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ABSTRACT  

The roughness and similarity measure for two different information in the same universal set is 

useful in explaining the strength and completeness of the information given. Then, for rough 

neutrosophic multisets environment, the lower and upper approximation was a concerned 

property to study in explaining the roughness of the information needed. Meanwhile, the 

vectorial models of information which are cosine measure and dice measure represent the result 

for the similarity measure of rough neutrosophic multisets. The finding of this set theory gives 

a new generalization about similarity measure for multiple information involving indeterminacy 

information in the same environment. Besides that, the rough neutrosophic multisets theory also 

applicable set-in decision making for medical diagnosis. The comparison result showed that the 

roughness approximation of information is essential to get the best result in a close similarity 

measure.  

Keywords: rough neutrosophic multisets; roughness; similarity measure  

 

ABSTRAK  

Pengukuran kekasaran dan keserupaan untuk dua maklumat yang berbeza dalam set sejagat 

yang sama adalah penting untuk menjelaskan kekuatan dan kesempurnaan maklumat yang 

diberikan. Bagi multiset neutrosopik kasar, nilai penghampiran bawah dan atas adalah sifat yang 

bersangkutan dalam menjelaskan kekasaran maklumat yang diperlukan. Sementara itu, model 

maklumat vektoran, iaitu ukuran kosinus dan ukuran dadu mewakili keputusan untuk ukuran 

keserupaan multiset neutrosopik kasar. Penemuan teori set ini memberikan penjelmaan baharu 

mengenai ukuran keserupaan untuk pelbagai maklumat yang melibatkan maklumat 

ketidakpastian dalam set sejagat yang sama. Di samping itu, teori multiset neutrosofik kasar 

juga diaplikasikan dalam membuat keputusan untuk diagnosis perubatan. Hasil perbandingan 

menunjukkan bahawa penganggaran kekasaran maklumat adalah penting untuk mendapatkan 

hasil terbaik bagi ukuran keserupaan yang paling hampir. 

Kata kunci: multiset neutrosopik kasar; kekasaran; ukuran keserupaan  

1. Introduction 

Information collected from a various factor about the generality of the object may differ by the 

subjectiveness of the object and its element. The generality of the object like similarity plays a 

vital role in discussing the object in element set. It also differs from the various type of 

uncertainty information collected such as Fuzzy Set (FS) introduced by Zadeh (1965) 

represented the information value in term of membership degree within interval value [0,1] in 

universal set X. Then, Atanassov (1983) extended the idea of FS by introduced Intuitionistic 

Fuzzy Set (IFS), where IFS theory involving two membership degree value, which is a 

membership and non-membership value that is more practical in representing the uncertainty 
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information. Both membership degree value is within interval value [0,1] in universal set X. 

Later, Smarandache (1999) introduced the Neutrosophic Set (NS) to represent the neutral 

(indeterminate) opinion between the truth and false information. As a generalization of the FS 

and IFS, the element set of NS involve the three-membership degree value which is truth 

membership degree, indeterminate membership degree and falsity membership degree within 

non-standard interval ]−0, 1+[. Next, Wang et al. (2012) introduced Single Valued Neutrosophic 

Set (SVNS) to consist of for all membership degree value is also within interval value [0,1] in 

universal set X. This element set value is more practical in solving the real problem of 

uncertainty information such as decision making.  

Fuzzy Multiset (FM), Intuitionistic Fuzzy Multiset (IFM) and Neutrosophic Multiset (NM) 

are also introduced since there exist the multiple occurring information taken in a different time 

interval which allows repeated or same membership value more than one time (Yager 1986; 

Miyamoto 2001; Shinoj & John 2012; Ye & Ye 2014). Later, for the first time, Smarandache 

(2013) refined NS to neutrosophic refined set (NRS); T1, T2, …, Tm and I1, I2, …, In and F1, F2, 

…, Fr to overcome the refinement situation of many sub-opinion. Then, single valued 

neutrosophic multisets (NM) introduced by Ye and Ye (2014) inspired from Fuzzy multiset 

(FM) (Yager 1986) and NRS (Smarandache 1999) published an operation and properties of NS 

number to become repeated sequences of NS element of (𝑇𝐴(𝑥), 𝐹𝐴(𝑥), 𝐼𝐴(𝑥)). Instead of one-

time occurring for each element, the NM allowed an element to occur more than once with 

possibly the same or different truth membership sequences, indeterminacy membership 

sequences, and falsity membership sequences (𝑇𝐴
𝑖(𝑥), 𝐹𝐴

𝑖(𝑥), 𝐼𝐴
𝑖(𝑥)).  

A various hybrid mathematical method for solving uncertainty information and 

incompleteness data were presented by many researchers after the successful development of 

that data represented in element set of universal especially by using membership degree (Dubois 

& Prade 1990; Rizvi et al. 2002; Maji 2013; Broumi et al. 2014; Mandal 2015; Abdul-baset et 

al. 2016; Al-Quran & Nasruddin 2016; Ali & Smarandache 2016; Alkhazaleh 2016, Broumi et 

al. 2016). Meanwhile, Alias et al. (2017) introduced Rough Neutrosophic Multisets (RNM) 

which is involving uncertainty information in term of NM membership degree with the 

boundary of Pawlak’s lower and upper approximation in equivalence relation. RNM allows the 

multiple or repeated occurrences that any RNM membership element can be collected more 

than one with the possible different or same membership value. The RNM theory can be solved 

for incompleteness data involving roughness and vagueness information that given in various 

time or situation in element set boundary since Pawlak’s approximation space is taken as 

consideration (Pawlak 1982).  

