0),
and, in general, no match for the neutrosophic offset (when the neutrosophic components T, I, F
take values outside the unit interval [0, 1] as needed in real life applications [13,14,18–20] (2006–2018):
[Ω, Ψ] with Ω ≤ 0 < 1 ≤ Ψ.)

Therefore, a lattice may similarly be built on the non-unitary neutrosophic cube [ϕ, ψ]3.

2.8. Sum of Neutrosophic Components up to 3

The authors do not mention the novelty of neutrosophic theories regarding the sum of single-valued
neutrosophic components T + I + F ≤ 3, extended up to 3, and, similarly, the corresponding inequality
when T, I, F are subsets of [0, 1]: supT + supI + supF ≤ 3, for neutrosophic set, neutrosophic logic, and
neutrosophic probability never done before in the previous classic logic and multiple-valued logics
and set theories, nor in the classical or imprecise probabilities.
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This makes a big difference, since, for a single-valued neutrosophic set S, all unit cubes [0, 1]3 are
fulfilled with points, each point P(a, b, c) into the unit cube may represent the neutrosophic coordinates
(a, b, c) of an element x(a, b, c) ∈ S, which was not the case for previous logics, sets, and probabilities.

This is not the case for the Picture Fuzzy Set (Cuong [21], 2013) whose domain is 1
6 of the unit

cube (a cube corner):
D∗ =

{
(x1, x2, x3) ∈ I3

∣∣∣x1 + x2 + x3 ≤ 1
}

For Intuitionistic Fuzzy Set (Atanassov [22], 1986), the following is true.

DA =
{
(x1, x2, x3) ∈ I3

∣∣∣x1 + x2 + x3 = 1
}

where x1 = membership degree, x2 = hesitant degree, and x3 = nonmembership degree, whose domain
is the main cubic diagonal triangle that connects the vertices: (1, 0, 0), (0, 1, 0), and (0, 0, 1), i.e.,
triangle BDE (its sides and its interior) in Figure 1.

2.9. Etymology of Neutrosophy and Neutrosophic

The authors [1] write ironically twice, in between quotations, “neutrosophic” because they did
not read the etymology [10] of the word published into my first book (1998), etymology, which also
appears into Denis Howe’s 1999 The Free Online Dictionary of Computing [23], and, afterwards, repeated
by many researchers from the neutrosophic community in their published papers:

Neutrosophy [23]: <philosophy> (From Latin “neuter”—neutral, Greek “sophia”—skill/wisdom).
A branch of philosophy, introduced by Florentin Smarandache in 1980, which studies the origin, nature, and
scope of neutralities, as well as their interactions with different ideational spectra. Neutrosophy considers a
proposition, theory, event, concept, or entity, “A”in relation to its opposite, “Anti-A” and that which is not
A, “Non-A”, and that which is neither “A” nor “Anti-A”, denoted by “Neut-A”. Neutrosophy is the basis of
neutrosophic logic, neutrosophic probability, neutrosophic set, and neutrosophic statistics.

While neutrosophic means what is derived/resulted from neutrosophy.
Unlike the “intuitionistic|” and “picture fuzzy” notions, the notion of neutrosophic was carefully

and meaningfully chosen, coming from neutral (or indeterminate, denoted by <neutA>) between two
opposites, 〈A〉 and 〈antiA〉, which made the main distinction between neutrosophic logic/set/probability,
and the previous fuzzy, intuitionistic fuzzy logics and sets, i.e.,

- For neutrosophic logic neither true nor false, but neutral (or indeterminate) in between them;
- Similarly for neutrosophic set: neither membership nor non-membership, but in between (neutral,

or indeterminate);
- And analogously for neutrosophic probability: chance that an event E occurs, chance that the event

E does not occur, and indeterminate (neutral) chance of the event E of occurring or not occuring.

Their irony is malicious and ungrounded.

2.10. Neutrosophy as Extension of Dialectics

Let 〈A〉 be a concept, notion, idea, or theory.
Then 〈antiA〉 is the opposite of 〈A〉, while 〈neutA〉 is the neutral (or indeterminate) part

between them.
While in philosophy, Dialectics is the dynamics of opposites (〈A〉 and 〈antiA〉), Neutrosophy is an

extension of dialectics. In other words, neutrosophy is the dynamics of opposites and their neutrals
(〈A〉, 〈antiA〉, 〈neutA〉), because the neutrals play an important role in our world, interfering in one
side or the other of the opposites.

