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ABSTRACT The shortest path problem (SPP) is considerably important in several fields. After typhoons,
the resulting damage leads to uncertainty regarding the path weight that can be expressed accurately. A
neutrosophic set is a collection of the truth membership, indeterminacy membership, and falsity
membership degrees of the elements. In an uncertain environment, neutrosophic numbers can express the
edge distance more effectively. Based on the theories of interval valued neutrosophy and neutrosophic
graphs, this paper proposes a shortest path solution method of interval valued neutrosophic graphs using the
ant colony algorithm. Further, an analysis comparing the proposed algorithm with the Dijkstra algorithm
was used to probe the potential shortcomings and advantages of the proposed method. In addition, this
approach confirmed the effectiveness of the proposed algorithm. Furthermore, we investigated the
convergence processes of the ant colony algorithm with different parameter settings, analyzed their results,
and used different score functions to solve the SPP and analyze the results.

INDEX TERMS Ant colony algorithm, interval valued neutrosophic numbers, neutrosophic graph, shortest
path problem

I. INTRODUCTION

In 1998, neutrosophy was introduced by Smarandache as a
branch of philosophy that studies the nature, origin, and
scope of neutrality and its interaction with various
conceptual spectra [1]. Mumtaz promotes the concept of
fuzzy sets [2] by adding an independent uncertain
membership. Neutron collections are useful tools for
dealing with inconsistent, uncertain, and incomplete
information in real world and have become a concern for
researchers. The concept of neutron subsets involves three
degrees of independence, namely, true membership (T),
uncertainty membership (I), and false membership (F). The
value range is   1,0 . When the uncertainties of a vertex
set and an edge set are obtained, a fuzzy graph can be used
in the shortest path problem (SPP). However, if there is

uncertainty in the relationship between nodes, the
neutrosophic set (NS) theory will be a suitable concept for
dealing with real-life problems [3], and the edge distance is
regarded as the neutrosophic numbers (NN) for dealing with
SPP. The NN can be single valued, interval valued, and/or
bipolar [4], [5]. NN can handle uncertainty well, and the NS
model can handle uncertain and inconsistent information.
This is an important mechanism for dealing with practical
scientific and engineering problems.

SPP is a basic combination problem that appears in
various scientific and engineering fields. The purpose of the
SPP is to find the shortest path and the minimum distance
between the starting and end points in a graph [6, 7]. The
length of a side can represent the actual amounts of the
characteristics, such as time and cost. In the classical SPP,
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the distances between the edges of different nodes in a
network graph are usually considered deterministic, and
they are represented by exact numbers. However, for
uncertain environments, fuzzy number techniques can be
used.

As one of the countries in the world that has suffered the
most from typhoons, China’s coastal areas are often
threatened with the loss of lives and property. The strong
typhoon Lekima landed along the coast of Wenling City,
Zhejiang Province, at 1:45 AM on August 10, 2019. The
maximum wind speed near the center was at level 16 (52
m/s) at the time of landing, and the minimum air pressure
was 930.100 Pa. It was the fifth strongest typhoon that has
landed in Mainland China since 1949, affecting 403
counties in the nine provinces of Zhejiang, Shandong,
Jiangsu, Anhui, Liaoning, Shanghai, Fujian, Hebei, and
Jilin. When Lekima landed, it not only posed a large threat
to peoples’ lives and property but also caused severe storms
and heavy rainfall that damaged roads and difficulties for
post-disaster rescue workers. Yu et al. [8] applied the fuzzy
multi-objective approach to forecast short-term typhoon
rainfall, as this can be implemented without much
background meteorological knowledge. Chen et al. [9]
proposed an evolutionary fuzzy inference model that
combines a fuzzy inference model, genetic programming,
and a genetic algorithm to forecast flood stages during
typhoons. Tan et al. [10] proposed a multi-attribute
decision-making method based on prospect theory in a
heterogeneous information environment. An illustrative
example of typhoon disaster assessment is presented to
show the feasibility and effectiveness of the proposed
method, additionally, the advantages of the proposed
method are illustrated by comparing it with other methods.
SPPs of network graphs whose edges are represented as
inaccurate numbers have attracted increasing attention from
scholars worldwide. Post-disaster roads are flooded and
blocked by trees and debris, and bridges are damaged;
hence, the post-disaster rescue path has many uncertain
variables that cannot be expressed with definite values.
Therefore, Buckley and Jowers [11] introduced the concept
of fuzzy logic into SPP. Deng et al. [12] proposed a fuzzy
Dijkstra algorithm for SPP in inaccurate environments.
Biswas et al. [13] introduced an algorithm for finding the
shortest path in intuitionistic fuzzy environments.

The NS is an extension of the intuitionistic fuzzy set
[14], which considers the uncertainty and describes the
actual problem in more detail. More scholars have used NN
to represent the edge weights in the SPP. Broumi et al. [3]
used the Dijkstra algorithm to solve SPP within a
background of neutrosophy. Broumi et al. [4] introduced
SPP based on triangular fuzzy neutrosophic environments.
Ye [15] proposed a single valued neutrosophic hesitant
fuzzy set as, a further generalization of the concepts of