The successful development of the similarity degree for the NS or SVNS is well known, and 

most of this finding is extended to NM environment and hybrid NS and NM. Besides that, the 

development of the similarity measure by vectorial models of information such as cosine 

measure and dice measure for NS, NM, and hybrid uncertainty set is also explored by many 

authors (Yao 2010; Broumi & Smarandache 2014; Ye 2015; Karaaslan 2015; Mondal & 

Pramanik 2015a, 2015b; Ye & Smarandache 2016; Pramanik et al. 2016). Therefore, it is an 

excellent opportunity to study the similarity measure for RNM. Since RNM involving lower 

and upper approximation, the roughness of this approximation is considered first to get the best 

result in the similarity measure. As indicated by Pawlak, the accuracy measure is expected to 

catch the degree of completeness information about the set universe, and the roughness is 

opposite to accuracy where it is representing the degree of inadequacy. This combination 

approach does not study yet in NM environment.  

The objectives of this research paper are to approximate two patterns in the same universe 

X, at least to what degree of roughness they are identical and to determine how close the 

similarity information given for specific condition in RNM environment. The rest of the paper 

is organized by mathematical preliminaries of uncertainty set information, similarity measure 
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by vectorial models of information, the definition of roughness and similarity measure for RNM 

with all the proven proposition, next is result and discussion by illustrative example in medical 

diagnosis and lastly the conclusion.  

2. Preliminaries 

This section recalled the definition of the rough neutrosophic multisets, rough set, accuracy, 

and roughness of rough approximation and vectorial models for similarity, which is cosine and 

dice measure. All the proof of propositions is referred to Pawlak (1982), Yao (2010), Ye & Ye 

(2014), Ye (2015) and Alias et al. (2017). 

2.1 Rough neutrosophic multisets 

Definition 2.1. (Alias et al. 2017) Let 𝑈 be a non-null set with the generic elements in U denoted 

by 𝑥𝑗 and 𝑅 be an equivalence relation on 𝑈. Let 

𝐴 = {(𝑇𝐴
1(𝑥𝑗), 𝑇𝐴

2(𝑥𝑗), … 𝑇𝐴
𝑝
(𝑥𝑗)) , (𝐼𝐴

1(𝑥𝑗), 𝐼𝐴
2(𝑥𝑗), … 𝐼𝐴

𝑝
(𝑥𝑗)) , (𝐹𝐴

1(𝑥𝑗), 𝐹𝐴
2(𝑥𝑗), …𝐹𝐴

𝑝
(𝑥𝑗)) >

         | (𝑥𝑗) ∈ 𝑈, 𝑗 = 1,2, … , 𝑞} , 

be neutrosophic multisets in 𝑈 with the truth-membership sequence (𝑇𝐴
1, 𝑇𝐴

2, … 𝑇𝐴
𝑝
), 

indeterminacy-membership sequences (𝐼𝐴
1, 𝐼𝐴

2, … 𝐼𝐴
𝑝
)  and falsity-membership sequences 

(𝐹𝐴
1, 𝐹𝐴

2, … 𝐹𝐴
𝑝
). The lower and the upper approximations of A in the approximation (𝑈, 𝑅) 

denoted by 𝑁𝑚(𝐴) and 𝑁𝑚(𝐴) are respectively defined as follows: 

𝑁𝑚(𝐴) =

{
 
 

 
 

⟨𝑥𝑗 ,

(

 
 
 (𝑇𝑁𝑚(𝐴)

1 (𝑥𝑗),𝑇𝑁𝑚(𝐴)
2 (𝑥𝑗),…,𝑇𝑁𝑚(𝐴)

𝑝
(𝑥𝑗))

(𝐼𝑁𝑚(𝐴)
1 (𝑥𝑗),𝐼𝑁𝑚(𝐴)

2 (𝑥𝑗),…,𝐼𝑁𝑚(𝐴)
𝑝

(𝑥𝑗))

(𝐹𝑁𝑚(𝐴)
1 (𝑥𝑗),𝐹𝑁𝑚(𝐴)

2 (𝑥𝑗),…,𝐹𝑁𝑚(𝐴)
𝑝

(𝑥𝑗)))

 
 
 

⟩
|

|
𝒚 ∈ [𝒙𝒋]𝑹

, 𝒙𝒋 ∈ 𝑼

}
 
 

 
 

 

= {〈𝑥𝑗 , (𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), 𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗), 𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗))〉 |𝑦 ∈ [𝑥𝑗]𝑅

, 𝑖, 𝑗 ∈ ℤ+, 𝑥𝑗 ∈ 𝑈} 

 

𝑁𝑚(𝐴)  =

{
 
 

 
 

⟨𝑥𝑗 ,

(

 
 
 (𝑇

𝑁𝑚(𝐴)
1 (𝑥𝑗),𝑇𝑁𝑚(𝐴)

2 (𝑥𝑗),…,𝑇𝑁𝑚(𝐴)
𝑝

(𝑥𝑗))

(𝐼
𝑁𝑚(𝐴)
1 (𝑥𝑗),𝐼𝑁𝑚(𝐴)

2 (𝑥𝑗),…,𝐼𝑁𝑚(𝐴)
𝑝

(𝑥𝑗))

(𝐹
𝑁𝑚(𝐴)
1 (𝑥𝑗),𝐹𝑁𝑚(𝐴)

2 (𝑥𝑗),…,𝐹𝑁𝑚(𝐴)
𝑝

(𝑥𝑗)))

 
 
 
⟩
|

|
𝒚 ∈ [𝒙𝒋]𝑹

, 𝒙𝒋 ∈ 𝑼

}
 
 

 
 

   

             = {〈𝑥𝑗 , (𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), 𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗), 𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), )〉 |𝑦 ∈ [𝑥𝑗]𝑅 , 𝑖, 𝑗 ∈ ℤ