Refined Neutrosophy is an extension of Neutrosophy, and it is the dynamics of the refined-items
<A1>, <A2>, . . . , <An>, their refined-opposites <antiA1>, <antiA2>, . . . , <antiAn>, and their
refined-neutrals <neutA1>, <neutA2>, . . . , <neutAn>.

As an extension of Refined Neutrosophy one has the Plithogeny [24–27].
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2.11. Refined Neutrosophic Set and Lattice

At page 11, Klement and Mesiar ([1], 2018) assert that: Considering, for n > 3, lattices which are
isomorphic to

(
Ln(I), ≤comp

)
, further generalizations of “neutrosophic” sets can be introduced.

The authors are uninformed so that a generalization was done in 2013 when we have published a
paper [6] that introduced, for the first time, the refined neutrosophic set/logic/probability, where T, I, F
were refined into n neutrosophic subcomponents:

T1, T2, . . . , Tp; I1, I2, . . . , Ir; F1, F2, . . . , Fs,
With p, r, s ≥ 1 are integers and p + r + s = n ≥ 4.
But in our lattice (In, ≤nN), the neutrosophic inequality is adjusted to the categories of sub-truths,

sub-indeterminacies, and sub-falsehood, respectively.

(T1(x), T2(x), . . . , Tp(x); I1(x), I2(x), . . . , Ir(x); F1(x), F2(x), . . . , Fs(x)) ≤nN (T1(y), T2(y),
. . . , Tp(y); I1(y), I2(y), . . . , Ir(y); F1(y), F2(y), . . . , Fs(y)) if and only if

T1(x) ≤ T1(y), T2(x) ≤ T2(y), . . . , Tp(x) ≤ Tp(y)

I1(x) ≥ I1(y), I2(x) ≥ I2(y), . . . , Ir(x) ≥ Ir(y)

F1(x) ≥ F1(y), F2(x) ≥ F2(y), . . . , Fs(x) ≥ Fs(y)

Therefore, ≤nN is different from the n-D inequalities ≤comp, and from ≤In and ≤I
n

(extending from
authors inequalities ≤I3 and ≤I

3
, respectively).

2.12. Nonstandard Refined Neutrosophic Set and Lattice

Even more, Nonstandard Refined Neutrosophic Set/Logic/Probability (which include infinitesimals,
monads, and closed monads, binads and closed binads) has no connection and no isomorphism
whatsoever with any of the authors’ lattices or extensions of their lattices for 2D and 3D to nD.

2.13. Nonstandard Neutrosophic Mobinad Real Lattice

We have built ([2], 2018) a more complex Nonstandard Neutrosophic Mobinad Real Lattice, on
the nonstandard mobinad unit interval ]−0, 1+[ defined as:

]−0, 1+[=
{
ε, a, a−, a−0, a+, a+0, a−+, a−0+

∣∣∣ with 0 ≤ a ≤ 1, a ∈ R, and ε > 0, ε infinitesimal, ε ∈ R∗
}

which is both nonstandard neutrosophic lattice of the first type (as partially ordered set, under
neutrosophic inequality ≤N) and lattice of the second type (as algebraic structure, endowed with two
binary nonstandard neutrosophic laws: infN and supN).

Now, ]−0, 1+[3 is a nonstandard unit cube, with much higher density than [0, 1]3 and which
comprise not only real numbers a ∈ [0, 1] but also infinitesimals ε > 0 and monads and binads
neutrosophically included in ]−0, 1+[.

2.14. New Ideas Brought by the Neutrosophic Theories and Never Done Before

— The sum of the neutrosophic components is up to 3 (previously the sum was up to 1);
— Degree of independence and dependence between the neutrosophic components T, I, F, making

their sum T + I + F vary between 0 and 3.

For example, when T, I, and F are totally dependent with each other, then T + I + F ≤ 1. Therefore,
we obtain the particular cases of intuitionistic fuzzy set (when T + I + F = 1) and picture set when
T + I + F ≤ 1.

— Nonstandard analysis used in order to distinguish between absolute and relative (truth,
membership, chance).
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— Refinement of the components into sub-components:(
T1, T2, . . . , Tp; I1, I2, . . . , Ir; F1, F2, . . . , Fs

)
with the newly introduced Refined Neutrosophic Logic/Set/Probability.

— Ability to express incomplete information (T + I + F < 1) and paraconsistent (conflicting) and
subjective information (T + I + F > 1).

