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ABSTRACT Fuzzy risk analysis is diffusely applied in risk assessment of components by the semantic
model. Due to the fuzzy characteristic in the process of fuzzy risk analysis, analysis parameters are imprecise
and vague. Therefore, the determination of the risk of failure is challenging part of fuzzy risk analysis with
existing methods. Hence, in this paper, a semantic risk analysis method based on the technique for order
performance by similarity to ideal solution (TOPSIS) under a single-valued neutrosophic set (SVNS) is
presented. First, a five-member linguistic term set is introduced and these linguistic terms are expressed
in terms of the generalized trapezoidal fuzzy numbers. Then, the linguistic term is transformed into the
SVNS and generated SVNS is fused by single-valued neutrosophic prioritized weighted average (SVNPWA)
operator. On this basis, the TOPSIS approach is used to obtain the final rank to ascertain future risk. Finally,
a fuzzy risk analysis example is conducted to illustrate the effectiveness of the proposed method. Further,
the out-performance of the proposed method is illustrated in comparisons to the existing methods.

INDEX TERMS Fuzzy risk analysis, linguistic term, SVNS, SVNPWA operator, TOPSIS.

I. INTRODUCTION
Fuzzy risk analysis plays a significant role in risk assessment
of components to estimate risk of failure. In the process
of fuzzy risk analysis, people sometimes feel more conve-
nient to express their preferences by semantic model instead
of quantitative form [1]. In addition, analysis parameters
are imprecise and vague due to fuzzy characteristic. There-
fore, the semantic model has gained popularity among the
researchers, and it is an effective way tomodel fuzzy numbers
that support the semantics of the linguistic terms [2]. To deal
with fuzzy risk analysis problems, the risk of component
is assessed by linguistic terms and their equivalent fuzzy
numbers. Schmucker [3] first introduced a risk evaluation
way based on sub-components in production system by using
two parameters, which are probability of failure and severity
of loss. And the parameters are expressed as linguistic terms.
Generally, it happens that the linguistic term is converted
to the corresponding fuzzy number. For example, a nine-
member set of linguistic terms was proposed by Zhang [4],
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and each linguistic term is indicated by a generalized trape-
zoidal fuzzy number.

A number of theories have been developed on fuzzy risk
analysis, such as Bayes theory [5]–[7], Dempster-Shafer the-
ory of evidence [8]–[13], fuzzy set theory [14]–[19], rough
sets [20]–[22], intuitionistic fuzzy sets [23]–[25], D num-
bers [26] and Z numbers [27]–[29]. However, neutrosophic
set is rarely used in fuzzy risk analysis. Hence, the single-
valued neutrosophic sets are applied in fuzzy risk analysis
in this paper. The neutrosophic logic and neutrosophic set
(NS), first proposed by Smarandache in 1998, which clearly
refers to neutral knowledge as independent component [30].
The NS is characterized by three membership functions
which describe the function of truth, indeterminacy and fal-
sity [31]. And the three functions assume values lie in the non-
standard interval of ]0−, 1+[. Smarandache [30] in 1998 and
Haibin et al. [32] in 2010 clearly pointed out that the non-
standard interval is impractical to apply in realistic problems.
In view of this, Smarandache [30] and Haibin et al. [32] intro-
duced the conceptualization of single-valued neutrosophic set
(SVNS), which is defined in the standard unit interval of
[0, 1]. As three membership values in [0, 1], it is able to seize
the intuitiveness of the process of allocating membership
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values [33]. Subsequently, studies of SVNS have focused
on defining operations, correlation coefficient measures
[34]–[36], similarity measures [37]–[41], distance mea-
sures [42]–[45] and aggregation operators [46]–[54]. For
instance, Liu [46] introduced a single-valued neutro-
sophic number-weighted averaging (SVNNWA) operator
and a single-valued neutrosophic number-weighted geomet-
ric (SVNNWG) operator based on Archimedean t-conorm
and t-norm (ATT). Furthermore, Garg et al. [49] extended
Muirhead mean (MM) aggregation operator, and then devel-
oped single-valued neutrosophic (SVN) prioritized MM
(SVNPMM) and SVN prioritized dual MM (SVNPDMM).