+, 𝑥𝑗 ∈ 𝑈 }  

 

where  

𝑗 = 1, 2, … , 𝑞 and 𝑖 = 1, 2, … , 𝑝 are a positive integer,  

𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = ⋀ 𝑇𝐴

𝑖(𝑦𝑗)𝑦∈[𝑥𝑗]𝑅
,  𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) = ⋁ 𝐼𝐴
𝑖 (𝑦𝑗)𝑦∈[𝑥𝑗]𝑅

,  

𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = ⋁ 𝐹𝐴

𝑖(𝑦𝑗)𝑦∈[𝑥𝑗]𝑅
, 

𝑇
𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = ⋁ 𝑇𝐴

𝑖(𝑦𝑗)𝑦∈[𝑥𝑗]𝑅
,   

𝐼
𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = ⋀ 𝐼𝐴

𝑖 (𝑦𝑗)𝑦∈[𝑥𝑗]𝑅
,   

𝐹
𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = ⋀ 𝐹𝐴

𝑖(𝑦𝑗)𝑦∈[𝑥𝑗]𝑅
.  
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Here ∧ and ∨ denote “min” and “max’’ operators respectively and [𝑥𝑗]𝑅
 is the equivalence 

class of the 𝑥𝑗. Meanwhile, 𝑇𝐴
𝑖(𝑦𝑗), 𝐼𝐴

𝑖 (𝑦𝑗) and 𝐹𝐴
𝑖(𝑦𝑗) are the membership sequences, 

indeterminacy sequences, and non-membership sequences of y concerning 𝐴. It is easy to see 

that 𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), 𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗), 𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) ∈ [0, 1]  moreover, 0 ≤ 𝑇𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) + 𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) +

𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) ≤ 3. Then, 𝑁𝑚(𝐴) is a neutrosophic multisets. Similarly, we have 

𝑇
𝑁𝑚(𝐴)
𝑖 (𝑥), 𝐼

𝑁𝑚(𝐴)
𝑖 (𝑥), 𝐹

𝑁𝑚(𝐴)
𝑖 (𝑥) ∈ [0, 1] and 0 ≤ 𝑇

𝑁𝑚(𝐴)
𝑖 (𝑥) + 𝐼

𝑁𝑚(𝐴)
𝑖 (𝑥) + 𝐹

𝑁𝑚(𝐴)
𝑖 (𝑥) ≤ 3. 

Then, 𝑁𝑚(𝐴) is neutrosophic multisets.  

Since 𝑁𝑚(𝐴) and 𝑁𝑚(𝐴) are two neutrosophic multisets in 𝑈, thus the neutrosophic 

multisets mappings 𝑁𝑚,𝑁𝑚:𝑁𝑚(𝑈) → 𝑁𝑚(𝑈) are respectively referred to as lower and 

upper rough neutrosophic multisets approximation operators and the pair of (𝑁𝑚(𝐴), 𝑁𝑚(𝐴)) 

is called the rough neutrosophic multisets (RNM) in (𝑈, 𝑅), respectively. Rough neutrosophic 

multisets (RNM) is denoted by:  

ℛ𝑁𝑀(𝐴) = (𝑁𝑚(𝐴), 𝑁𝑚(𝐴))  

   = {⟨𝑥𝑗 , (
[𝑇𝑁𝑚(𝐴)

𝑖 (𝑥𝑗), 𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), 𝐹𝑁𝑚(𝐴)

𝑖 (𝑥𝑗)] ,

[𝑇
𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), 𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗), 𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗)]

)⟩ |𝑦 ∈ [𝑥𝑗]𝑅
, 𝑖, 𝑗 ∈ ℤ+, 𝑥𝑗 ∈ 𝑈}. 

The truth membership sequence [𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), 𝑇𝑁𝑚(𝐴)

𝑖 (𝑥𝑗)], indeterminate membership 

sequence [𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), 𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗)] and falsity membership sequence [𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), 𝐹𝑁𝑚(𝐴)

𝑖 (𝑥𝑗)] 

for lower and upper approximation of RNM may be in decreasing or increasing order.  

2.2 Rough set approximation 

Definition 2.2. (Pawlak 1982) Let 𝐸 denote an equivalence relation with the induced partition 

𝑈/𝐸. For a subset of objects 𝑋 ⊆ 𝑈, Pawlak introduces a pair of lower and upper approximation 

as follows: 

𝑎𝑝𝑟𝐸(𝑋) = ⋃{[𝑥]𝐸 ⊂𝑈/𝐸|[𝑥]𝐸 ⊆ 𝑋}, 𝑎𝑝𝑟𝐸(𝑋) = ⋃{[𝑥]𝐸 ⊂𝑈/𝐸|[𝑥]𝐸 ∩ 𝑋 ≠ ∅, 

where 𝑋 is non-empty set, 𝐸 ∈ 𝑋. The pair (𝑎𝑝𝑟𝐸(𝑋), 𝑎𝑝𝑟𝐸(𝑋) ) is referred to as the rough set 

approximation of 𝑋.  

2.3 Accuracy and roughness measure of pawlak’s approximation 

Yao (2010) indicated that it is necessary to introduce a new measure for accuracy and roughness 

of Pawlak’s approximation because of specific properties.  