fuzzy, intuitionistic fuzzy, single valued neutrosophic,
hesitant fuzzy, and dual hesitant fuzzy sets. Peng [16]
introduced operations of multi-valued NSs and developed a
comparison method based on related research on hesitant
fuzzy sets and intuitionistic fuzzy sets. Ye [17] proposed a
trapezoidal NS, several operational rules, and score and
accuracy functions for trapezoidal NN. Nancy and Harish
[18] proposed an improved score function and applied it to
the decision-making process. Ridvan et al. [19] developed a
method for solving multiple attribute decision-making
problems with single valued neutrosophic information or
interval neutrosophic information. Deli et al. [20]
developed hamming and Euclidean ranking values for the
comparison of SVTN numbers. Broumi et al. [21]
calculated MST in an interval valued bipolar NSting. Hu
and Sotirov [22] proposed the convenience of quadratic
SPP semi-definite programming and used branch and bound
algorithms to solve SPPs. Zhang et al. [23] proposed a
stable SPP with cyclic uncertainty. Broumi et al. [24] used
SVNG to solve SPP. Peng and Dai [25] proposed an
interval decision-making algorithm based on a neutrosophic
environment. Smarandache [26] used trapezoidal fuzzy NN
to find the shortest path. Wang et al. [27] proposed SV-
trapezoidal neutrosophic preference in decision-making
problems. Deli and Subas [28] put forward the ranking
method of SVNN and applied it to decision-making
problems. Broumi et al. [29] proposed various concepts on
NS and analyzed the existing concepts and the proposed
NN; thereafter, they proposed the SPP in an interval valued
NS. Bolturk and Kahraman [31] proposed a new IVN
analytic hierarchy process with a cosine similarity measure.
Wang et al. [32] proposed interval NS and logic in detail.
Biswas et al. [33] proposed distance measure using interval
TrFNN. Deli [34] proposed a new notation called expansion
and reduction of neutrosophic classical soft sets that are
based on linguistic modifiers and then developed a
neutrosophic classical soft reduction method and present a
real example for the method. Deli [35] proposed single
valued trapezoidal neutrosophic operators and applied them
to decision-making problems. Deli and Suba [36] put
forward the weighted geometric operator with the single
valued neutrosophic method and applied it to decision-
making problems. Basset et al. [37] proposed a decision-
making technology that enables decision makers to select
the most appropriate project in a neutrosophic environment.
Additionally, they proposed a new technique for checking
consistency and calculating the degree of consensus among
experts’ opinions in a neutrosophic environment. Kumar et
al. [39] proposed an algorithm for solving SPP in a
trapezoidal fuzzy neutrosophic environment. Broumi et al.
[40] proposed a neutrosophic network method for finding
the shortest path length with single valued trapezoidal NN.
Tan et al. [41] proposed an extended dynamic programming
method for solving the SPP to obtain the shortest path and
the shortest path length. Broumi et al. [42] proposed a score
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function for interval valued NN and used it to solve SPP.
Moreover, they considered SPP with Bellman’s algorithm
for a network-using interval valued NN. Thereafter,
Chakraborty [44] applied the developed score function and
accuracy function of pentagonal NN to the SPP.
Smarandache [45] proposed the theory that NeutroAlgebra
is a generalization of partial algebra by introducing the
indeterminate opposite. Schweizer [46] proposed uncertain
factors that could be considered in the process of building
the model and developed a formula to transform their
model to the neutrosophic representation. Edalatpanah [47]
proposed a direct algorithm to solve the neutrosophic linear
programming, where the variables and right-and side were
represented by triangular NN.

The ant colony algorithm is a probabilistic algorithm
used to find the optimal path. This algorithm has the
characteristics of distributed computing, positive
information feedback, and heuristic searching. It is
essentially a heuristic global optimization algorithm in
evolutionary algorithms. Further, the ant colony algorithm
has been widely used in industry, agriculture, and other
fields [48]. However, at present, there are few literature
reports on the use of the ant colony algorithm to find the
shortest path in a neutrosophic graph. Therefore, this paper
describes the shortest path solution method based on the ant
colony algorithm with an interval valued neutrosophic
graph. This paper studies the neutrosophic graph with side
weights represented by interval valued NN.

II. THEORETICAL BASIS

A brief description of some basic concepts of NSs and
some existing ranking functions for interval valued NN are
given in the following subsections.

A. NEUTROSOPHIC SET

Definition 1 [1]: Let X be the object set and x be any one
of the objects, and NS A on X can be represented by the
true degree function )(xTA , the uncertainty degree function

)(xIA , and the error degree function )(xFA , where

)(xTA , )(xIA , and )(xFA are the standard or non-

standard real subsets of   1,0 , i.e.,

  1,0:)( xxTA ,   1,0:)( xxIA ,

  1,0:)( xxFA

where the non-standard finite number  11 . “1” is its
standard part, 0  is an infinite decimal (which is its non-
standard part), and

 3)(sup)(sup)(sup0 xFxIxT AAA .

B. INTERVAL VALUED NEUTROSOPHIC NUMBER

Definition 2 [15]: X is a domain, and a single valued NN

N~ can be expressed as follows:

 XxxFxIxTxN NNN  |)(),(),(,~
~~~ (1)

where  1,0)(~ xTN ,  1,0)(~ xI N and  1,0)(~ xFN .

Definition 3 [32]: X is a domain and an interval valued

NN N~ can be expressed as follows:

 XxxFxIxTxN NNN  |)(),(),(,~
~~~ (2)

where  1,0)(~ xTN ,  1,0)(~ xIN and  1,0)(~ xFN
are interval valued numbers，

 )(),()( ~~~ xTxTxT U
N

L
NN  ，

where 1)()(0 ~~  xTxT U
N

L
N  .

 )(),()( ~~~ xIxIxI U
N

L
NN  ，

where 1)()(0 ~~  xIxI U
N

L
N  .

 )(),()( ~~~ xFxFxF U
N

L
NN  ，

where 1)()(0 ~~  xFxF U
N

L
N  .

Definition 4 [32]:      2121211 ,,,,,~ ccbbaaN  and

     2121212 ,,,,,~ ffeeddN  are two interval valued

NN, and then
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(4)
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C. RANKING FUNCTION

Definition 5 [19]:      212121 ,,,,,~ ccbbaaN  is an

interval valued NN, and its score function can be expressed
as

)222(
4
1)~( 212121 ccbbaaNS  (7)

The larger the )~(NS value, the larger the interval valued

NN N~ will be.