— Law of Included Middle explicitly/independently expressed as 〈neutA〉 (indeterminacy, neutral).
— Law of Included Middle expanded to the Law of Included Multiple-Middles within the refined

neutrosophic set as well as logic and probability.
— A large array of applications [28–30] in a variety of fields, after two decades from their foundation

([10], 1998), such as: Artificial Intelligence, Information Systems, Computer Science, Cybernetics,
Theory Methods, Mathematical Algebraic Structures, Applied Mathematics, Automation, Control
Systems, Communication, Big Data, Engineering, Electrical, Electronic, Philosophy, Social Science,
Psychology, Biology, Biomedical, Engineering, Medical Informatics, Operational Research,
Management Science, Imaging Science, Photographic Technology, Instruments, Instrumentation,
Physics, Optics, Economics, Mechanics, Neurosciences, Radiology Nuclear, Medicine, Medical
Imaging, Interdisciplinary Applications, Multidisciplinary Sciences, and more [30].

Klement’s and Mesiar’s claim that the neutrosophic set (I do not talk herein about intuitionistic
fuzzy set, picture fuzzy set, and Pythagorean fuzzy set that they criticized) is not a new result is far
from the truth.

3. Neutrosophy vs. Yin Yang Philosophy

Ying Han, Zhengu Lu, Zhenguang Du, Gi Luo, and Sheng Chen [3] have defined the “YinYang
bipolar fuzzy set” (2018).

However, the “YinYang bipolar” is already a pleonasm, because, in Taoist Chinese philosophy,
from the 6th century BC, Yin and Yang was already a bipolarity, between negative (Yin)/positive (Yang),
or feminine (Yin)/masculine (Yang).

Dialectics was derived, much later in time, from Yin Yang.
Neutrosophy, as the dynamicity and harmony between opposites (Yin <A> and Yang (antiA>)

together with their neutralities (things which are neither Yin nor Yang, or things which are blends of
both: <neutA>) is an extension of Yin Yang Chinese philosophy. Neutrosophy came naturally since,
into the dynamicity, conflict, cooperation, and even ignorance between opposites, the neutrals are
attracted and play an important role.

3.1. YinYang Bipolar Fuzzy Set Is the Bipolar Fuzzy Set

The authors sincerely recognize that: “In the existing papers, YinYang bipolar fuzzy set also was called
bipolar fuzzy set [5] and bipolar-valued fuzzy set [13,16].”

These papers are cited as References [31–33].
We prove that the YinYang bipolar fuzzy set is not equivalent with the neutrosophic set, but a

particular case of the bipolar neutrosophic set.
The authors [3] say that: “Denote IP = [0, 1] and IN = [−1, 0], and L ={

∼
α = (

∼
α

P
,
∼
α

N
)

∣∣∣∣∣∼αP
∈ IP,

∼
α

N
∈ IN

}
, then

∼
α is called the YinYang bipolar fuzzy number. (YinYang bipolar

fuzzy set) X = {x1, ···, xn} represents the finite discourse. YinYang bipolar fuzzy set in X is defined by
the mapping below.

∼

A : X→ L, x→
(
∼

A
P
(x),

∼

A
N
(x)

)
,∀x ∈ X.
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where the functions
∼

A
P

: X→ IP, x→
∼

A
P
(x) ∈ IP and

∼

A
N

: X→ IN, x→
∼

A
N
(x) ∈ IN define the

satisfaction degree of the element x ∈ X to the property, and the implicit counter-property to the

YinYang bipolar fuzzy set
∼

A in X, respectively (see [3], page 2).
With simpler notations, the above set L is equivalent to:
L = {(a, b), with a ∈ [0, 1], b ∈ [−1, 0]}, and the authors denote (a, b) as the YinYang bipolar

fuzzy number.
Further on, again with simpler notations, the so-called YinYang bipolar fuzzy set in
X = {x1, . . . , xn} is equivalent to:
X = {x1(a1, b1), . . . , xn(an, bn)}, where all a1, . . . ,an ∈ [0, 1], and all b1, . . . , bn ∈ [−1, 0]}. Clearly, this

is the bipolar fuzzy set and there is no need to call it the “YinYang bipolar fuzzy set.” The authors
added that: “Montero et al. pointed out that the neutrosophic set is equivalent to the YinYang bipolar
fuzzy set in syntax.” However, the bipolar fuzzy set is not equivalent to the neutrosophic set at all.
The bipolar fuzzy set is actually a particular case of the bipolar neutrosophic set, defined as (keeping
the previous notations):

