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Abstract: A single-valued neutrosophic linguistic set (SVNLS) is a popular fuzzy tool for describing 

deviation information in uncertain complex situations. The aim of this paper is to study some 

logarithmic distance measures and study their usefulness in multiple attribute group decision 

making (MAGDM) problems within single-valued neutrosophic linguistic (SVNL) environments. 

For achieving the purpose, SVNL weighted logarithmic averaging distance (SVNLWLAD) and 

SVNL ordered weighted logarithmic averaging distance (SVNLOWLAD) measures are firstly 

developed based on the logarithmic aggregation method. Then, the SVNL combined weighted 

logarithmic averaging distance (SVNLCWLAD) measure is presented by unifying the advantages 

of the previous SVNLWLAD and SVNLOWLAD measures. Moreover, a new MAGDM model by 

utilizing the SVNLCWLAD measure is presented under SVNL environments. Finally, a supplier 

selection for fresh aquatic products is taken as a case to illustrate the performance of the proposed 

framework. 

Keywords: single-valued neutrosophic linguistic set; combined weighted; logarithmic distance 

measure; supplier selection; fresh aquatic products; MAGDM 

 

1. Introduction 

There are more and more vagueness and uncertainties in multiple attribute group decision 

making (MAGDM) problems, with the increasing complex of the evaluated objects. Therefore, 

researching a suitable fuzzy tool for depicting such uncertain information is a key issue in MAGDM 

problems. Up to now, numerous tools, such as the linguistic term set [1,2], intuitionistic fuzzy set 

(IFS) [3], hesitant fuzzy set [4], Pythagorean fuzzy set [5], single-valued neutrosophic set [6] and q-

rung orthopair fuzzy set [7] arise at the historic moment, which greatly reduce the burden of decision 

makers for expressing the assessment of the attributes during the decision-making process. 

Recently, Ye [8] proposed the single-valued neutrosophic linguistic set (SVNLS), which has been 

broadly used to handle uncertainties or vagueness under complex decision-making situations. The 

distinctive advantage of the SVNLS is that it combines the features of the linguistic set [2] and the 

single-valued neutrosophic set [5], therefore it can describe the uncertain information 

comprehensively and reasonably more concretely and accurately. Moreover, compared with the 

previous methods, such as the Pythagorean linguistic set [9] and the intuitionistic linguistic set [10], 

the SVNLS can overcome their defects, as it uses three elements (i.e., truth, indeterminacy and falsity) 
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to express uncertainties of evaluated objects. So far, the SVNLS has gained increasing attention from 

researchers. For example, Ye [8] adapted the classic TOPSIS into SVNL environments and explored 

its performance in selecting suppliers. Guo and Sun [11] presented a method based on the prospect 

theory for decision making with SVNL information. Zhao et al. [12] introduced some SVNL induced 

Choquet integral aggregation operators and studied their usefulness in MAGDM. Ji et al. [13] studied 

the features of SVNLS and utilized it to express the uncertainties of outsourcing provider. Wang et 

al. [14] investigated the Maclaurin symmetric mean method for aggregating SVNL information. Chen 

et al. [15] presented an ordered aggregation distance measure for SVNLSs, and developed the SVNL 

ordered weighted averaging distance (SVNLOWAD) measure. Based on the work of Chen et al. [15], 

Cao et al. [16] developed a SVNL combined aggregation distance measure. Garg and Nancy [17] 

studied the SVNL prioritized weighted operators and used them to handle the priority relationship 

among attributes. 

In the field of MAGDM, distance measures are often utilized to calculate the deviations between 

an ideal collection and the potential alternatives. Wherein the construction of distance plays a 

decisive role for the measurement, the weighted distance measures, including the weighted 

Hamming, the weighted Euclidean and the weighted Minkowski distances, are some of the most 

used distance measures [18]. Recently, the ordered weighted averaging distance (OWAD) measure 

introduced by Merigó and Gil-Lafuente [19] has become a very popular tool and gained lots of 

extensions, such as the linguistic OWAD [20], the induced OWAD [21,22], Heavy OWAD [23], 

continuous OWAD [24] intuitionistic fuzzy OWAD [25], hesitant fuzzy OWAD [26,27] and 

Pythagorean fuzzy OWAD measures [28,29]. More recently, Alfaro-García et al. [30] proposed a new 

extension of the OWAD measure, on the basis of the logarithmic aggregation method [31,32]; the 

result is the ordered weighted logarithmic averaging distance (OWLAD) measure. Motivated by the 

OWLAD, Alfaro-García et al. [33] further developed the induced OWLAD (IOWLAD) measure. 