Definition 6 [42]:      2121211 ,,,,,~ ccbbaaN  and

     2121212 ,,,,,~ ggffeeN  are two interval valued

NN, and )~( 1NS and )~( 2NS are the score functions of

1
~N and 2

~N , respectively. The ordering relationship of
interval valued NN are as follows:

if )~()~( 21 NSNS  , then 21
~~ NN  ;

if )~()~( 21 NSNS  , then 21
~~ NN  ;

if )~()~( 21 NSNS  , then 21
~~ NN  .

III.  SPP IN EMERGENCY DECISION MAKING

When a disaster occurs, it is very important to rescue the
victims. The most apparent feature of emergency decision-
making is the urgency of time. The decision maker should
complete the rescue plan in a short time, thereby enabling the
rescuers to reach the location of the trapped people
immediately. The time needed to arrive at the rescue site
often determines the success or failure of the rescue mission;
hence, the earliest possible arrival time is considered as the
main objective function. When the police and rescue team
have fixed arrival times, the shortest rescue time can be
simplified as the shortest transportation time and further as
the shortest path desired. For other boundary conditions, such
as road water accumulation, bridge damage, and possible
impact of landslides on roadside mountains, the grade
interval can be determined according to the degree of its
impact on the material transportation, and the path weight
can be described by the interval valued NN. The traditional

SPP is a combinatorial optimization problem. The challenge
of finding the shortest path primarily includes the single
source SPP and the multiple SPP. The single source SPP
involves finding the shortest path from a given point to other
points in the graph. The multiple SPP refers to finding the
shortest paths between all vertex pairs in the graph. The
current solution to this type of problem is primarily based on
the classical Dijkstra algorithm and the Floyd algorithm. In
practical applications, the expression form of an urban road
network is generally a digital vector map. To analyze the
shortest path efficiently, it must be abstracted as the structure
of the map relative to the relationship between nodes and arcs.
When a disaster occurs, the rapid determination of the
shortest driving route to the disaster location is a key issue in
emergency decision-making. Efficient implementation can
improve the rapid response ability and overall command
ability of the rescue. The shortest path algorithm discussed
here is primarily aimed at directed graphs, for which the
weights of all arcs are interval valued NN.

IV. NEUTROSOPHIC GRAPH THEORY

In an emergency rescue, the site of each rescue team and the
point of the rescue can be abstracted as the vertices of graph
theory. A disaster area is composed of N rescue team
locations, rescue points, and passing points. Its network
topology can be abstracted as a directed graph marked as

E) G(V, , where point set } v, · · · ,{v = V n1 represents
the rescue team locations, rescue points, and passing points,
edge set V× V E  represents the directed connection

between two points, and a directed edge E ∈ j) (i,
represents the path from point i to point j [41]. To reach the
optimal decision in the shortest time, it is necessary to
consider the path length, the road conditions of the path, the
transportation capacity, etc. Considering the geographical
location, terrain, the degree of disaster damage, and other
factors, the edge weight is expressed as an interval valued

NN N~ , node 1v is the starting point of the rescue, and node

nv is the point of the rescue site. A directed path from node

1v to node nv can be expressed as a set of directed edge

sequences in the form of ) v,(v, · · · ), v,(v), v,(v nk3221

in a directed graph. Depending on the connection strength of
a directed graph, the number of paths connecting node 1v to

node nv may vary.

V. METHOD FOR SOLVING SPP OF INTERVAL
VALUED NEUTROSOPHIC GRAPH BASED ON ANT
COLONY ALGORITHM

The ant colony algorithm is a probabilistic algorithm used
to find the optimal path. It was proposed by Marco Dorigo
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in his doctoral dissertation in 1992 [48], and the basic idea
comes from the behavior of ants as they find a path while
searching for food. Ants find the shortest path using factors
such as pheromones and the environment. Suppose there
are two paths from an ant colony to food. Initially, the
number of ants on the two paths is similar; when ants arrive
at the end of the road, they will return immediately. Ants on
the short path have a short round-trip time and fast
repetition rate; hence, there are more ants per unit time,
leaving more pheromones. This will attract even more ants
that will leave more pheromones. However, the long path
exhibits the opposite characteristics; hence, an increasing
number of ants will gather on the shorter path. In the
simulation of pheromone effects, several paths are
randomly selected each time, the pheromone level on each
path is adjusted according to the weight, and the shortest
path is realized after iterative convergence. The specific
steps are as follows:

Step 1: Initialize the pheromone matrix and uniformly set
the pheromone concentration of each path from the starting
point to the end point to c .

Step 2: Randomly select n paths, calculate the weight of
each path according to the score function calculation
method of Definition 5 (above), and then calculate the
smallest

[0]minP of N paths according to the intelligent

number-sorting algorithm in the Definition 6 interval.

Step 3: Update pheromone levels:

1) The concentration of all pheromones was reduced by
p , which was used to simulate the volatilization of

pheromones.

2) The pheromone concentration of a path
[0]minP

increases by q .

Step 4: Determine the ratio




 n

i
i

p

p

c

c

0

)(

)(
]0[min

]0min[
per of the

pheromone level of path
[0]minP to the total pheromone level,

calculate the times )per*round(N  N )(
]0[min]0[min pp  of

the next path
[0]minP , randomly select other

]0[min
N-N p

paths, calculate the weight of each path according to the
method of the Definition 5 score function, and then

calculate the smallest
[1]minP of the N paths according to the

Ranking function in Definition 6. Subsequently, repeat Step
3 to update the pheromone level and randomly select n
paths, including

[1]minP . Eventually, )S(P
[i]min converges to

a certain number and the algorithm ends.