 

Definition 2.3. For a subset of object 𝑋 ⊆ 𝑈, the accuracy measure is defined as: 

𝛼𝐸(𝑋) =
|𝑎𝑝𝑟𝐸(𝑋)| + |(𝑎𝑝𝑟𝐸(𝑋))

𝑐|

|𝑈|
,  

where 𝑋 is non-empty set, 𝐸 ∈ 𝑋, 𝑎𝑝𝑟𝐸(𝑋) is a lower approximation of set 𝐸, 𝑎𝑝𝑟
𝐸
(𝑋) is an 

upper approximation of set 𝐸, |. | denotes the cardinality of a set 𝐸, and 0 ≤ 𝛼𝐸(𝑋) ≤ 1. Based 

on the accuracy measure, the roughness measure is defined by 𝜌𝐸(𝑋) = 1 − 𝛼𝐸(𝑋). 
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2.4 Similarity measure by vectorial models of information for neutrosophic multisets 

There are two vectorial models of information chosen for neutrosophic multisets (NM) which 

is improved cosine similarity measure and dice similarity measure. 

Let 

𝐴 = {< 𝑥𝑗 , 𝑇𝐴
𝑖(𝑥𝑗), 𝐼𝐴

𝑖 (𝑥𝑗), 𝐹𝐴
𝑖(𝑥𝑗) > (𝑥𝑗) ∈ 𝑋, 𝑖 = 1,2, … , 𝑞} and 𝐵 = {< 𝑥𝑗 , 𝑇𝐵

𝑖 (𝑥𝑗), 𝐼𝐵
𝑖 (𝑥𝑗), 

𝐹𝐵
𝑖 (𝑥𝑗) > (𝑥𝑗) ∈ 𝑋, 𝑖 = 1,2, … , 𝑞} be any two of NM in 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑘}. Then, the 

following is a vectorial model of information for NM.  

 

Definition 2.4. (Pramanik et al. 2016) Improved Cosine similarity measure between 𝐴 and 𝐵 

is defined to be 𝑆𝑁𝑀
𝐶 (𝐴, 𝐵) =

1

𝑘
∑ {

1

𝑞
∑ cos {

𝜋

6
|𝑇𝐴
𝑖(𝑥𝑗) − 𝑇𝐵

𝑖 (𝑥𝑗)| + |𝐼𝐴
𝑖 (𝑥𝑗) − 𝐼𝐵

𝑖 (𝑥𝑗)| +
𝑞
𝑖=1

𝑘
𝑗=1

|𝐹𝐴
𝑖(𝑥𝑗) − 𝐹𝐵

𝑖 (𝑥𝑗)|}}. 

 

Definition 2.5. (Ye & Ye 2014) Dice similarity measure between A and B is defined to be 

𝑆𝑁𝑀
𝐷 (𝐴, 𝐵) =

1

𝑘
∑

1

𝑞
[

∑ |𝑇𝐴
𝑖 (𝑥𝑗)𝑇𝐵

𝑖 (𝑥𝑗)+𝐼𝐴
𝑖 (𝑥𝑗)𝐼𝐵

𝑖 (𝑥𝑗)+𝐹𝐴
𝑖 (𝑥𝑗)𝐹𝐵

𝑖 (𝑥𝑗)|
𝑞
𝑖=1

∑ |(𝑇𝐴
𝑖 (𝑥𝑗)

2
+𝐼𝐴

𝑖 (𝑥𝑗)
2
+𝐹𝐴

𝑖 (𝑥𝑗)
2
)+(𝑇𝐵

𝑖 (𝑥𝑗)
2
+𝐼𝐵

𝑖 (𝑥𝑗)
2
+𝐹𝐵

𝑖 (𝑥𝑗)
2
)|

𝑞
𝑖=1

]𝑘
𝑗=1 . 

Proposition 1. The cosine similarity measure 𝑆𝑁𝑀
𝐶 (𝐴, 𝐵) moreover, dice similarity measure 

𝑆𝑁𝑀
𝐷 (𝐴, 𝐵) for 𝐴 and 𝐵 satisfies the following properties: 

(P1) 0 ≤ 𝑆𝑁𝑀
𝐶 (𝐴, 𝐵) ≤ 1; 0 ≤ 𝑆𝑁𝑀

𝐷 (𝐴, 𝐵) ≤ 1; 

(P2) 𝑆𝑁𝑀
𝐶 (𝐴, 𝐵) = 1 if and only if for 𝐴 = 𝐵; 𝑆𝑁𝑀

𝐷 (𝐴, 𝐵) = 1 if and only if for 𝐴 = 𝐵; 

(P3) 𝑆𝑁𝑀
𝐶 (𝐴, 𝐵) = 𝑆𝑁𝑀

𝐶 (𝐵, 𝐴); 𝑆𝑁𝑀
𝐷 (𝐴, 𝐵) = 𝑆𝑁𝑀

𝐷 (𝐵, 𝐴); 
(P4) 𝑆𝑁𝑀

𝐶 (𝐴, 𝐶) ≤ 𝑆𝑁𝑀
𝐶 (𝐴, 𝐵) and 𝑆𝑁𝑀

𝐶 (𝐴, 𝐶) ≤ 𝑆𝑁𝑀
𝐶 (𝐵, 𝐶) if 𝐶 is NM in 𝑋 and 𝐴 ⊆ 𝐵 ⊆ 𝐶; 

               𝑆𝑁𝑀
𝐷 (𝐴, 𝐶) ≤ 𝑆𝑁𝑀

𝐷 (𝐴, 𝐵) and 𝑆𝑁𝑀
𝐷 (𝐴, 𝐶) ≤ 𝑆𝑁𝑀

𝐷 (𝐵, 𝐶) if 𝐶 is NM in 𝑋 and 𝐴 ⊆ 𝐵 ⊆ 𝐶. 

All the proof for the properties were discussed in (Yao 2010; Ye & Ye 2014; Pramanik et al. 

2016). 