In general, fuzzy risk analysis is investigated based on
either similarity measures or ranking. To deal with compli-
cated problems, fuzzy risk analysis has been applied based on
both similarity measures and ranking of fuzzy numbers [55].
The similarity measures are commonplace method which
have attractedmany researchers tomeasure the degree of sim-
ilarity in fuzzy risk analysis. Based on centers-of-gravity of
membership and nonmembership functions, Zhou et al. [56]
introduced a weighted similarity measure between trape-
zoidal intuitionistic fuzzy numbers. Patra and Mondal [57]
developed a similarity measure using geometric distance,
area and height of two trapezoidal valued fuzzy numbers.
Khorshidi and Nikfalazar [58] proposed a new similarity
measure between generalized trapezoidal fuzzy numbers
using geometric distance, distance of COG, area difference,
height difference, and perimeter ratio. Based on the geo-
metric distance, radius of gyration points and the heights of
the upper and the lower generalized fuzzy numbers of the
interval-valued fuzzy numbers, Chutia and Rituparna [59]
proposed a new similarity measure method. With the help of
geometric distance, area and height, Patra and Mondal [57]
proposed a similarity measure method between trapezoidal
fuzzy numbers. Some ranking methods have also been stud-
ied by some researchers. Chen et al. [60] calculated the areas
on the positive side, the negative side and the centroid of the
generalized fuzzy numbers to evaluate the ranking scores of
the generalized fuzzy numbers. Madhuri et al. [61] proposed
a new ranking for generalized trapezoidal fuzzy numbers
based on circumcentre of centroids. The decision maker opti-
mistic attitude and the index of modality were considered
while ranking fuzzy numbers, Shankar et al. [62] proposed a
ranking method based on orthocenter of centroids. A simple
point-wise arithmetic operation was applied, Ramli et al. [63]
introduced the Jaccard ranking index with algebraic product
t-norm in dealing with fuzzy risk analysis problem. As the
ranking method mentioned in literature, most of methods
cannot be applied to crisp numbers which are a special case
of fuzzy numbers. And some methods are inconsistent with
human intuition and shows bad results in many situations.
Furthermore, somemethod cannot fast obtain the suitable risk
calculating results when dealing with complex risk analysis
issues.

From the above analysis, prior studies rarely employed
SVNS to deal with fuzzy risk analysis problems and some

drawbacks in the existing ranking methods. In order to solve
those problems, this paper creates a semantic risk analysis
method based on single-valued neutrosophic sets, using the
technique for order performance by similarity to ideal solu-
tion (TOPSIS) rankingmethod that have been applied in order
to estimate risk of failure. A concept of SVNS developed
by Haibin et al. [32] is introduced in this paper to capture
the intuitiveness of the process of assigning membership
values. The truth-membership function, the indeterminacy-
membership function and the falsity-membership function
of SVNS are fuzzy values rather than exact numbers. This
gives SVNS the ability to handle uncertainty, imprecision,
incompletion and indetermination of information. A five-
member linguistic terms set is introduced in this paper, and
these linguistic terms are associated with the generalized
trapezoidal fuzzy numbers. In the case of considering the
single-valued neutrosophic value, the SVNSs are generated
by the linguistic terms. Then, the generated SVNSs are fused
by single-valued neutrosophic prioritized weighted average
(SVNPWA) operator. Afterwards, the risk of failure can be
determined by the application of TOPSIS method. Although,
the proposed method is entirely based on existing concepts,
yet excellent results are being seen in comparisons with
the existing method. The proposed method not only over-
comes the drawbacks of the existing methods but also better
expresses uncertain information to improve the reliability of
fuzzy risk analysis.

The rest of this paper is organized as follows. Section II
briefly introduces basic concepts of generalized trapezoidal
fuzzy numbers, SVNS and the (SVNPWA) operator as well
as some operations for SVNS. In Section III, a five-member
linguistic terms set is introduced and procedures of the pro-
posed method are illustrated in detail. In Section IV, the
proposed method is applied to deal with fuzzy risk analysis
problems and comparison analysis are given to illustrate the
effectiveness and feasibility of the proposed methodology.
Finally, Section V gives the concluding remarks.

II. PRELIMINARIES
A. GENERALIZED TRAPEZOIDAL FUZZY NUMBERS
Chen [64], [65] proposed the concept of generalized trape-
zoidal fuzzy numbers, defined as follows:
Definition 1: Let A be a generalized trapezoidal fuzzy

number, A = (a1, a2, a3, a4, ωA), where a1, a2, a3 and a4
are real values, ωA denotes the height of the generalized
trapezoidal fuzzy number A, and 0 ≤ ωA ≤ 1, as shown
in Fig.1.