Moreover, iteration produces a local optimal solution. By
adding the pheromone level of the local optimal solution and
modifying the path selected each time, the local optimal
solution gradually tends to the global optimal solution.
When N

ip 
][min

N , the local optimal solution converges,

and the algorithm flow chart is as shown in Fig. 1.
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FIGURE 1.  Flow chart of the ant colony algorithm.
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VI. CASE STUDY AND COMPARATIVE ANALYSIS

A. CASE ANALYSIS

The powerful typhoon Lekima landed on the coast of
Wenling City, Zhejiang Province, at 1:45 AM on August 10,
2019. During its landfall, the maximum wind force near the
center was level 16 (52 m/s), and the minimum air pressure
at the center was 930 hPa. After the disaster, roads were
flooded and blocked by trees and rocks, bridges were
damaged, etc., thereby making rescue work difficult. Given
the road conditions, it was essential to find the best path to
the rescue point and provide decision-making support to the
emergency rescue teams of relevant departments. The
topological structure of the road network during the period is
shown in Fig. 2, and the side lengths involved are shown in
Table I. A rescue team in Fuzhou must start from point ①
and travel to point ⑨ to rescue trapped residents; hence, they
must identify the shortest path from the starting point ① to
the ending point ⑨, and the sequence is outlined below:

1

2

3

4

5

6

7

8

9

FIGURE 2.  Interval valued neutrosophic graph.

TABLE I

DETAILS OF EDGES INFORMATION IN TERMS OF INTERVAL VALUED NN

Edges Interval valued neutrosophic distance

(1,2) <[0.1, 0.5], [0.3, 0.7], [0.1, 0.6]>

(1,3) <[0.2, 0.7], [0.3, 0.9], [0.1, 0.4]>

(1,4) <[0.2, 0.6], [0.2, 0.6], [0.4, 0.8]>

(2,4) <[0.1, 0.5], [0.3, 0.7], [0.2, 0.7]>

(2,5) <[0.4, 0.8], [0.2, 0.6], [0.1, 0.5]>

(3,4) <[0.3, 0.8], [0.1, 0.4], [0.1, 0.6]>

(3,6) <[0.1, 0.4], [0.2, 0.6], [0.4, 0.7]>

(4,5) <[0.2, 0.5], [0.3, 0.6], [0.1, 0.6]>

(4,6) <[0.4, 0.9], [0.1, 0.5], [0.1, 0.6]>

(4,7) <[0.1, 0.6], [0.2, 0.7], [0.4, 0.8]>

(5,7) <[0.2, 0.6], [0.2, 0.7], [0.4, 0.8]>

(5,8) <[0.3, 0.7], [0.2, 0.6], [0.1, 0.5]>

(6,7) <[0.3, 0.7], [0.1, 0.5], [0.3, 0.9]>

(6,9) <[0.2, 0.6], [0.2, 0.5], [0.5, 0.9]>

(7,8) <[0.1, 0.5], [0.2, 0.6], [0.4, 0.8]>

(7,9) <[0.4, 0.9], [0.2, 0.6], [0.1, 0.5]>

(8,9) <[0.2, 0.6], [0.1, 0.5], [0.5, 0.8]>

The pheromone volatility, p, indicates the degree of
pheromone volatility remaining on the path as the ant walks
back and forth. The value range is  1,0 . The size of p is
directly related to the global search ability and convergence
speed of the ant colony algorithm. When p is large, the
pheromone volatilization increases in speed and is not very
sensitive to past historical experience. Positive feedback
plays a dominant role in this process, and the randomness
of the search weakens, which leads to a fast convergence
rate but can easily fall into the local optimal. However,
when p is small, the residual information on the path
dominates, the positive feedback of the information is
relatively weak, the randomness of the search is enhanced,
and the convergence speed of the ant colony algorithm is
slow.

Moreover, the locally optimal pheromone level increases,
and q represents the increment of pheromone when all the
ants walk back and forth on the shortest path. However, to a
certain extent, q affects the convergence speed of the
algorithm. Thus, the larger q is, the more are the
pheromones remaining each time an ant passes, and the
faster is the accumulation of pheromones on the traversed
path, which enhances the positive feedback during the ant
colony search and contributes to the rapid convergence of
the algorithm; however, it is easy to fall into the local
optimal.

In the calculation example, the principle of giving
priority to accuracy is considered, and the pheromone
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volatility, %5p  , and locally optimal pheromone level

increases, %10q , are selected.

Step 1: Initialize the pheromone matrix
]85,1[,1  iCi and randomly select the path number

10N per iteration. The pheromone volatility

is %5p , and the locally optimal pheromone level

increases by %10q .

Step 2: Randomly select 10 paths from the starting point
① to the ending point ⑨ – (125789)P , (1246789)P , (13479)P ,

(134579)P , (145789)P , (14579)P , (146789)P , (125789)P , (134789)P

and (134579)P – and then calculate the interval valued

neutrosophic distance of (125789)P according to Definition 4:

0.15362] [0.00081,
 0.08821], [0.00025,
 0.99201], [0.68900,

>0.8] [0.5, 0.5], [0.1, 0.6], [0.2,<
>0.8] [0.4, 0.6], [0.2, 0.5], [0.1,<
>0.8] [0.4, 0.7], [0.2, 0.6], [0.2,<
>0.5] [0.1, 0.6], [0.2, 0.8], [0.4,<

>0.6] [0.1, 0.7], [0.3, 0.5], [0.1,<
)89()78()57()25()12()125789(









 NNNNNN

Similarly, the length of the other nine paths can be
calculated, as shown in Table II.