 3. Proposed Roughness and Similarity Measure of Rough Neutrosophic Multisets 

In this section, a roughness for the rough approximation of rough neutrosophic multisets (RNM) 

is defined simultaneously with similarity measure by vectorial models of information. The 

roughness of RNM is calculated between lower and upper approximation instead of mean value 

between them. An improved cosine similarity measure for neutrosophic multisets (Pramanik et 

al. 2016) and a dice similarity measure between single-valued neutrosophic multisets (Ye & Ye 

2014) was used to define the similarity measure based on basis RNM theory.  

       In our case, we only consider the same multiplicity (𝑙) of all NM number where 𝑙(𝑥𝑗: 𝐴) =

𝑙(𝑥𝑗: 𝐵) moreover, 𝑗 = 1, 2, … , 𝑘. Assume that 𝐴 and 𝐵 be any two rough neutrosophic 

multisets in the universe of discourse 𝑋 as followed: 

𝐴 = 〈𝑥𝑗 , (𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), 𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗), 𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) ) , (𝑇𝑁𝑚(𝐴)

𝑖 (𝑥𝑗), 𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), 𝐹𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) ) |𝑥𝑗 ∈

𝑋, 𝑖 = 1,2, … , 𝑞〉 and 

𝐵 = 〈𝑥𝑗 , (𝑇𝑁𝑚(𝐵)
𝑖 (𝑥𝑗), 𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), 𝐹𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) ) , (𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), 𝐼𝑁𝑚(𝐵)
𝑖 (𝑥𝑗), 𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) ) |𝑥𝑗 ∈

𝑋, 𝑖 = 1,2, … , 𝑞〉  
in 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑘  }. 
 

Then, we define the roughness and similarity measure for RNM 𝐴 and 𝐵. 
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Definition 3.1. The improved cosine similarity measure between RNM 𝐴 and 𝐵 is defined as 

follows: 

𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) =

1

𝑘
∑ {

1

𝑞
∑ cos {

𝜋

6
(

|∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗)|

+ |∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗)|

 +  |∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗)|

)}
𝑞
𝑖=1 }𝑘

𝑗=1 .                     (1)                                                                                                                                             

 

where 

∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 1 − (

𝑇𝑁𝑚(𝐴)
𝑖

(𝑥𝑗)+(𝑇𝑁𝑚(𝐴)
𝑖

(𝑥𝑗))

𝑐

|𝑋|
), ∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) = 1 − (
𝑇𝑁𝑚(𝐵)
𝑖

(𝑥𝑗)+(𝑇𝑁𝑚(𝐵)
𝑖

(𝑥𝑗))

𝑐

|𝑋|
),  

∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 1 − (

𝐼𝑁𝑚(𝐴)
𝑖

(𝑥𝑗)+(𝐼𝑁𝑚(𝐴)
𝑖

(𝑥𝑗))

𝑐

|𝑋|
), ∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) = 1 − (
𝐼𝑁𝑚(𝐵)
𝑖

(𝑥𝑗)+(𝐼𝑁𝑚(𝐵)
𝑖

(𝑥𝑗))

𝑐

|𝑋|
),  

∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 1 − (

𝐹𝑁𝑚(𝐴)
𝑖

(𝑥𝑗)+(𝐹𝑁𝑚(𝐴)
𝑖

(𝑥𝑗))

𝑐

|𝑋|
), and ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) = 1 − (
𝐹𝑁𝑚(𝐵)
𝑖

(𝑥𝑗)+(𝐹𝑁𝑚(𝐵)
𝑖

(𝑥𝑗))

𝑐

|𝑋|
). 

 

Here,  ∆ denote “roughness approximation” operator by rough approximation between the lower and 

upper approximation of RNM, and |. | is a cardinality of the universal X, respectively. Such that, 

 

∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), ∆𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗), ∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) ∊ [0, 1], ∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), ∆𝐼𝑁𝑚(𝐵)
𝑖 (𝑥𝑗), ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) ∊ [0, 1],  

0 ≤ ∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) + ∆𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) + ∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) ≤ 3,   

0 ≤ ∆𝑇𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) + ∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) + ∆𝐹𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) ≤ 3 , 

for 𝑖 = 1,2, … , 𝑞 and 𝑗 = 1,2, … , 𝑘. 

 

Definition 3.2. The dice similarity measure between RNM 𝐴 and 𝐵 is defined as follows: 

𝑆𝑅𝑁𝑀
𝐷 (𝐴, 𝐵) =

2

𝑘
∑

1

𝑞
[∑

𝑈

𝑉

𝑞
𝑖=1 ]𝑘

𝑗=1                                                                                            (2) 

where,  

𝑈 = |∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗)∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) + ∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗)∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) + ∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗)∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗)|      

𝑉 = ((∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗))

2
+ (∆𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗))
2
+ (∆𝐹𝑁𝑚(𝐴)

𝑖 (𝑥𝑗))
2
) + 

        ((∆𝑇𝑁𝑚(𝐵)
𝑖 (𝑥𝑗))

2
+ (∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗))
2
+ (∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗))
2
) 

 

The operator uses for dice similarity measure is the same as an improved cosine similarity 

measure. Each similarity measure between two RNM 𝐴 and 𝐵 are undefined when: 

𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) = 𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 0; 𝑇𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) = 𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 𝐹𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) = 0, 

and 𝑇𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) = 𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) = 𝐹𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) = 0; 𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) = 𝐼𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) = 𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) =

0 for all 𝑥𝑗 ∈ 𝑋. 