When ωA = 1, the generalized trapezoidal fuzzy
number A becomes a traditional fuzzy number, denoted as
A = (a1, a2, a3, a4). When a1 < a2 = a3 < a4, the gen-
eralized trapezoidal fuzzy number A becomes a triangular
fuzzy number. When a1 = a2 and a3 = a4, the generalized
trapezoidal fuzzy number A becomes a crisp interval fuzzy
number. When a1 = a2 = a3 = a4 and ωA = 1,
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FIGURE 1. A generalized trapezoidal fuzzy number A.

the generalized trapezoidal fuzzy number A becomes a crisp
value.

B. THE SINGLE-VALUED NEUTROSOPHIC SET
By extending neutrosophic set, Haibin et al. [32] intro-
duced the definition of the single-valued neutrosophic set as
follows:
Definition 2: Let X be a finite set, with a element of X

denoted by x. A single-valued neutrosophic set P on X is:

P = {〈x,TP (x) , IP (x) ,FP (x)〉 |x ∈ X} , (1)

where TP (x) , IP (x) and FP (x) are the truth-membership
function, the indeterminacy-membership function and the
falsity-membership function, respectively. And for all x ∈ X ,
clearly satisfy condition:

0 ≤ TP (x) , IP (x) , FP (x) ≤ 1,

0 ≤ TP (x)+ IP (x)+ FP (x) ≤ 3. (2)

For convenience, a single-valued neutrosophic set P can be
denoted briefly as x = (Tx , Ix ,Fx).
In addition, Nancy and Garg [66] proposed the score func-

tion S of the single-valued neutrosophic number, as follows:

S (x) =
1+ (Tx −2 Ix −Fx) (2− Tx −Fx)

2
. (3)

Based on the above score function, Nancy and Garg [66]
proposed a compare method for the single-valued neutro-
sophic numbers. For any two single-valued neutrosophic
numbers x = (Tx , Ix ,Fx) and y =

(
Ty, Iy,Fy

)
, if S(x) > S(y)

then x > y.
Majumdar and Samanta [67] defined Euclidean distance of

the single-valued neutrosophic sets:
Definition 3: Let P = {〈x1,TP (x1) , IP (x1) ,FP (x1)〉 ,

. . . , 〈xn,TP (xn) , IP (xn) ,FP (xn)〉} and Q =
{〈
x1,TQ

(x1) , IQ (x1) ,FQ(x1)
〉
, . . . ,

〈
xn,TQ(xn) , IQ (xn) , FP ( xn)〉}.

Then the Euclidean distance between two SVNSs P and Q
can be defined as follows:

d (P,Q)

=

√√√√ n∑
i=1

{ (
TP (xi)−TQ (xi)

)2
+
(
IP (xi)− IQ (xi)

)2
+
(
FP (xi)−FQ (xi)

)2
}

, (4)

and the normalized Euclidean distance between two
SVNSs P and Q can be defined as follows:

dn (P,Q)

=

√√√√ 1
3n

n∑
i=1

{ (
TP (xi)−TQ (xi)

)2
+
(
IP (xi)− IQ (xi)

)2
+
(
FP (xi)− FQ (xi)

)2
}

.

(5)

C. THE SVNPWA OPERATOR
The integration operator of the single-valued neutrosophic set
is given as follows [68]:
Definition 4: For a collection of SVNSs Pi = {xi,TP (xi),

IP (xi) ,FP (xi)}(i = 1, 2, . . . , n), the SVNPWA Operator is
defined as follows:

SVNPWA(P1,P2, . . . ,Pn)

=


1−

n∏
i=1

(1− TP (xi))

Hi
n∑
i=1

Hi
,
n∏
i=1

(IP (xi))

Hi
n∑
i=1

Hi
,

n∏
i=1

(FP (xi))

Hi
n∑
i=1

Hi

 . (6)

where H1 = 1 and Hi =
i−1∏
k=1

S (Pi)(i = 2, 3, · · · , n).