TABLE II

DETAILS OF PATH INFORMATION IN TERMS OF INTERVAL VALUED NN

Paths Interval valued neutrosophic distance

P(125789) <[0.68900, 0.99201], [0.00025, 0.08821], [0.00081, 0.15362]>

P(1246789) <[0.75508, 0.99851], [0.00002, 0.03675], [0.00013, 0.14517]>

P(13479) <[0.69762, 0.99761], [0.00121, 0.15121], [000041, 0.09601]>

P(134579) <[0.78499, 0.99881], [0.00037, 0.09073], [0.00005, 0.05761]>

P(145789) <[0.63139, 0.98401], [0.00025, 0.07561], [0.00321, 0.24578]>

P(14579) <[0.69283, 0.99201], [0.00241, 0.15121], [0.00161, 0.19201]>

P(146789) <[0.75810, 0.99761], [0.00005, 0.04500], [0.00241, 0.27650]>

P(125789) <[0.68900, 0.99201], [0.00025, 0.08821], [0.00081, 0.15362]>

P(134789) <[0.63715, 0.99521], [0.00013, 0.07561], [0.0008.1, 0.12290]>

P(134579) <[0.78498, 0.99881], [0.00037, 0.09074], [0.00005, 0.05761]>

Calculate the score function of path (125789)P according

to Definition 5:

83742.0
)15362.000081.008821.02

00025.0299201.068900.02(
4
1

)~( )125789(






NS

The score function of the other nine paths can be
calculated similarly, and results are shown in Table III.

TABLE III

SCORE FUNCTION OF 10 PATHS

Paths Score function of paths

P(125789) 0.83742

P(1246789) 0.88369

P(13479) 0.82350

P(134579) 0.88599

P(145789) 0.80368

P(14579) 0.79600

P(146789) 0.84668

P(125789) 0.83742

P(134789) 0.83930

P(134579) 0.88598
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According to Definition 6, the shortest path among the
first randomly generated 10 paths can be found:

(145789)min[0] P = P .

Step 3: Update pheromone levels:

1) The concentration of all pheromones was reduced by
%5 ; ]85,1[,95.0)05.0-(1*1  iCi .

2) The pheromone concentration of path
[0]minP increases

by %10 , 045.11.1*95.0)145789( C .

Step 4: Determine the ratio

013.0
045.184*95.0

045.1

c
per

0

)(
)(

]0min[

]0min[








n

i
i

p
p

c

of the pheromone level of path
[0]minP to the total

pheromone level and calculate the product
0).0130*round(10)per*round(N  N )( ]0min[]0min[

 pp

of the next path
[0]minP ; thus, it is not necessary to specify

the selection path (145789)P but to randomly select another

10 paths. Further, repeat Steps 2 and 3, continuously obtain
the local optimal solution, update the pheromone level,
continue up to the 220th cycle, and obtain the local optimal
solution (1369)min[220] P = P , the updated pheromone level

0.02831c )1369(  , the total pheromone level, and

0.02972
0




n

i
ic of all paths. Thereafter, determine the

ratio of the pheromone level of path  Pmin[220] to the total

pheromone level as 95255.0
02972.0
02831.0per )( ]220min[

p ,

and select path  Pmin[220] for the next cycle. The number of

cycles

10

).952550*round(10)per*round(N  N )( ]220min[]220min[



 pp

that is, from the 221st cycle on, all the 10 paths selected are

(1369)P , after which there will be no new local optimal

solution, the optimal solution converges to (1369)P , the

score function converges to 0.629 and does not change, and
the algorithm ends. The information for the local optimal
solution generated during iteration is shown in Table IV.

TABLE IV

LOCAL OPTIMAL SOLUTION PRODUCED BY EACH ITERATION

Cycles Minpath Score function Pheromone N(min)

1 p(12469) 0.78120 1.04500 0

2 p(12479) 0.74125 0.99275 0

3 p(14789) 0.68860 0.94311 0

4 p(12479) 0.74125 0.98555 0

5 p(124789) 0.75800 0.85116 0

... ... ... ... ...

155 p(14789) 0.68860 0.00134 0

156 p(14789) 0.68860 0.00273 1

157 p(14789) 0.68860 0.00285 1

158 p(1369) 0.62900 0.00185 1

159 p(1369) 0.62900 0.00193 1

... ... ... ... ...

216 p(1369) 0.62900 0.02374 9

217 p(1369) 0.62900 0.02481 9

218 p(1369) 0.62900 0.02593 9

219 p(1369) 0.62900 0.02709 9

220 p(1369) 0.62900 0.02831 10

In Table IV, “Cycles” represents the number of iterations,
“Minpath” represents the local shortest path generated
during iteration, “Score function” represents the score
function of the local shortest path, “Pheromone” represents
the pheromone concentration after updating the local
shortest path after a completed iteration, and “N (min)”
represents the number of Minpath times in the next iteration.
The data show that from the 220th iteration onwards,

(1369)P is selected 10 times and no new optimal solution

can appear in the subsequent iterations. The convergence
process of the local optimal solution is shown in Fig. 3.
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FIGURE 3.  Convergence process of local optimal solution.

The abscissa in Fig. 3 refers to the number of iterations, and
the ordinate refers to the score function of the local optimal
solution obtained during iteration. Finally, the shortest path
score function from the starting point ① to the ending point
⑨ is 0.629, and the shortest path is ① -> ③ -> ⑥ -> ⑨, as
shown in Fig. 4.

1

2

3

4

5

6

7

8

9

FIGURE 4.  Shortest path from starting point ① to ending point ⑨.

B. COMPARATIVE ANALYSIS OF DIFFERENT
ALGORITHMS

To illustrate the effectiveness and rationality of the algorithm,
the ant colony algorithm proposed in this paper is compared
with the Dijkstra algorithm proposed in reference [40] and
the Bellman algorithm proposed in reference [43].