 

Proposition 2.  Let 𝐴 and 𝐵 be two RNM-sets. Then, each similarity measure 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) and 

𝑆𝑅𝑁𝑀
𝐷 (𝐴, 𝐵) satisfies the following properties: 

(P1) 0 ≤ 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) ≤ 1; 0 ≤ 𝑆𝑅𝑁𝑀

𝐷 (𝐴, 𝐵) ≤ 1 

(P2) 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) = 1 if and only if for 𝐴 = 𝐵; 𝑆𝑅𝑁𝑀

𝐷 (𝐴, 𝐵) = 1 if and only if for 𝐴 = 𝐵; 

(P3) 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) = 𝑆𝑅𝑁𝑀

𝐶 (𝐵, 𝐴); 𝑆𝑅𝑁𝑀
𝐷 (𝐴, 𝐵) = 𝑆𝑅𝑁𝑀

𝐷 (𝐵, 𝐴); 
(P4) 𝑆𝑅𝑁𝑀

𝐶 (𝐴, 𝐶) ≤ 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) and 𝑆𝑅𝑁𝑀

𝐶 (𝐴, 𝐶) ≤ 𝑆𝑅𝑁𝑀
𝐶 (𝐵, 𝐶) if 𝐶 is RNM in 𝑋 and 𝐴 ⊆ 
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               𝐵 ⊆ 𝐶; 

               𝑆𝑅𝑁𝑀
𝐷 (𝐴, 𝐶) ≤ 𝑆𝑅𝑁𝑀

𝐷 (𝐴, 𝐵) and 𝑆𝑅𝑁𝑀
𝐷 (𝐴, 𝐶) ≤ 𝑆𝑅𝑁𝑀

𝐷 (𝐵, 𝐶) if 𝐶 is RNM in 𝑋 and 𝐴 ⊆ 

               𝐵 ⊆ 𝐶. 

 
Proof.  

(P1) As ∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗), ∆𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗), ∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) ∊ [0, 1], ∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), ∆𝐼𝑁𝑚(𝐵)
𝑖 (𝑥𝑗), ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) ∊ 

[0, 1] for all 𝐴, 𝐵 ∈ 𝑅𝑁𝑀, the similarity measure 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) based on cosine function also lies between 

[0, 1]. Hence, 0 ≤ 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) ≤ 1. It is also true for 𝑆𝑅𝑁𝑀

𝐷 (𝐴, 𝐵) according to the inequality 

𝑎2 + 𝑏2 ≥ 2𝑎𝑏 for equation 2. Hence, 0 ≤ 𝑆𝑅𝑁𝑀
𝐷 (𝐴, 𝐵) ≤ 1.  

 
(P2) For any two RNM  𝐴 and 𝐵, if 𝐴 =  𝐵, then the following relations hold for any 

                ∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = ∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), ∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = ∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), ∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), 

 i.e., 

                𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗),𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗),  

                𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), 𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗),  

                𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗),𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = 𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), for 𝑖 = 1,2, … , 𝑞 and 𝑗 = 1,2,… , 𝑘. 

which states that 

                |𝑇𝑁𝑚(𝐴)
𝑖

(𝑥𝑗) − 𝑇𝑁𝑚(𝐵)
𝑖

(𝑥𝑗)| = 0, |𝑇𝑁𝑚(𝐴)
𝑖

(𝑥𝑗) − 𝑇𝑁𝑚(𝐵)
𝑖

(𝑥𝑗)| = 0,  

                  |𝐼𝑁𝑚(𝐴)
𝑖

(𝑥𝑗) − 𝐼𝑁𝑚(𝐵)
𝑖

(𝑥𝑗)| = 0, |𝐼𝑁𝑚(𝐴)
𝑖

(𝑥𝑗) − 𝐼𝑁𝑚(𝐵)
𝑖

(𝑥𝑗)| = 0,  

                  |𝐹𝑁𝑚(𝐴)
𝑖

(𝑥𝑗) − 𝐹𝑁𝑚(𝐵)
𝑖

(𝑥𝑗)| = 0, and |𝐹𝑁𝑚(𝐴)
𝑖

(𝑥𝑗) − 𝐹𝑁𝑚(𝐵)
𝑖

(𝑥𝑗)| = 0.  

Thus, cos(0) = 1. Hence, 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) = 1. The proof is clear for 𝑆𝑅𝑁𝑀

𝐷 (𝐴, 𝐵). Hence, 

𝑆𝑅𝑁𝑀
𝐷 (𝐴, 𝐵) = 1.  

Conversely, If 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) = 1, this implies  

                        |∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), | = 0, |∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), | = 0 

                     |∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), | = 0,  

since cos(0) = 1. This resulted from that  

                      ∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = ∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), ∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = ∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗), and  

                      ∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) = ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗),  for all 𝑖, 𝑗 values.   

Similar to 𝑆𝑅𝑁𝑀
𝐷 (𝐴, 𝐵) = 1. Hence 𝐴 = 𝐵.  

 

(P3) It is obvious that: 

                   ∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) ≠ ∆𝑇𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐴)

𝑖 (𝑥𝑗),  

                     ∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) ≠ ∆𝐼𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗)  

and             ∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) ≠ ∆𝐹𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐴)

𝑖 (𝑥𝑗).  

 

However,  

                  |∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗)| = |∆𝑇𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐴)

𝑖 (𝑥𝑗)|, 

                  |∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗)| = |∆𝐼𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗)|  

and |∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗)| = |∆𝐹𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐴)

𝑖 (𝑥𝑗)|. 

 

Hence, 

   𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) =

1

𝑘
∑ {

1

𝑞
∑ cos {

𝜋

6
|∆𝑇𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐵)
𝑖 (𝑥𝑗)| + |∆𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐵)
𝑖 (𝑥𝑗)| +

𝑞
𝑖=1

𝑘
𝑗=1

                                   |∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗)|}} 

                          =
1

𝑘
∑ {

1

𝑞
∑ cos {

𝜋

6
|∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗)| + |∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗)| +

𝑞
𝑖=1

𝑘
𝑗=1
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                        |∆𝐹𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐴)

𝑖 (𝑥𝑗)|}} = 𝑆𝑅𝑁𝑀
𝐶 (𝐵, 𝐴). 