III. THE PROPOSED METHOD
In the following, a semantic risk analysis method based on
SVNSs and TOPSIS ranking that has been introduced to
deal with the fuzzy risk analysis problem. Schmucker [3]
first discussed the risk analysis problem under fuzzy environ-
ment. Here, a component C is built-up by n sub-components
Ci, (i = 1, 2, . . . , n). Now, each sub-components Ci is
evaluated by two evaluating items probability of failure and
severity of loss. As the probabilistic values of these items
are imprecise and vague due to fuzzy characteristic, so these
items are more precisely assessed by linguistic terms. The
linguistic term Ri denotes the probability of failure of the sub-
component Ci and the linguistic termWi denotes the severity
of loss of the sub-componentCi. On this basis, the structure of
a fuzzy risk analysis is shown in Fig. 2 [3]. Then the values
of linguistic items are represented by the generalized fuzzy
numbers. In this paper, a 5-member linguistic term set is
used to represent the linguistic terms. Each linguistic term
in the 5-member linguistic term set is corresponding to a
generalized trapezoidal fuzzy number, as shown in Table 1.
Fig. 3 illustrates five trapezoidal fuzzy numbers provided
in Table 1.

Suppose that there is a component C contains n sub-
components C1, C2, . . ., and Cn. And suppose that each sub-
component is evaluated by two evaluating items probability
of failure Rij and severity of loss Wij, where i = 1, 2, . . . , n,
on behalf of n sub-components. In addition, j = VL, L, M,
H, VH, respectively, on behalf of five members linguistic
term: very-low, low, medium, high and very-high. For exam-
ple, R1VL means linguistic term very-low of the 1-th sub-
component. The Rij and Wij are linguistic terms are shown
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FIGURE 2. Structure of fuzzy risk analysis [3].

TABLE 1. A 5-member linguistic term set.

FIGURE 3. Five trapezoidal fuzzy numbers.

in Table 1. The flowchart of the proposed method is presented
as Fig. 4. The proposed method for dealing with fuzzy risk
analysis is now presented as follows:

(i) The linguistic terms Rij and Wij are transformed
to SVNSs. The linguistic terms and their equiva-
lent generalized trapezoidal fuzzy numbers Aij =(
a1ij, a2ij, a3ij, a4ij

)
are shown in Table 1. A SVNS

xij =
(
Txij, Ixij,Fxij

)
is characterized by the truth-

membership function, the indeterminacy-membership
function and the falsity-membership function. Three
functions are generally determined by practical expe-
rience and fuzzy statistic. Based on the characteristics
of SVNS and the generalized trapezoidal fuzzy number,
Eq. (7) is proposed to obtain three functions of SVNS,
as follows:

Txij =
a2ij+ a3ij

2
,

Ixij = 1−
(
a4ij− a1ij

)
,

Fxij = 1− Txij . (7)

(ii) Due to the complexity of components and instability
of working conditions, the fuzzy risk analysis

FIGURE 4. The flowchart of the proposed method.

is insufficient. And evaluation parameters involved are
imprecise owing to its nature in many situation. The
sub-component is evaluated by probability of failure
and severity of loss, which are expressed as linguistic
terms. The linguistic terms are used to quantify the
associated uncertainty and it is difficult to make accu-
rate judgment with linguistic terms. Therefore, when
conducting a risk assessment of a sub-component,
appropriate correction of the linguistic term can better
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express uncertain information. For the evaluating item
probability of failure of a sub-component, the corre-
sponding falsity-membership function of SVNS are
equally divided into two adjacent members as their
the truth-membership functions. In this paper, with-
out loss of generality, the indeterminacy-membership
function of the adjacent members are 0.5. And the
falsity-membership function of the adjacent members
are obtained by the third formula of Eq. (7). The
newly SVNSs are considered as risk assessment of
sub-component. Hence, there are three members of
evaluation linguistic terms for sub-components. It can
express the uncertainty more accurately and improve
the accuracy of fuzzy risk analysis. For example,
the linguistic value of R2 of sub-componentC2 is ‘‘ low
’’, the corresponding SVNS x2L = (0.14, 0.81, 0.86)
is gained by Eq. (7). From Table 1, it can be easily
seen that the two adjacent members to ‘‘ Low ’’ are
‘‘ Very-low ’’ and ‘‘ Medium ’’. Then, the SVNSs of
‘‘ Very-low ’’ member and ‘‘ Medium ’’ member are
obtained, respectively x ′2VL = (0.43, 0.5, 0.57) and
x ′2M = (0.43, 0.5, 0.57). Therefore, the linguistic value
of W2 are ‘‘ low ’’, ‘‘ Very-low ’’ and ‘‘ Medium ’’.