1) COMPARISON AND ANALYSIS WITH THE DIJKSTRA
ALGORITHM

First, the adjacency matrix is established according to
Table I:



























0
)9,8(n~0
)9,7(n~)8,7(n~0
)9,6(n~)7,6(n~0

)8,5(n~)7,5(n~0
)7,4(n~)6,4(n~)5,4(n~0

)6,3(n~)4,3(n~0
)5,2(n~)4,2(n~0

)4,1(n~)3,1(n~)2,1(n~0

MMMMMMMM
MMMMMMM

MMMMMM
MMMMMM

MMMMMM
MMMMM
MMMMMM
MMMMMM
MMMMM

A

where j)(i,n~ represents the edge weight from node i to

node j. The specific values are shown in Table I, where M
represents an infinite number, indicating that there is no
direct directed edge connection between node i and node j.
The Dijkstra algorithm is used to calculate the shortest path
from node ① to node ⑨, according to the following:

Step 1: Set  9,8,7,6,5,4,3,2,1V of all vertices, set

 1S of initially determined vertices, set L of
initially determined edges, and set

 9,8,7,6,5,4,3,2 SVT of undetermined vertices.

Step 2: Find the closest vertex to all elements in set S ;
that is, find the shortest edge among edges (1, 2), (1, 3) and
(1, 4). According to Definition 5, the score functions of the
three edges can be calculated as follows:

025.0

)6.01.07.023.025.01.02(
4
1

)~( )12(





NS

0

)4.01.09.023.027.02.02(
4
1

)~( )13(





NS

，

0

)8.04.06.022.026.02.02(
4
1

)~( )14(





NS

According to Definition 6, we can
obtain

)2,1()4,1()3,1()2,1( n~),,,,,n~,n~,n~(min MMMMM ; the
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nearest vertex is ②; hence, update vertices set  21，S
and edge set }2,1{ ）（L . Repeat Step 2 to update vertices

set S and edge set L until the end vertices S9 .

Finally,  9,8,5,6,7,3,4,21，S ,

 )9,6(),8,7(),5,4(),6,3(),7,4(),3,1(),4,1()2,1( ，L .

The shortest path is ①->③->⑥->⑨, as shown in Fig. 5.

1

2

3

4

5

6

7

8

9

FIGURE 5.  Shortest path calculated by the Dijkstra algorithm.

The result of the ant colony algorithm proposed in this
paper is the same as that of the Dijkstra algorithm, and they
have the same shortest path and path length.

2) COMPARISON AND ANALYSIS WITH THE
BELLMAN ALGORITHM

)(if is the shortest distance between the starting point

① and point i, and )(
~

ijN is the distance between node i and

node j.

0)1( f ,

   
 

[0.1,0.6][0.3,0.7],[0.1,0.5],

[0.1,0.6][0.3,0.7],[0.1,0.5],0min

~)1(min~)(min)2( )12()2(2








NfNiff ii

,

   
 

[0.1,0.4[0.3,0.9],[0.2,0.7],

[0.1,0.4[0.3,0.9],[0.2,0.7],0min

~)1(min~)(min)3( )13()3(3








NfNiff ii

,

 
 

[0.4,0.8][0.2,0.6],[0.2,0.6],

][0.01,0.24],[0.03,0.36],[0.44,0.94

,][0.02,0.42],[0.09,0.49],[0.19,0.75

,[0.4,0.8][0.2,0.6],[0.2,0.6],

min

[0.1,0.6][0.1,0.4],[0.3,0.8],

[0.1,0.4][0.3,0.9],[0.2,0.7],

,[0.2,0.7][0.3,0.7],[0.1,0.5],

[0.1,0.6][0.3,0.7],[0.1,0.5],

,[0.4,0.8][0.2,0.6],[0.2,0.6],0

min

~)3(,~)2(,~)1(min

~)(min)4(

)34()24()14(

)4(4






























































NfNfNf

Niff ii

,

 
 

[0.01,0.3]],[0.06,0.42,[0.46,0.9]

][0.04,0.48],[0.06,0.36,[0.36,0.8]

,[0.01,0.3]],[0.06,0.42,[0.46,0.9]
min

[0.1,0.6][0.3,0.6],[0.2,0.5],

[0.4,0.8][0.2,0.6],[0.2,0.6],

,[0.1,0.5][0.2,0.6],[0.4,0.8],

[0.1,0.6][0.3,0.7],[0.1,0.5],

min

~)4(,~)2(min

~)(min)5(

)45()25(

)5(5



















































NfNf

Niff ii

,

 
 

     28.0,04.054.0,06.082.0,28.0

][0.04,0.48,[0.02,0.3]],[0.52,0.96

,][0.04,0.28],[0.06,0.54],[0.28,0.82
min

[0.1,0.6][0.1,0.5],[0.4,0.9],

[0.4,0.8][0.2,0.6],[0.2,0.6],

,[0.4,0.7][0.2,0.6],[0.1,0.4],

[0.1,0.4][0.3,0.9],[0.2,0.7],

min

~)4(,~)3(min

~)(min)6(

)46()36(

)6(6

，，

















































NfNf

Niff ii

,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2990912, IEEE Access

Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

 
 

][0.16,0.64],[0.04,0.42],[0.28,0.84

52][0.012,0.27],[0.006,0.246],[0.496,0.9

,4][0.004,0.294],[0.012,0.26],[0.568,0.9

,][0.16,0.64],[0.04,0.42],[0.28,0.84

min

[0.3,0.9][0.1,0.5],[0.3,0.7],

][0.04,0.28],[0.06,0.54],[0.28,0.82

,[0.4,0.8][0.2,0.7],[0.2,0.6],

[0.01,0.3]],[0.06,0.42,[0.46,0.9]

,[0.4,0.8][0.2,0.7],[0.1,0.6],

[0.4,0.8][0.2,0.6],[0.2,0.6],

min

~)6(,~)5(,~)4(min

~)(min)7(

)67()57()47(

)7(7


































































NfNfNf

Niff ii

,

 
 