X = {x1( (a1, b1), (c1, d1), (e1, f 1) ), . . . , xn( (an, bn), (cn, dn), (en, fn) )}

where
all a1, . . . ,an, c1, . . . , cn, e1, . . . ,en ∈ [0, 1], and all b1, . . . , bn, d1, . . . , dn, f 1, . . . , fn ∈ [−1, 0]};
for a generic xj((aj, bj),(cj, dj), (ej, fj)) ∈ X, 1 ≤ j ≤ n,
ai = positive membership degree of xi, and bi = negative membership degree of xi;
ci = positive indeterminate-membership degree of xi, and di = negative indeterminate membership

degree of xi;
ei = positive non-membership degree of xi, and fi = negative non-membership degree of xi.
Using notations adequate to the neutrosophic environment, one found the following.
Let U be a universe of discourse, and M ⊂ U be a set. M is a single-valued bipolar fuzzy set

(that authors call YinYang bipolar fuzzy set) if, for any element, x(T+
(x)

, T−
(x)) ∈ M, T+

(x)
∈ [0, 1], and

T−
(x) ∈

[−1, 0], where T+
(x)

is the positive membership of x, and T−
(x) is the negative membership of

x. (BFS).
The authors write that: “Montero et al. pointed that the neutrosophic set [22] is equivalent to the YinYang

bipolar fuzzy set in syntax [17]”.
Montero et al.’s paper is cited below as Reference [5].
If somebody says something, it does not mean it is true. They have to verify. Actually, it is untrue,

since the neutrosophic set is totally different from the so-called YinYang bipolar fuzzy set.
LetU be a universe of discourse, and M ⊂ U be a set, if for any element.

x(T(x), I(x), F(x)) ∈M

T(x), I(x), F(x) are standard or nonstandard real subsets of the nonstandard real subsets of the
nonstandard real unit interval ]−0, 1+[. (NS).

Clearly, the definitions (BFS) and (NS) are totally different. In the so-called YinYang bipolar
fuzzy set, there is no indeterminacy I(x), no nonstandard analysis involved, and the neutrosophic
components may be subsets as well.

3.2. Single-Valued Bipolar Fuzzy Set as a Particular Case of the Single-Valued Bipolar Neutrosophic Set

The Single-Valued bipolar fuzzy set (alias YinYang bipolar fuzzy set) is a particular case of
the Single-Valued bipolar neutrosophic set, employed by the neutrosophic community, and defined
as follows:
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LetU be a universe of discourse, and M ⊂ U be a set. M is a single-valued bipolar neutrosophic
set, if for any element:

x(T+
(x)

, T−
(x); I+

(x)
, I−
(x); F+

(x)
, F−

(x)) ∈M

T+
(x)

, I+
(x)

, F+
(x)
∈ [0, 1]

T−
(x), I−

(x), F−
(x) ∈ [−1, 0]

3.3. Dependent Indeterminacy vs. Independent Indeterminacy

The authors say: “Attanassov’s intuitionistic fuzzy set [4] perfectly reflects indeterminacy but
not bipolarity.”

We disagree, since Atanassov’s intuitionistic fuzzy set [22] perfectly reflects hesitancy between
membership and non-membership not indeterminacy, since hesitancy is dependent on membership
and non-membership: H = 1−T − F, where H = hesitancy, T = membership, and F = non-membership.

It is the single-valued neutrosophic set that “perfectly reflects indeterminacy” since indeterminacy
(I) in the neutrosophic set is independent from membership (T) and from nonmembership (F).

On the other hand, the neutrosophic set perfectly reflects the bipolarity
membership/non-membership as well, since the membership (T) and nonmembership (F) are
independent of each other.

3.4. Dependent Bipolarity vs. Independent Bipolarity

The bipolarity in the single-valued fuzzy set and intuitionistic fuzzy set is dependent (restrictive)
in the sense that, if the truth-membership is T, then it involves the falsehood-nonmembership
F ≤ 1− T while the bipolarity in a single-valued neutrosophic set is independent (nonrestrictive): if the
truth-membership T ∈ [0, 1], the falsehood-nonmebership is not influenced at all, then F ∈ [0, 1].