This study proposes some SVNL weighted logarithmic distance measures for highlighting the 

theory and application of SVNLS. Firstly, we present the SVNL weighted logarithmic averaging 

distance (SVNLWLAD) measure and SVNL ordered weighted logarithmic averaging distance 

(SVNLOWLAD) measures. Then, the SVNL logarithmic combined weighted logarithmic averaging 

distance (SVNLCWLAD) measure is proposed, by unifying the main advantages of the SVNLWAD 

and the SVNLOWLAS measures. Thus, it can weight both the SVNL deviations as well as their 

ordered positions, which enables its capability to overcome the limitation of the previous 

SVNLWLAD and SVNLOWLAD measures. The main properties and particular cases of the 

SVNLCWLAD are also studied. A MAGDM method based on the proposed SVNLCWLAD is 

formulated and its application are verified by a supplier selection problem. 

The rest of this study is set out below: Section 2 reviews the backgrounds of SVNLS and the 

OWLAD measure. Section 3 proposes three SVNL weighted logarithmic distances, and provides 

some of their main properties and families. Section 4 gives a MAGDM approach based on the 

SVNLCWLAD measure. In Section 5, the application and merits of the presented method are 

discussed through a mathematical example and comparison. Finally, Section 6 summarizes the main 

conclusions. 

2. Preliminaries 

In this section, some concepts regarding the issues of the SVNLS, the OWAD and the OWALD 

measures are briefly reviewed. 

2.1. The Single-Valued Neutrosophic Set (SVNS) 

On the basis of the neutrosophic set [34], Ye [5] introduced the definition of the single-valued 

neutrosophic set (SVNS) for improving computational efficiency. 
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Definition 1 [5]. A single-valued neutrosophic set (SVNS)   in a finite set X  denoted by a 

mathematical form: 

 , ( ), ( ), ( )x T x I x F x x X      (1) 

where ( )T x , ( )I x  and ( )F x  
represent the truth, the indeterminacy and the falsity-membership 

functions, respectively, and satisfy: 

0 ( ), ( ), ( ) 1 Z Z ZT x I x F x , 0 ( ) ( ) ( ) 3   Z Z ZT x I x F x . (2) 

For convenience, the triplet ( ( ), ( ), ( ))T x I x F x    is called the single-valued neutrosophic number 

(SVNN) and simply denoted as ( , , )T I F    . 

2.2. The Linguistic Set 

Definition 2 [2]. Let  1,...,S s t  
 
 be a finitely ordered discrete set, where s  

 denotes a 

linguistic term and l  is an odd number. For example, taking 7t  , then 

1 2 3 4 5 6 7{ =  , =  , = , = , = , =  , =  }.S s extremely poor s very poor s poor s fair s good s very good s extremely good  

For actual application, we shall extend the discrete set S  into a continuous set  S s R    

for avoiding information loss. For any linguistic terms ,s s S   , they shall satisfy following 

operational laws [35]: 

(1) 
s s s    

; 

(2) 
s s  

, 0  ; 

2.3. The Single-Valued Neutrosophic Linguistic Set (SVNLS) 

Definition 3 [8]. A single-valued neutrosophic linguistic set (SVNLS)   in X  is defined as: 

 ( ),[ , ( ( ), ( ), ( ))]xx s T x I x F x x X       (3) 

where ( ) xs S , the functions ( )T x , ( )I x  and ( )F x  denote the truth, indeterminacy and falsity-

membership, respectively, and they have the following constraint: 

0 ( ), ( ), ( ) 1T x I x F x    , 0 ( ) ( ) ( ) 3.T x I x F x       (4) 

In addition, ( ) , ( , , ) x x x xx s T I F  is called
 
the SVNL number (SVNLN) for computational 

convenience. Let ( ) , ( , , ) ( 1, 2) 
i i i ii x x x xx s T I F i  be two SVNLNs and 0  , then 

(1) 1 2 1 2 1 2 1 2 1 21 2 ( ) ( ) , ( , , ) ;x x x x x x x x x xx x s T T T T I I F F       
 

(2) 1 1 1 11 ( ) , (1 (1 ) , ( ) , ( ) ) ;x x x xx s T I F  
   

 

(3) 
1

1 1 11( )
, (( ) ,1 (1 ) ,1 (1 ) )    x x xx

x s T I F

   


. 
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Definition 4 [8]. Let ( ) , ( , , ) ( 1, 2) 
i i i ii x x x xx s T I F i  be SVNLNs and 0,p   then the distance 

measure between 1x  and 2x  is given by the mathematical form: 

1 2 1 2 1 2

1

1 2 1 2 1 2 1 2( , ) ( ) ( ) ( ) ( ) ( ) ( )
pp p p

SVNL x x x x x xd x x x T x T x I x I x F x F           
  

 (5) 

On the basis of Definition 3, the SVNL weighted distance (SVNLWD) measure is formed in 

Equation (6), by assigning different levels of importance for the individual deviations. 