12][0.064,0.552],[0.008,0.22],[0.352,0.9

12][0.064,0.552],[0.008,0.22],[0.352,0.9

,5][0.001,0.152],[0.012,0.27],[0.622,0.9
min

[0.4,0.8][0.2,0.6],[0.1,0.5],

][0.16,0.64],[0.04,0.42],[0.28,0.84

,[0.1,0.5][0.2,0.6],[0.3,0.7],

[0.01,0.3]],[0.06,0.42,[0.46,0.9]

min

~)7(,~)5(min

~)(min)8(

)78()58(

)8(8



















































NfNf

Niff ii

,

 
 














































[0.5,0.8][0.1,0.5],[0.2,0.6],

12][0.064,0.552],[0.008,0.22],[0.352,0.9

,[0.1,0.5][0.2,0.6],[0.4,0.9],

002][0.16,0.64],[0.04,0.42],[0.28,0.84

,[0.5,0.9][0.2,0.5],[0.2,0.6],

][0.04,0.28],[0.06,0.54],[0.28,0.82

min

~)8(,~)7(,~)6(min

~)(min)9(

)89()79()69(

)9(9

NfNfNf

Niff ii

2][0.02,0.257],[0.012,0.228],[0.424,0.9

096][0.032,0.4126],[0.0008,0.968],[0.4816,0.

,2][0.016,0.352],[0.008,0.284],[0.568,0.9

,2][0.02,0.257],[0.012,0.228],[0.424,0.9

min





















Thus

)69()36()13(

)69()36()13(

)69()36(

)69(

~~~

~~~)1(

~~)3(

~)6()9(

NNN

NNNf

NNf

Nff









Therefore, the path )1369(p is recognized as the

neutrosophic shortest path, its neutrosophic distance is
2][0.02,0.257],[0.012,0.228],[0.424,0.9 , and its

score function

629.0)252.002.027.02

012.02928.0424.02(
4
1)( )1369(



pS
.

From the time complexity of the algorithm, after the
debugging of multiple parameters, the number of paths
randomly selected by the ant colony algorithm is preferably
1 to 1.5 times the number of vertices, and the number of
iterations is approximately 150. Therefore, the time

complexity of the ant colony algorithm is )180( nO , that of

the known Dijkstra algorithm is )( 2nO , and that of the

Bellman algorithm is )( 3nO . Assuming that each
operation takes t = 0.0001 s, the relationships between the
running time of the three algorithms and the number of
vertices n of the neutrosophic graph are shown in Figs. 6
and 7.
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FIGURE 6.  Comparison of the running time of the ant colony
algorithm and Bellman algorithm.

FIGURE 7.  Comparison of the running time of the ant colony
algorithm and Dijkstra algorithm.

In these figures, the abscissa represents the number of
vertices of the neutrosophic graph, and the ordinate
represents the running time of the algorithm. As shown in
Figs. 6 and 7, when the number of vertices 14n , the ant
colony algorithm consumes less time compared to the
Bellman algorithm, and when the number of vertices

180n , the ant colony algorithm consumes less time
than the Dijkstra algorithm. Hence, the ant colony
algorithm is feasible and reasonable; compared with the
Dijkstra and Bellman algorithms, it has the following
advantages:

1) The ant colony algorithm is a self-organizing
algorithm. In system theory, self-organization and other
organizations are two basic categories of organization. The
difference lies in whether organizational power or
instructions come from inside or outside of the system;
when they arise from the inside, the system is self-

organizing, but when they arise from the outside, the
system is other organizing. If there is no specific external
intervention in the process of obtaining spatial, temporal, or
functional structure, we may say that the system is self-
organized. In the abstract sense, self-organization is the
process of increasing the system fluidity without external
effects. This is particularly suitable for the case of uncertain
path damage arising when a disaster occurs.

2) The ant colony algorithm is essentially a parallel
algorithm. Each ant search process is independent of others
and only communicates via pheromones. Therefore, the ant
colony algorithm can be regarded as a distributed multi-
system. It begins by searching independent solutions at
multiple points in the problem space at the same time; this
not only increases the reliability of the algorithm but also
provides the algorithm strong global search ability.

3) The ant colony algorithm is very robust. Unlike the
Dijkstra and Bellman algorithms, the ant colony algorithm
does not have demanding requirements for defining the
initial route, the results do not depend on the choice of
initial route, and there is no need for manual adjustment in
the search process.

C. COMPARATIVE ANALYSES OF DIFFERENT
PARAMETER SETTINGS

Five paths are randomly selected each time, and the case in
this paper is recalculated with the ant colony algorithm. The
local optimal solution information obtained during iteration
is shown in Table V.

TABLE V

LOCAL OPTIMAL SOLUTION PRODUCED BY EACH ITERATION

Times Minpath Score function Pheromone N(min)

1 p(1479) 0.67400 1.04500 0

2 p(14789) 0.68860 0.99275 0

3 p(14789) 0.68860 1.03742 0

4 p(14789) 0.68860 1.08411 0

5 p(14579) 0.79600 0.85116 0

... ... ... ... ...

440 p(1369) 0.62900 3.03E-09 0

441 p(13479) 0.82349 3.89E-10 0

442 p(124789) 0.75800 9.59E-10 0
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443 p(1369) 0.62900 2.86E-09 1

444 p(1369) 0.62900 2.99E-09 1

... ... ... ... ...

485 p(1369) 0.62900 1.82E-08 4

486 p(1369) 0.62900 1.90E-08 4

487 p(1369) 0.62900 1.98E-08 4

488 p(1369) 0.62900 2.07E-08 4

489 p(1369) 0.62900 2.17E-08 5

When five paths are randomly selected each time, the
shortest path P can also be found eventually. Unlike the
data in Table IV, Table V shows that the number of
iterations increases significantly, and many iterations lead
to significant pheromone volatilization. The comparison in
the convergence processes for the two is shown in Fig. 8.

FIGURE 8.  Comparison of convergence processes with different
parameters.