3.5. Equilibriums and Neutralities

Again: “While, in semantics, the YinYang bipolar fuzzy set suggests equilibrium, and neutrosophic
set suggests a general neutrality. While the neutrosophic set has been successfully applied to a medical
diagnosis [9,27], from the above analysis and the conclusion in [31], we see that the YinYang bipolar
fuzzy set is clearly the suitable model to a bipolar disorder diagnosis and will be adopted in this paper.”

I’d like to add that the single-valued bipolar neutrosophic set suggests:

— three types of equilibrium, between: T+
(x)

and T−
(x), I+

(x)
and I−

(x), and F+
(x)

and F−
(x);

— and two types of neutralities (indeterminacies) between T+
(x)

and F+
(x)

, and between T−
(x) and F−

(x).

Therefore, the single-valued bipolar neutrosophic set is 3 × 2 = 6 times more complex and more
flexible than the YinYang bipolar fuzzy set. Due to higher complexity, flexibility, and capability of
catching more details (such as falsehood-nonmembership, and indeterminacy), the single-valued
bipolar neutrosophic set is more suitable than the YinYang bipolar fuzzy set to be used in a bipolar
disorder diagnosis.

3.6. Zhang-Zhang’s Bipolar Model is not Equivalent with the Neutrosophic Set

Montero et al. [5] wrote: “Zhang-Zhang’s bipolar model is, therefore, equivalent to the neutrosophic sets
proposed by Smarandache [70]” (p. 56).

This sentence is false and we proved previously that what Zhang & Zhang proposed in 2004 is a
subclass of the single-valued bipolar neutrosophic set.
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3.7. Tripolar and Multipolar Neutrosophic Sets

Not talking about the fact that, in 2016, we have extended our bipolar neutrosophic set to tripolar
and even multipolar neutrosophic sets [18], the sets have become more general than the bipolar
fuzzy model.

3.8. Neutrosophic Overset/Underset/Offset

Not talking that the unit interval [0, 1] was extended in 2006 below 0 and above 1 into the
neutrosophic overset/underset/offset: [Ω, Ψ] with Ω ≤ 0 < 1 ≤ Ψ (as explained above).

3.9. Neutrosophic Algebraic Structures

The Montero et al. [5] continue: “Notice that none of these two equivalent models include any formal
structure, as claimed in [48]”.

First, we have proved that these two models (Zhang-Zhang’s bipolar fuzzy set, and neutrosophic
logic) are not equivalent at all. Zhang-Zhang’s bipolar fuzzy set is a subclass of a particular type of
neutrosophic set, called the single-valued bipolar neutrosophic set.

Second, since 2013, Kandasamy and Smarandache have developed various algebraic structures
(such as neutrosophic semigroup, neutrosophic group, neutrosophic ring, neutrosophic field,
neutrosophic vector space, etc.) [28] on the set of neutrosophic numbers:

SR =
{
a + bI|, where a, b ∈ R, and I = indeterminacy, I2 = I

}
, where R is the set of real numbers.

And extended on:
SC =

{
a + bI|, where a, b ∈ C, and I = indeterminacy, I2 = I

}
, where C is the set of

complex numbers.
However, until 2016 [year of Montero et al.’s published paper], I did not develop a formal structure

on the neutrosophic set. Montero et al. are right.
Yet, in 2018, and, consequently at the beginning of 2019, we [2] developed, then generalized, and

proved that the neutrosophic set has a structure of the lattice of the first type (as the neutrosophically
partially ordered set): ( ]−0, 1+[,≤N), where ]−0, 1+[ is the nonstandard neutrosophic mobinad
(monads and binads) real unit interval, and ≤N is the nonstandard neutrosophic inequality. Moreover,(
]−0, 1+[, infN, supN,− 0, 1+

)
has the structure of the bound lattice of the second type (as algebraic

structure), under two binary laws infN (nonstandard neutrosophic infimum) and supN (nontandard
neutrosophic supremum).

3.10. Neutrality (<neutA>)

Montero et al. [5] continue: “ . . . the selected denominations within each model might suggest different
underlying structures: while the model proposed by Zhang and Zhang suggests conflict between categories
(a specific type of neutrality different from Atanassov’s indeterminacy), Smarandache suggests a general neutrality
that should, perhaps jointly, cover some of the specific types of neutrality considered in our paired approach.”

In neutrosophy and neutrosophic set/logic/probability, the neutrality <neutA> means everything
in between <A> and <antiA>, everything which is neither <A> nor <antiA>, or everything which is a
blending of <A> and <antiA>.