(iii) Fuse the generated SVNSs under the same mem-
ber and fusion result xj =

(
Txj, Ixj,Fxj

)
will

be obtained by using the SVNPWA operator
(Eq. (6)). For example, the generated SVNSs x1M =
(Tx1M , Ix1M ,Fx1M ) , x2M = (Tx2M , Ix2M ,Fx2M ) ,

x3M = (Tx3M , Ix3M ,Fx3M ) are gained under the lin-
guistic value ‘‘ Medium ’’, the fusion process is shown
as follows:

x3 = SVNPWA(x1M , x2M , x3M )

=


1−

3∏
i=1

(1− TxiM )

Hi
3∑
i=1

Hi
,

3∏
i=1

(IxiM )

H
i

3∑
i=1

Hi
,

3∏
i=1

(FxiM )

Hi
3∑
i=1

Hi

 .

(8)

where H1 = 1, H2 = S(x1M ) and H3 =

S(x1M ) × S(x2M ). And S(xiM ) can be calculated
by Eq. (3).

(iv) Compute the single-valued neutrosophic positive ideal
solution (SVNPIS) and single-valued neutrosophic
negative ideal solution (SVNNIS). Consider Q+ and
Q− be the SVNPIS and SVNNIS. Then, Q+ and Q−

can be defined as follows:

Q+ =
(
max(Txij),min(Ixij),min(Fxij)

)
Q− =

(
min(Txij),max(Ixij),max(Fxij)

)
(9)

(v) Compute the normalized Euclidean distance from
xj =

(
Txj, Ixj,Fxj

)
to SVNPIS and SVNNIS. In actual

working environment, the evaluation linguistic terms
are inequacy. Therefore, the weight of each linguistic

TABLE 2. Linguistic values of the evaluating items Ri and Wi of the three
sub-components C1, C2 and C3.

term is not counted. Based on this situation, the sta-
tistical mean method is usually applied to determine
the weight of linguistic term of component, that is,
the weight of linguistic term is balanced. In this
paper, without loss of generality, the weight of lin-
guistic term is denoted as: ω= (ω1, ω2, ω3, ω4, ω5) =(
1
5 ,

1
5 , . . . ,

1
5

)
. The normalized Euclidean distanceD+

from component xj to the SVNPIS can be obtained
based on Eq. (5):

D+j
(
xj,Q+

)
= ωj × dn

(
xj,Q+

)
, (10)

Similarly, the normalized Euclidean distance D− of
component xj from the SVNNIS can be written as
follows:

D−j
(
xj,Q−

)
= ωj × dn

(
xj,Q−

)
. (11)

(vi) Compute the closeness coefficient CCj, based on mea-
suring the extent which component xj is close to the
SVNPIS as well as far from the SVNNIS, simultane-
ously. The CCj is defined as follows [69]:

CCj =
D−j

(
xj,Q−

)
D−jmax

(
xj,Q−

) − D+j
(
xj,Q+

)
D+jmin

(
xj,Q+

) . (12)

where

D+jmin

(
xj,Q+

)
= minD+j

(
xj,Q+

)
,

D−jmax

(
xj,Q−

)
= maxD−j

(
xj,Q−

)
. (13)

It is obvious that CCj ≤ 0 (j = VL, L, M, H, VH), and
the bigger the value ofCCj is, the greater the probability
of risk member of component.

IV. APPLICATION IN FUZZY RISK ANALYSIS
A. A NUMERICAL EXAMPLE
This section illustrates the effectiveness of the proposed
method by using the example of fuzzy risk analysis. Consider
the structure of fuzzy risk analysis shown in Fig. 2, where
the component C made by manufactory consists of three sub-
components, C1,C2 and C3. These sub-components are eval-
uated by linguistic term, shown in Table 2. In the following,
the proposed method is applied to deal with the fuzzy risk
analysis problem.
(i) Transform the linguistic values to SVNSs by Eq. (7).

Taking severity of loss W2H as an example, the gener-
alized trapezoidal fuzzy number equivalent to W2H is
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TABLE 3. The corrected linguistic term of sub-component.