 1 1
1

( , ),..., ( , ) ( , ),
n

n n j SVNL j j
j

SVNLWD x y x y w d x y


  (6) 

where the relative weight vector W  satisfies [0,1]jw   and 
1

1
n

j
j

w


 . 

2.4. The Ordered Weighted Logarithmic Averaging Distance (OWLAD) Measure 

Motivated by the ordered weighted averaging (OWA) operator [36], Merigó and Gil-Lafuente 

[19] introduced the OWAD measure. 

Definition 5 [19]. Let  1 2, ,..., nU u u u  and  1 2, ,..., nV v v v  be two crisp sets, i i id u v 

be the distance between iu  and iv , then the OWAD measure is defined as: 

 1 2 ( )
1

( , ) , ,...,
n

n j j
j

OWAD U V OWAD d d d d


   (7) 

where ( ) ( 1, 2,..., )jd j n   is the reorder values of ( 1, 2,..., )jd j n  such that 

(1) (2) ( )nd d d    . The relative weight vector of the OWAD is 
1

{ 1,0 1}
n

j j j
i

   


   
. 

On the basis of the recent research of Zhou and Chen [31] and the OWAD measure, Alfaro-

García et al. [30] introduced the OWLAD measure. 

Definition 6 [30]. Let  1 2, ,..., nU u u u  and  1 2, ,..., nV v v v  be two crisp sets, i i id u v 

be the distance between iu  and iv , then the OWLAD measure is defined as: 

 1 2 ( )
1

( , ) , ,..., exp ln( )
n

n j j
j

OWLAD U V OWAD d d d d


 
   

 
  (8) 

Alfaro-García et al. [30] studied desired properties of the OWLAD measure, such as 

boundedness, commutativity, idempotency and monotonicity. They also explored its different 

families and found that it includes many distance measures. However, the OWLAD is generally 

designed for aggregating crisp variables and cannot be used to handle SVNL information. What’s 

more, it can only account for the weights of ordered deviations, but fails to consider the importance 

of the individual data. Therefore, we shall develop a new distance measure for overcoming the 

limitations of the OWLAD within SVNL environments. 
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3. SVNL Weighted Logarithmic Distance Measures 

3.1. SVL Weighted Logarithmic Averaging Distance (SVNLWLAD) Measure 

The SVNLWLAD measure is a new SVNL distance measure that utilizes the optimal logarithmic 

aggregation for handling SVNL deviations. It can consider the importance of the aggregated 

individual distances. 

Definition 7. Let ( , )SVNL j jd x y  be the distance between two ,j jx y  ( 1, ...,j n ) defined in 

Equation (5), then the SVNLWLAD measure is defined as: 

   1 1
1

( , ),..., ( , ) exp ln ( , ) ,
n

n n j SVNL j j
j

SVNLWLAD x y x y w d x y


 
  

 
  (9) 

where jw  is the weight of the distance ( , )SVNL j jd x y  with 
1

1
n

j
j

w


  and [0,1]jw  . 

Example 1. Let 1 2 3 4 5( , , , , )=X x x x x x

 2 5 4 3 4= ,(0.6,0.5,0.1) , ,(0.6,0.3,0.5) , ,(0.7,0.2,0.1) , ,(0.9,0.1,0.6) , ,(0.3,0.1,0.3)s s s s s  and 

1 2 3 4 5( , , , , )=Y y y y y y

 4 6 7 1 3,(0.2,0.7,0) , ,(0.3,0.7,0.1) , ,(0.6,0.4,0.5) , ,(0.1,0.7,0.2) ,(0.1,0.5,0.6)s s s s s，  be two 

SVNLSs defined in 1 2 3 4 5 6 7{ , , , , , , }S s s s s s s s . The weighting vector is supposed to be 

(0.15,0.25,0.25,0.15,0.2)Tw . Then the computational process through the SVNLWLAD can be 

displayed as follows: 

(1) Calculate the individual distances ( , )SVNL i id x y ( 1,2,...,5)i   according to Equation (5) (let 

1p  ): 

1 1( , ) 2 0.6 4 0.2 + 2 0.5 4 0.7 + 2 0.1 4 0 2.4SVNLd x y            , 

2 2( , ) 5 0.6 6 0.3 + 5 0.3 6 0.7 + 5 0.5 6 0.1 5.8SVNLd x y            , 

3 3( , ) 4 0.7 7 0.6 + 4 0.2 7 0.4 + 4 0.1 7 0.5 6.5SVNLd x y            , 

4 4( , ) 3 0.9 1 0.1 + 3 0.1 1 0.7 + 3 0.6 1 0.2 4.2SVNLd x y            , 

5 5( , ) 4 0.3 3 0.1 + 4 0.1 3 0.5 + 4 0.3 3 0.6 2.6SVNLd x y            . 