Further on, in Refined Neutrosophy and Refined Neutrosophic Set/Logic/Probability [9], the
neutrality <neutA> was split (refined) in 2013 into sub-neutralities (or sub-indeterminacies), such as:
<neutA1>, <neutA2>, . . . , <neutAn> whose number could be finite or infinite depending on each
application that needs to be solved.

Thus, the paired structure becomes a particular case of refined neutrosophy (see next).

4. The Pair Structure as a Particular Case of Refined Neutrosophy

Montero et al. [5] in 2016 have defined a paired structure: “composed by a pair of opposite concepts and
three types of neutrality as primary valuations: L = {concept, opposite, indeterminacy, ambivalence, conflict}.”
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Therefore, each element x ∈ X, where X is a universe of discourse, is characterized by a degree
function, with respect to each attribute value from L:

µ : X→ [0, 1]5

µ(x) = (µ1(x),µ2(x),µ3(x),µ4(x),µ5(x))

where µ1(x) represents the degree of x with respect to the concept;
µ2(x) represents the degree of x with respect to the opposite (of the concept);
µ3(x) represents the degree of x with respect to ‘indeterminacy’;
µ4(x) represents the degree of x with respect to ‘ambivalence’;
µ5(x) represents the degree of x with respect to ‘conflict’.
However, this paired structure is a particular case of Refined Neutrosophy.

4.1. Antonym vs. Negation

First, Dialectics is the dynamics of opposites. Denote them by 〈A〉 and 〈antiA〉, where 〈A〉may be
an item, a concept, attribute, idea, theory, and so on while 〈antiA〉 is the opposite of 〈A〉.

Secondly, Neutrosophy ([10], 1998), as a generalization of Dialectics, and a new branch of
philosophy, is the dynamics of opposites and their neutralities (denoted by 〈neutA〉). Therefore,
Neutrosophy is the dynamics of 〈A〉, 〈antiA〉, and 〈neutA〉.

〈neutA〉 means everything, which is neither 〈A〉 nor 〈antiA〉, or which is a mixture of them, or
which is indeterminate, vague, or unknown.

The antonym of 〈A〉 is 〈antiA〉.
The negation of 〈A〉 (which we denote by 〈nonA〉) is what is not 〈A〉, therefore:

¬N〈A〉 = 〈nonA〉 =N 〈neutA〉∪ N〈antiA〉

We preferred to use the lower index N (neutrosophic) because we deal with items, concepts,
attributes, ideas, and theories such as 〈A〉 and, in consequence, its derivates 〈antiA〉, 〈neutA〉,
and 〈nonA〉, whose borders are ambiguous, vague, and not clearly delimited.

4.2. Refined Neutrosophy as an Extension of Neutrosophy

Thirdly, Refined Neutrosophy ([6], 2013), as an extension of Neutrosophy, and a refined branch
of philosophy, is the dynamics of refined opposites: 〈A1〉, 〈A2〉, . . . , 〈Ap〉with 〈antiA1〉, 〈antiA2〉, . . . ,
〈antiAs〉, and their refined neutralities: 〈neutA1〉, 〈neutA2〉, . . . , 〈neutAr〉, for integers p, r, s ≥ 1, and
p + r + s = n ≥ 4. Therefore, the item 〈A〉 has been split into sub-items 〈A j〉, 1 ≤ j ≤ p, the 〈antiA〉 into
sub-(anti-items) 〈antiAk〉, 1 ≤ l ≤ s, and the 〈neutA〉 into sub-(neutral-items) 〈neutAl〉, 1 ≤ k ≤ r.

4.3. Qualitative Scale as a Particular Case of Refined Neutrosophy

Montero et al.’s qualitative scale [5] is a particular case of Refined Neutrosophy where the
neutralities are split into three parts.

L = {concept, opposite, indeterminacy, ambivalence, conflict} = {<A>, <antiA>, <neutA1>, <neutA2>, <neutA3>}

where: <A> = concept, <antiA> = opposite, <neutA1> = indeterminacy, <neutA2> = ambivalence,
<neutA3> = conflict.

Yin Yang, Dialectics, Neutrosophy, and Refined Neutrosophy (the last one having only 〈neutA〉 as
refined component), are bipolar: 〈A〉 and 〈antiA〉 are the poles.

Montero et al.’s qualitative scale is bipolar (‘concept’, and its ‘opposite’).
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4.4. Multi-Subpolar Refined Neutrosophy

However, the Refined Neutrosophy, whose at least one of 〈A〉 or 〈antiA〉 is refined, is multi-subpolar.