The abscissa in Fig. 8 represents the number of iterations,
the ordinate represents the score function of the local
optimal solution obtained during iteration, and the blue line
represents the convergence process when five paths are
randomly selected. The orange line represents the
convergence process when 10 paths are randomly selected.
By comparing the two curves, the figure shows that
reducing the number of randomly selected paths during
iteration reduces the extent to which the calculation reaches
the local optimal solution during iteration, but more
iteration will be required for convergence. When 10 paths
are randomly selected, the local optimal solution converges
in the 159th iteration; when five paths are randomly
selected, the local optimal solution converges on the 433rd
iteration.

D. COMPARATIVE ANALYSIS OF DIFFERENT SCORE
FUNCTIONS

The score function for interval valued NN, proposed in
reference [31] is as follows:

)
666

(
3
2)~( 212121 ccbbaaNSPeng








 (8)

We use this score function to solve the SPP of the ant
colony algorithm with the following approach:

Step 1: Initialize the pheromone matrix, and uniformly set
the pheromone concentration of each path from starting
point ① to ending point ⑨ to ]85,1[,1  iCi .

Step 2: Randomly select 10 paths from the starting point ①
to the ending point ⑨: (125789)P , (1246789)P , (13479)P ,

(134579)P , (145789)P , (14579)P , (146789)P , (125789)P , (134789)P

and (134579)P . Calculate the distances of all paths according

to Definition 4 and then calculate the score function of each
path according to Definition 5, as shown in Table VI.

TABLE VI

SCORE FUNCTIONS OF PATHS

Paths Score function of paths (SPeng)

P(125789) 0.95783

P(1246789) 0.97702

P(13479) 0.93988

P(134579) 0.95839

P(145789) 0.96476

P(14579) 0.95414

P(146789) 0.99827

P(125789) 0.95783

P(134789) 0.94673

P(134579) 0.95840
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According to Definition 6, the shortest path of the first
randomly generated 10 paths can be found:

(134789)min[0] P = P .

Step 3: Update pheromone levels:

1) The concentration of all pheromones was reduced by
%5 , and ]85,1[,95.0)05.0-(1*1  iCi .

2) The pheromone concentration of path
[0]minP increases

by %10 ; 045.11.1*95.0)145789( C .

Step 4: Determine the ratio

013.0
045.184*95.0

045.1

c
per

0

)(
)(

]0min[

]0min[








n

i
i

p
p

c
of

the pheromone level of path
[0]minP to the total pheromone

level and calculate the product
0).0130*round(10)per*round(N  N )( ]0min[]0min[

 pp

for the next path
[0]minP ; that is, it is not necessary to specify

the selection path (134789)P , but only to select another 10

paths randomly. Subsequent, Steps 2 and 3 were repeated.
Finally, the local optimal solution converges to (1369)P . The
information on the local optimal solution generated during
iteration is shown in Table VII.

TABLE VII

LOCAL OPTIMAL SOLUTION PRODUCED BY EACH ITERATION

Times Minpath SPeng Pheromone N (min)

1 p(124789) 0.92810 1.04500 0

2 p(13479) 0.93987 0.99275 0

3 p(12479) 0.91868 0.94311 0

4 p(1369) 0.89035 0.89595 0

5 p(124589) 0.93906 0.85116 0

... ... ... ... ...

160 p(12479) 0.91868 0.00109 0

161 p(12479) 0.91868 0.00114 0

162 p(1245789) 0.94736 0.00029 0

163 p(1369) 0.89035 0.00139 0

164 p(1369) 0.89035 0.00143 1

... ... ... ... ...

220 p(1369) 0.89035 0.01758 9

221 p(1369) 0.89035 0.01837 9

222 p(1369) 0.89035 0.01920 9

223 p(1369) 0.89035 0.02006 9

224 p(1369) 0.89035 0.02097 10

The comparison of Tables IV and VII indicates that the
shortest path (1369)P can be calculated by using two

different score functions and the number of iterations are
similar. It is clear that when using the ant colony algorithm
to solve the SPP, the complexity of the algorithm is not
directly related to the score function of the interval valued
NN. The convergence processes for the local optimal
solution calculated by two score functions are shown in Fig.
9:

FIGURE 9.  Convergence comparison chart with different score
functions.

In Fig. 9, the abscissa represents the number of iterations,
and the ordinate represents the score function of the local
optimal solution obtained during iteration. The curve S
represents the convergence process for the local optimal
solution when the score function is as proposed in reference
[19], and the curve SPeng represents the convergence process
for the local optimal solution when the score function
proposed in reference [31] is used. The figure shows that
when using different score functions to seek convergence, the
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final shortest path score function is inconsistent, S converges
to 0.62900, SPeng converges to 0.89035, and the paths they
represent are both )1369(P when the different score functions

are iterative. The local optimal solution converged after
approximately 160 cycles, indicating that the ant colony
algorithm used to solve the SPP of the interval valued
neutrosophic graph is stable.

VII. CONCLUSION

In this study, we have developed an ant colony algorithm
for solving the SPP on a network with interval valued
neutrosophic edge distances, and the effectiveness of the
algorithm is proved by implementing it using an example.
Thereafter, the ant colony algorithm is compared with the
Bellman and Dijkstra algorithms. The comparison proves
that the ant colony algorithm has better time complexity.
Further, we studied the effect of different parameter settings
on the convergence process of the ant colony algorithm.
Finally, we used different score functions to solve the SPP
and obtained a consistent optimal solution, thereby proving
the stability of the ant colony algorithm. Although the time
cost of the ant colony algorithm is linear, it must undergo a
sufficient number of iterations to obtain the optimal
solution. Therefore, for the SPP of a simple neutrosophic
graph with a few nodes, the ant colony algorithm is not as
efficient as the classic Dijkstra algorithm. In the future, we
will apply our method to the multi-source SPP of complex
neutrosophic graphs.
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