 

For 𝑆𝑅𝑁𝑀
𝐷 (𝐴, 𝐵), the proof of can is made similarly. 

 

(P4) Let 𝐴 ⊆ 𝐵 ⊆ 𝐶, implies that  

                     ∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) ≤ ∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) ≤ ∆𝑇𝑁𝑚(𝐶)
𝑖 (𝑥𝑗), ∆𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) ≥ ∆𝐼𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) ≥ ∆𝐼𝑁𝑚(𝐶)

𝑖 (𝑥𝑗),  

                     ∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) ≥ ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) ≥ ∆𝐹𝑁𝑚(𝐶)
𝑖 (𝑥𝑗) for every  𝑥𝑗∊ 𝑋;  

i.e.,   

                      𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) ≤ 𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) ≤ 𝑇𝑁𝑚(𝐶)
𝑖 (𝑥𝑗),𝑇𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) ≤ 𝑇𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) ≤ 𝑇𝑁𝑚(𝐶)

𝑖 (𝑥𝑗),  

                       𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) ≥ 𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) ≥ 𝐼𝑁𝑚(𝐶)
𝑖 (𝑥𝑗),     𝐼𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) ≥ 𝐼𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) ≥ 𝐼𝑁𝑚(𝐶)

𝑖 (𝑥𝑗),  

                      𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) ≥ 𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗) ≥ 𝐹𝑁𝑚(𝐶)
𝑖 (𝑥𝑗),    𝐹𝑁𝑚(𝐴)

𝑖 (𝑥𝑗) ≥ 𝐹𝑁𝑚(𝐵)
𝑖 (𝑥𝑗)

≥ 𝐹
𝑁𝑚(𝐶)
𝑖 (𝑥𝑗)                                                 

for every  𝑥𝑗∊ 𝑋. Then, we obtain the following relation: 

   a)   |∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐵)

𝑖 (𝑥𝑗)| ≤ |∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐶)

𝑖 (𝑥𝑗)|,  

          |∆𝑇𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐶)

𝑖 (𝑥𝑗)| ≤ |∆𝑇𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝑇𝑁𝑚(𝐶)

𝑖 (𝑥𝑗)|, 

    b)  |∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐵)

𝑖 (𝑥𝑗)| ≤ |∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐶)

𝑖 (𝑥𝑗)|, 

         |∆𝐼𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐶)

𝑖 (𝑥𝑗)| ≤ |∆𝐼𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐼𝑁𝑚(𝐶)

𝑖 (𝑥𝑗)|, 

    c)  |∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐵)

𝑖 (𝑥𝑗)| ≤ |∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐶)

𝑖 (𝑥𝑗)|, 

         |∆𝐹𝑁𝑚(𝐵)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐶)

𝑖 (𝑥𝑗)| ≤ |∆𝐹𝑁𝑚(𝐴)
𝑖 (𝑥𝑗) − ∆𝐹𝑁𝑚(𝐶)

𝑖 (𝑥𝑗)| . 

 

Hence, 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐶) ≤ 𝑆𝑅𝑁𝑀

𝐶 (𝐴, 𝐵) and 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐶) ≤ 𝑆𝑅𝑁𝑀

𝐶 (𝐵, 𝐶) since cosine function is a decreasing 

function within the interval [0,
𝜋

2
]. For 𝑆𝑅𝑁𝑀

𝐷 (𝐴, 𝐵), the proof of can is made similarly. 

Therefore, the proof is complete.  

4. Roughness and Similarity Measure Based Decision Making Under Rough 

Neutrosophic Multisets Environment  

4.1 Illustrative example 

By adapting the content of medical diagnosis from Ye and Ye (2014), we presented the following 

example to validate the proposed roughness and similarity measure of RNM theory via real life 

application which is in medical environment. 

 

Example 1. Let B = {Viral Fever (Vf)} be a disease and S = {Temperature (T), Cough (C), 

Throat pain (Tp), Headache (H), Body pain (Bp)}= {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5} be a set of symptoms. 

The relation between patient and symptoms, and between disease and symptoms are considered 

in the same equivalence relation. For diagnosis, the patient 𝐴 is kept under supervision for one 

day, and his symptoms pattern are monitored at the three-time inspection (morning: 6.00 am, 

noon: 12.00 pm, night: 6.00 pm). There are three specified degree of membership function for 

each time inspection which is for truth description of symptom, indeterminacy description 

symptom and falsity description symptom. The findings of the patient 𝐴 can be summarized 

and represented with the RNM as follows: 
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𝐴 =

{
  
 

  
 
〈𝑥1, [((0.8, 0.6, 0.5), (0.3, 0.2, 0.1), (0.4, 0.2, 0.1))], [((0.8, 0.2, 0.1), (0.5, 0.4, 0.3), (0.6, 0.5, 0.5))]〉,

〈𝑥2, [((0.5, 0.4, 0.3), (0.4, 0.4, 0.3), (0.6, 0.3, 0.4))], [((0.7, 0.1, 0.2), (0.3, 0.4, 0.1), (0.5, 0.3, 0.3))]〉,

〈𝑥3, [((0.2, 0.1, 0.0), (0.3, 0.2, 0.2), (0.8, 0.7, 0.7))], [((0.6, 0.2, 0.2), (0.5, 0.3, 0.4), (0.6, 0.2, 0.4))]〉,

〈𝑥4, [((0.7, 0.6, 0.5), (0.3, 0.2, 0.1), (0.4, 0.3, 0.2))], [((0.8, 0.0, 0.2), (0.9, 0.7, 0.4), (0.6, 0.8, 0.3))]〉,

〈𝑥5, [((0.4, 0.3, 0.2), (0.6, 0.5, 0.5), (0.6, 0.4, 0.4))], [((0.6, 0.5, 0.5), (0.8, 0.3, 0.5), (0.6, 0.2, 0.2))]〉}
  
 

  
 

 

 

      At 6.00 am, the truth membership degree for temperature (𝑥1) which surely belong, and 

which possibly belong to patient A is equal to 0.8. At 12.00 pm, the indeterminate membership 

degree for temperature (𝑥1) which surely belong to patient 𝐴 is equal to 0.2 and which possibly 

belong to patient A is equal to 0.4. At 6.00 pm, the falsity membership degree for temperature 

(𝑥1) which surely belong to patient 𝐴 is equal to 0.1 and which possibly belong to patient A is 

equal to 0.5. 