4.5. Multidimensional Fuzzy Set as a Particular Case of the Refined Neutrosophic Set

Montero et al. [5] defined the Multidimensional Fuzzy Set AL as: At =
{
< x; (µs(x))s∈L >

∣∣∣x ∈ X
}
,

where X is the universe of discourse, L = the previous qualitative scale, and µs(x) ∈ S, where S is a
valuation scale (in most cases S = [0, 1]), µs(x) is the degree of x with respect to s ∈ L.

A Single-Valued Neutrosophic Set is defined as follows. Let U be a universe of discourse, and
M ⊂ U a set. For each element x(T(x), I(x), F(x)) ∈M, T(x) ∈ [0, 1] is the degree of truth-membership
of element x with respect to the set M, I(x) ∈ [0, 1] is the degree of indeterminacy-membership of
element x with respect to the set M, and F(x) ∈ [0, 1] is the degree of falsehood-nonmembership of
element x with respect to the set M.

Let’s refine I(x) as I1(x), I2(x), and I3(x) ∈ [0, 1] sub-indeterminacies. Then we get a single-valued
refined neutrosophic set.

µconcept(x) = T(x) (truth-membership);
µopposite(x) = F(x) (falsehood-non-membership);
µindeterminacy(x) = I1(x) (first sub-indeterminacy);
µambivalence(x) = I2(x) (second sub-indeterminacy);
µconflict(x) = I3(x) (third sub-indeterminacy).

The Single-Valued Refined Neutrosophic Set is defined as follows. LetU be a universe of discourse,
and M ⊂ U a set. For each element:

x
(
T1(x), T2(x), . . . , Tp(x); I1(x), I2(x), . . . , Ir(x); F1(x), F2(x), . . . , Fs(x)

)
∈M

T j(x), 1 ≤ j ≤ p, are degrees of subtruth-submembership of element x with respect to the set M.
Ik(x), 1 ≤ k ≤ r, are degrees of subindeterminacy-membership of element x with respect to

the set M.
Lastly, Fl(x), 1 ≤ l ≤ s, are degrees of sub-falsehood-sub-non-membership of element x with

respect to the set M, where integers p, r, s ≥ 1, and p + r + s = n ≥ 4.
Therefore, Montero et al.’s multidimensional fuzzy set is a particular case of the refined

neutrosophic set, when p = 1, r = 3, and s = 1, where n = 1 + 3 + 1 = 5.

4.6. Plithogeny and Plithogenic Set

Fourthly, in 2017 and in 2018 [24–27], the Neutrosophy was extended to Plithogeny, which is
multipolar, being the dynamics and hermeneutics [methodological study and interpretation] of many
opposites and/or their neutrals, together with non-opposites.

〈A〉, 〈neutA〉, 〈antiA〉;
〈B〉, 〈neutB〉, 〈antiB〉; etc.
〈C〉, 〈D〉, etc.
In addition, the Plithogenic Set was introduced, as a generalization of Crisp, Fuzzy, Intuitionistic

Fuzzy, and Neutrosophic Sets.
Unlike previous sets defined, whose elements were characterized by the attribute ‘appurtenance’

(to the set), which has only one (membership), or two (membership, nonmembership), or three
(membership, nonmembership, indeterminacy) attribute values, respectively. For the Plithogenic Set,
each element may be characterized by a multi-attribute, with any number of attribute values.
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4.7. Refined Neutrosophic Set as a Unifying View of Opposite Concepts

Montero et al.’s statement [5] from their paper Abstract: “we propose a consistent and unifying view
to all those basic knowledge representation models that are based on the existence of two somehow opposite
fuzzy concepts.”

With respect to the “unifying” claim, their statement is not true, since, as we proved before, their
paired structure together with three types on neutralities (indeterminacy, ambivalence, and conflict)
is a simple, particular case of the refined neutrosophic set.

The real unifying view currently is the Refined Neutrosophic Set.
{I was notified about this paired structure article [5] by Dr. Said Broumi, who forwarded it to me.}

4.8. Counter-Example to the Paired Structure

As a counter example to the paired structure [5], it cannot catch a simple voting scenario.
The election for the United States President from 2016: Donald Trump vs. Hillary Clinton. USA

has 50 states and since, in the country, there is an Electoral vote, not a Popular vote, it is required to
know the winner of each state.