 

(2) Utilize the SVNLWLAD defined in Equation (9) to aggregate the individual distances: 

   1 1 5 5
1

1

( , ),..., ( , ) exp ln ( , )

exp (0.15 ln(2.4) 0.25 ln(5.8) 0.25 ln(6.5) 0.15 ln(4.2) 0.2 ln(2.6)

4.2423

n

j SVNL j j
j

n

j

SVNLWLAD x y x y w d x y




 
  

 

 
          

 






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3.2. SVL Ordered Weighted Logarithmic Averaging Distance (SVNLOWLAD) Measure 

The SVNLOWLAD operator is a useful extension of the OWLAD measure which uses SVNL 

information. Moreover, it can be seen as a generalization of the SVNLWLAD measure, which is 

characterized by its ordered mechanism of the aggregated arguments. This mechanism provides the 

opportunity to consider complex attitudes in the decision-making processes, as well as to handle the 

logarithmic deviations. 

Definition 8. Let ( , )SVNL j jd x y  be the distance between SVNLNs ,j jx y  ( 1, ...,j n ) defined in 

Equation (5), then the SVNLOWLAD is defined as: 

   1 1 ( ) ( )
1

( , ),..., ( , ) exp ln ( , ) ,
n

n n j SVNL j j
j

SVNLOWLAD x y x y d x y 


 
  

 
  (10) 

where ( ) ( )( , )( 1, 2,..., )SVNL j jd x y j n    is the reorder values of ( , )SVNL j jd x y  such that 

(1) (1) ( ) ( )( , ) .... ( , )SVNL SVNL n nd x y d x y     . The associated weight vector of the SVNLOWLAD is 

T
1 2 n=( , ,...., )    with 

1

1
n

j
j





 

and [0,1]j  . 

Similar to the OWLAD measure, the proposed SVNLOWLAD measure has the properties of 

idempotency, commutativity, monotonicity, boundedness and non-negativity. The proofs of these 

properties are trivial and thus omitted. 

Example 2. (Continuing Example 1). Suppose the weight vector of SVNLOWLAD measure is 

(0.1,0.2,0.25,0.3,0.15)T  . Then, the computational process based on the SVNLOWLAD is 

displayed as follows: 

(1) Compute the individual distances ( , )SVNL i id x y ( 1,2,...,5)i   according to Equation (5) 

(obtained from example 1): 

1 1( , ) 2.4SVNLd x y  , 2 2( , ) 5.8SVNLd x y  , 3 3( , ) 6.5SVNLd x y  , 

4 4( , ) 4.2SVNLd x y  , 5 5( , ) 2.6SVNLd x y 
 

 

(2) Rank the ( , )SVNL i id x y ( 1,2,...,5)i   
in decreasing order: 

(1) (1) 3 3( , )= ( , )=6.5SVNL SVNLd x y d x y  , (2) (2) 2 2( , )= ( , )=5.8SVNL SVNLd x y d x y  ,
 

(3) (3) 4 4( , )= ( , )=4.2SVNL SVNLd x y d x y  , (4) (4) 5 5( , )= ( , )=2.6SVNL SVNLd x y d x y  ,
 

(5) (5) 1 1( , )= ( , )=2.4.SVNL SVNLd x y d x y   

 

(3) Utilize the SVNLOWLAD to aggregate the ordered distances: 

   

 

5

1 1 5 5 ( ) ( )
1

( , ),..., ( , ) exp ln ( , )

exp 0.1 ln(6.5) 0.2 ln(5.8) 0.25 ln(4.2) 0.3 ln(2.6) 0.15 ln(2.4)

3.7266

j SVNL j j
j

SVNLOWLAD x y x y w d x y 


 
  

 

         





 
 

3.3. SVL Combined Weighted Logarithmic Averaging Distance (SVNLCWLAD) Measure 
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From the previous examples, we can see that the SVNLWLAD can account for the importance 

of input deviations, while the SVNLOWLAD considers the weights of ordered deviations, and based 

on this rule, it can depict some attitudes of decision makers in decision making. However, the 

SVNLWLAD does not have the function of orderly aggregation, while the SVNLOWLAD cannot 

integrate the importance of attributes that the SVNLWLAD can. To overcome these limitations, we 

shall develop a new distance measure that can combine the advantages of the SVNLWLAD and the 

SVNLOWLAD measures. 