A2H = (0.56, 0.64, 0.78, 0.87) and part of the calcula-
tion procedures are as follows:

Tx2 =
a2+ a3

2
=

0.64+ 0.78
2

= 0.71,

Ix2 = 1− (a4− a1) = 1− (0.87− 0.56) = 0.69,

Fx2 = 1− Tx2 = 1− 0.71 = 0.29. (14)

(ii) In order to better express uncertainty, the linguistic
term of sub-component needs to be properly corrected.
The corrected linguistic terms of sub-components are
shown in Table 3. For example, the linguistic value of
R for sub-component C2 is ‘‘ Medium ’’, the corre-
sponding SVNS x2M = (0.45, 0.67, 0.55) is gained by
Eq. (7). From Table 1, it can be easily seen that the
two adjacent members to ‘‘ Medium ’’ are ‘‘ Low ’’
and ‘‘ High ’’. Then, the SVNSs of ‘‘ Low ’’ member
and ‘‘ High ’’ member are obtained, respectively x ′2L =
(0.275, 0.50, 0.725) and x ′2H = (0.275, 0.50, 0.725).
Therefore, the linguistic value of severity of loss are ‘‘
Low ’’, ‘‘ Medium ’’ and ‘‘ High ’’.

(iii) Fuse the generated SVNSs in Table 3 under the same
member by Eq. (6). From Table 3, it can be seen
that W ′1L and W3L are the corresponding SVNSs of
linguistic value ‘‘Low’’. W1M ,W ′2M , and W ′3M are the
corresponding SVNSs of linguistic value ‘‘Medium’’.
And W ′1H and W2H are the corresponding SVNSs of
linguistic value ‘‘High’’. The specific calculation pro-
cesses are as follows:

xVL = W ′3VL = (0.0225, 0.50, 0.9775),

xL = SVNPWA(W ′1L ,W3L)

= (0.4136, 0.4791, 0.5864),

xM = SVNPWA(W1M ,W ′2M ,W ′3M ) = (1, 0, 0),

xH = SVNPWA(W ′1H ,W2H )

= (0.7058, 0.6857, 0.2942),

xVH = W ′2VH = (0.2750, 0.50, 0.7250). (15)

(iv) Compute the single-valued neutrosophic positive ideal
solution Q+ and single-valued neutrosophic negative

ideal solution Q− by Eq. (9), as follows:

Q+ = (0.9550, 0.67, 0.0450),

Q− = (0.21, 0.85, 0.79). (16)

(v) In this paper, the weight of xi (i = VL, L, M, H,
VH) is denoted as: ω= (ωVL , ωL , ωM , ωH , ωVH ) =

(0.2, 0.2, 0.2, 0.2, 0.2). Then, the normalized
Euclidean distance D+i from xi to the SVNPIS can be
obtained by Eq. (10), as follows:

D+VL
(
xVL ,Q+

)
= ωVL × dn

(
xVL ,Q+

)
= 0.7677,

D+L
(
xL ,Q+

)
= ωL × dn

(
xL ,Q+

)
= 0.4556,

D+M
(
xM ,Q+

)
= ωM × dn

(
xM ,Q+

)
= 0.3886,

D+H
(
xH ,Q+

)
= ωH × dn

(
xH ,Q+

)
= 0.2037,

D+VH
(
xVH ,Q+

)
= ωVH × dn

(
xVH ,Q+

)
= 0.5638.

(17)

The normalized Euclidean distance D−i from xi to the
SVNPIS can be obtained by Eq. (11), as follows:

D−VL
(
xVL ,Q−

)
= ωVL × dn

(
xVL ,Q−

)
= 0.2535,

D−L
(
xL ,Q−

)
= ωL × dn

(
xL ,Q−

)
= 0.2711,

D−M
(
xM ,Q−

)
= ωM × dn

(
xM ,Q−

)
= 0.8105,

D−H
(
xH ,Q−

)
= ωH × dn

(
xH ,Q−

)
= 0.4158,

D−VH
(
xVH ,Q−

)
= ωVH × dn

(
xVH ,Q−

)
= 0.2089.