There were two opposite candidates.
The candidate that receives more votes than the other candidate in a state gets all the points of

that state.
As in the neutrosophic set, there are three possibilities:
T = percentage of USA people voting for Mr. Trump;
I = percentage of USA people not voting, or voting but giving either a blank vote (not selecting

any candidate) or a black vote (cutting all candidates);
F = percentage of USA people voting against Mr. Trump.
The opposite concepts, using Montero et al.’s knowledge representation, are T (voting for, or

truth-membership) and F (voting against, or false-membership). However, T > F, or T = F, or
T < F, that the Paired Structure can catch, mean only the Popular vote, which does not count in the
United States.

Actually, it happened that T < F in the US 2016 presidential election, or Mr. Trump lost the
Popular vote, but he won the Presidency using the Electoral vote.

The paired structure is not capable of refining the opposite concepts (T and F), while the
indeterminate (I) could be refined by the paired structure only in three parts.

Therefore, the paired structure is not a unifying view of all basic knowledge that uses opposite
fuzzy concepts. However, the refined neutrosophic set/logic/probability do.

Using the refined neutrosophic set and logic, and splits (refines) T, I, and F as:
T j = percentage of American state S j people voting for Mr. Trump;
I j = percentage of American state S j people not voting, or casting a blank vote or a black vote;
F j = percentage of American state S j people voting against Mr. Trump, with T j, I j, F j ∈ [0, 1] and

T j + I j + F j = 1, for all j ∈ {1, 2, . . . , 50}.
Therefore, one has:
(T1, T2, . . . , T50; I1, I2, . . . , I50; F1, F2, . . . , F50).
On the other hand, due to the fact that the sub-indeterminacies I1, I2, . . . , I50 did not count towards

the winner or looser (only for indeterminate voting statistics), it is not mandatory to refine I. We could
simply refine it as:

(T1, T2, . . . , T50; I; F1, F2, . . . , F50).

4.9. Finite Number and Infinite Number of Neutralities

Montero et al. [5]: “( . . . ) we emphasize the key role of certain neutralities in our knowledge representation
models, as pointed out by Atanassov [4], Smarandache [70], and others. However, we notice that our notion of
neutrality should not be confused with the neutral value in a traditional sense (see [22–24,36,54], among others).
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Instead, we will stress the existence of different kinds of neutrality that emerge (in the sense of Reference [11])
from the semantic relation between two opposite concepts (and notice that we refer to a neutral category that does
not entail linearity between opposites).”

In neutrosophy, and, consequently, in the neutrosophic set, logic, and probability, between the
opposite items (concepts, attributes, ideas, etc.) 〈A〉 and 〈antiA〉, there may be a large number of
neutralities/indeterminacies (all together denoted by 〈neutA〉 even an infinite spectrum—depending
on the application to solve.

We agree with different kinds of neutralities and indeterminacies (vague, ambiguous, unknown,
incomplete, contradictory, linear and non-linear information, and so on), but the authors display only
three neutralities.

In our everyday life and in practical applications, there are more neutralities and indeterminacies.
In another example (besides the previous one about Electoral voting), there may be any number

of sub indeterminacies/sub neutralities.
The opposite concepts attributes are: 〈A〉 = white, 〈antiA〉 = black, while neutral concepts

in between may be: 〈neutA1〉 = yellow, 〈neutA2〉 = orange, 〈neutA3〉 = red, 〈neutA4〉 = violet,
〈neutA5〉 = green, and 〈neutA6〉 = blue. Therefore, we have six neutralities. Example with infinitely
many neutralities:

— The opposite concepts: 〈A〉 = white, 〈antiA〉 = black;
— The neutralities: 〈neutA1, 2, ..., ∞〉 = the whole light spectrum between white and black, measured

in nanometers (nn) [a nanometer is a billionth part of a meter].

5. Conclusions

The neutrosophic community thank the authors for their criticism and interest in the neutrosophic
environment, and we wait for new comments and criticism, since, as Winston Churchill had said, the
eagles fly higher against the wind.

Funding: The author received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Notations

≤
nonS
nN means nonstandard n-tuple neutrosophic inequality;
≤nN means standard (real) n-tuple inequality;
≤

nonS
N means nonstandard unary neutrosophic inequality;
≤N mean standard (real) unary neutrosophic inequality;
=N means neutrosophic equality;
¬N means neutrosophic negation;
∪ N means neutrosophic union;
= means classical equality;
<, >, ≤, ≥ mean classical inequalities.
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