     Suppose the standard relation between disease and symptoms are represented by the 

following RNM as: 

 
𝐵 = 𝑉𝑓

=

{
  
 

  
 
〈𝑥1, [((0.8, 0.1, 0.1), (0.6, 0.2, 0.2), (0.3, 0.4, 0.1))], [((0.4, 0.4, 0.4), (0.7, 0.5, 0.6), (0.5, 0.3, 0.2))]〉,

〈𝑥2, [((0.2, 0.7, 0.1), (0.5, 0.8, 0.9), (0.4, 0.4, 0.4))], [((0.8, 0.0, 0.2), (0.9, 0.7, 0.4), (0.6, 0.2, 0.2))]〉,

〈𝑥3, [((0.3, 0.5, 0.2), (0.5, 0.4, 0.3), (0.6, 0.5, 0.5))], [((0.8, 0.6, 0.7), (0.3, 0.5, 0.4), (0.4, 0.7, 0.5))]〉,

〈𝑥4, [((0.5, 0.3, 0.2), (0.5, 0.5, 0.7), (0.5, 0.8, 0.9))], [((0.5, 0.3, 0.3), (0.6, 0.2, 0.4), (0.6, 0.8, 0.3))]〉,

〈𝑥5, [((0.5, 0.4, 0.1), (0.5, 0.7, 0.6), (0.6, 0.2, 0.2))], [((0.6, 0.5, 0.5), (0.8, 0.3, 0.5), (0.7, 0.6, 0.5))]〉}
  
 

  
 

 

 

     At 6.00 am, the truth membership degree for cough (𝑥2) which surely belong to viral fever 

is equal to 0.2, and which possibly belong to viral fever is equal to 0.8. At 12.00 pm, the 

indeterminate membership degree for cough (𝑥2) which surely belong to viral fever is equal to 

0.8, and which possibly belong to viral fever is equal to 0.7. At 6.00 pm, the falsity membership 

degree for cough (𝑥2) which surely belong to viral fever is equal to 0.4, and which possibly 

belong to viral fever is equal to 0.2. 

     Then, the following algorithm is applied to diagnose whether a patient A is suffering from 

viral fever. This algorithm is first introduced by Ye and Ye (2014). The data involve for their 

research is involving single valued neutrosophic multisets. But in step three, the new approach 

is introducing for this algorithm which is to apply a roughness for lower and upper 

approximation which is suitable for RNM cases.   

 

Step 1: Develop a model for RNM-sets for medical reports, determine from a medical person.  

Step 2: Construct RNM for patient A. 

Step 3: Calculate the roughness between the model RNM for patient A and roughness between 

the model for viral fever. 

Step 4: Calculate the similarity measure between the model RNM for patient A and the model 

for viral fever. 

Step 5: If the similarity measure is greater than 0.5, then the patient A may possibly suffer from 

the viral fever, and if the similarity measure is less than 0.5, then patient A may not possibly 

suffer from the viral fever.  

Now, we can compute the similarity given roughness and similarity measure by vectorial 

models of information, which is cosine similarity measure and dice similarity measure. The 

comparison from the other existing method under NM environment is also discussed as shown 

in Table 1.  
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Table 1: Similarity measure values 

Similarity Measure Values 

Proposed 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵)  0.9978 

Proposed 𝑆𝑅𝑁𝑀
𝐷 (𝐴, 𝐵) 0.9968 

     𝑆𝑁𝑀
𝐶 (𝐴, 𝐵) (Ye, 2015) 0.9443 

     𝑆𝑁𝑀
𝐷 (𝐴, 𝐵) (Ye &Ye, 2014) 0.7810 

 

 

     All the similarity result is greater than 0.5, indicate that the patient A is may possibly 

suffering from viral fever. But the proposed similarity measure of 𝑆𝑅𝑁𝑀
𝐶 (𝐴, 𝐵) and 𝑆𝑅𝑁𝑀

𝐷 (𝐴, 𝐵) 
give the closeness value for similarity measure (close to 1.0) which is 0.9978 and 0.9968. 

Therefore, the proposed method is more accurate compared to previous method. Besides that, 

the roughness between lower and upper approximation of RNM also give an important criterion 

for similarity measure especially for vectorial information model.  

5. Conclusion 

This paper has introduced the roughness the similarity measure of rough neutrosophic multisets 

(RNM) by the vectorial model of information which is cosine similarity measure and dice 

similarity measure. The lower and upper approximation of the RNM give a roughness value 

between the information given, and the similarity is used for the incomplete of the information. 

All the similarity measure properties are completely defined in this paper. The advantages of 

the proposed method are compared with the existing method under a neutrosophic environment 

in medical diagnosis, and the result showed that the proposed method is more acceptable 

because of the highest score involving the roughness approximation and similarity values. The 

measure proposed can be further extended to other similarity measure methods such as 

trigonometry similarity measure and the rough approximation will be added to find the 

roughness of the information given. As a conclusion, this paper proves that the RNM is valuable 

for a complicated situation involving lower and upper approximation and three multiple 

membership degree values.  
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