(18)

(iv) Compute the relative closeness coefficient by Eq. (12).
The relative closeness coefficient CCi is calculated as
follows:

CCVL =
D−VL

(
xVL ,Q−

)
D−imax

(
xi,Q−

)−D+VL (xVL ,Q+)
D+imin

(
xi,Q+

) =−3.4562,
CCL =

D−L
(
xL ,Q−

)
D−imax

(
xi,Q−

)− D+L
(
xL ,Q+

)
D+imin

(
xi,Q+

) =−1.9021,
CCM =

D−M
(
xM ,Q−

)
D−imax

(
xi,Q−

)− D+M
(
xM ,Q+

)
D+imin

(
xi,Q+

) =−0.9077,
CCH =

D−H
(
xH ,Q−

)
D−imax

(
xi,Q−

)− D+H
(
xH ,Q+

)
D+imin

(
xi,Q+

) =−0.4870,
CCVH =

D−5
(
xVH ,Q−

)
D−imax

(
xi,Q−

)−D+VH (xVH ,Q+
)

D+imin

(
xi,Q+

) =−2.5104.
(19)

where D+imin

(
xi,Q+

)
= 0.2037 and D−imax

(
xi,Q−

)
=

0.8105.
According to the descending order of CCi, the ranking
order of fault types is CCH > CCM > CCL >

CCVH > CCVL . It can be seen that the risk member
of component C is ‘‘ High ’’.

B. COMPARISON ANALYSIS AND DISCUSSION
In order to further show the effectiveness of the proposed
method, a comparative study with other existing method
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TABLE 4. The results of the proposed method and existing method.

is conducted. The proposed method is compared with the
method that is introduced by Chutia and Gogoi [59]. With
regard to the existing method, the similarity measure is used
to determine the final ranking order to obtain the risk of
failure. Taking the numerical example of Subsection IV-A as
an example, the results of the proposed method and existing
method are shown in Table 4.

From the results presented in Table 4, it can be observed
clearly that the largest relative closeness coefficient is
−0.4870 and the largest similarity value is 0.8768. There-
fore, it can be concluded the risk of failure is ‘‘ High ’’.
By comparison, the result of the proposed method consistent
with the result of the existing method, which indicate that the
reasonableness and feasibility of the proposed method. The
existing method used the similarity measure and it was very
difficult to confirm the risk of failure while using measures
that have similar characteristic. And the existing method also
failed when dealing with uncertainty information in complex
environments. However, the proposed method pays more
attention to the influence of uncertainty and also introduced
the concept of SVNS. The SVNS can handle uncertainty
information to improve the reliability of fuzzy risk analysis.
Hence, the proposed method provides a robust framework
that is a more agile way to handle uncertainty information
and avoid information distortion in complex risk environ-
ments. In addition, the result of the proposed method is
the same as that of the other result with less computational
burden.

V. CONCLUSIONS
The determination of risk of failure is key issue in risk
assessment of components by semantic model. In the paper,
a semantic risk analysis method based on the TOPSIS under
SVNS is introduced. Firstly, a five-member linguistic terms
set is presented in this paper, and the risk items of each sub-
component are evaluated by linguistic terms, which are trans-
lated to the generalized trapezoidal fuzzy numbers. Then,
the SVNS is determined based on the linguistic values and
the linguistic term of a sub-component is properly corrected.
On this basis, the SVNPWA operator is used to fuse the
generated SVNSs under the same member. Finally, the rank-
ing order can be obtained by TOPSIS to determine risk of
failure. This study has dedicated by presenting the SVNS
and existing TOPSIS method to deal with fuzzy risk analysis
problem. The SVNS can be obtained by the generalized trape-
zoidal fuzzy numbers, which not only the raw information

can be plentifully utilized, but also the uncertainty of risk
information is more precise. The SVNS has a powerful ability
to represent uncertain and imprecise information, and avoid
information loss in complex risk environments. By using the
SVNPWA operator to fuse different data under the same
member, the accuracy of fuzzy risk analysis is improved.
Furthermore, the TOPSIS method is an appropriate tool for
determining risk of failure, which is significant in solving
fuzzy risk analysis problems. A numerical example and com-
paring it with the existing method found in the literature
are carried out to confirm practical and effective of the pro-
posed method. Further research will mostly concentrate on
the following fields. First, the weight of linguistic term of
component can be gained by making full use of objective
information in the actual work environment. Second, the pro-
posed method can be applied to more practical and compli-
cated cases study to further demonstrate its efficiency and
effectiveness.
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