Definition 9. Let ,j jx y  ( 1, ...,j n ) be the two collections of SVNLNs. If 

   1 1 ( ) ( )
1

( , ),..., ( , ) exp ln ( , ) ,
n

n n j SVNL j j
j

SVNLCWLAD x y x y d x y 


 
  

 
  (11) 

then the SVNLCWLAD is called the SVNL combined weighted logarithmic averaging distance 

measure. The integrated weights j  is defined as: 

( )(1 )j j jw      (12) 

where jw  is the weight of ( , )SVNL j jd x y ( 1, 2,..., )j n  with 
1

1
n

j
j

w


  and [0,1]jw  , and 

the other j ,
 
is the associated weight of SVNLOWLAD satisfying

 
1

1
n

j
j




  and [0,1]j  ,
 

parameter 
 
is real parameter and meeting [0,1]  . 

Obviously, the SVNLCWLAD is generalized to the SVNLOWLAD and SVNLWLAD, when 

1   and 0  , respectively. Following the combined operational rules, the SVNLWLAD can be 

regarded as a combination of the SVNLOWLAD and SVNLWLAD measures: 

 

   

1 1

( ) ( )
1 1

( , ),..., ( , )

exp ln ( , ) (1 ) ln ( , )

n n

n n

j SVNL j j j SVNL j j
j j

SVNLCWLAD x y x y

d x y w d x y   
 



    
      

    
 

 (13) 

Example 3. (Continuing Examples 1 and 2). Let =0.6
 
and based on the available information 

obtained in the examples 1 and 2, we can
 
compute the integrated weights j

 
according to Equation 

(12): 

1 0.6 0.1 (1 0.6) 0.25 0.16       , 

2 0.6 0.2 (1 0.6) 0.25 0.22       , 

3 0.6 0.25 (1 0.6) 0.15 0.21       , 4 0.6 0.3 (1 0.6) 0.2 0.26      

, 

5 0.6 0.15 (1 0.6) 0.15 0.15       .
 

 

Perform the below aggregation, utilizing the SVNLCWLAD measure defined in Equation (11): 
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   

 

5

1 1 5 5 ( ) ( )
1

( , ),..., ( , ) exp ln ( , )

exp 0.16 ln(6.5) 0.22 ln(5.8) 0.21 ln(4.2) 0.26 ln(2.6) 0.15 ln(2.4)

3.9249

j SVNL j j
j

SVNLCWLAD x y x y d x y 


 
  

 

         





 
 

We can also apply the SVNLCWLAD measure given in Equation (13) to illustrate the 

aggregation: 

   

 

( ) ( )
1 1

exp ln ( , ) (1 ) ln ( , )

exp 0.6 1.3155 (1 0.6) 1.4451

3.9249

n n

j SVNL j j j SVNL j j
j j

SVNLCWLAD d x y w d x y   
 

    
       

    

    



 
  

Apparently, the same results are obtained by both methods. On the other hand, following the 

aforementioned examples, we can see that the SVNLCWLAD combines both features of the 

SVNLOWLAD and the SVNLWLAD measures. Therefore, it can account for the importance of the 

deviations as well as highlights the ordered aggregation mechanism. Moreover, it is more convenient 

for application, as people can set parameters flexibly according to actual needs or their interests. 

Furthermore, we can achieve some interesting SVNL distance measures, by designing the 

parameter   and the weight vector in the SVNLCWLAD measure, for example: 

 The SVNLOWLAD and SVNLWLAD measures are obtained when 1   and 0  , 

respectively. Moreover, the more lager  , the more importance focused on the SVNLOWLAD. 

 If (1,0,0,...,0)Tw  , then max-SVNLCWLAD measure is formed. 

 If (0,..., 0,1)Tw  , then the min-SVNLCWLAD is rendered. 

 The step-SVNLCWLAD measure is obtained by designing 1 1 0kw w    , 1kw 
 

and 

1 0k nw w    . 

 Based on the analysis provided in recent literature [30,33,37–40], more particular cases of the 

SVNLCWLAD, such as the Centered-SVNLCWLAD, Median-SVNLCWLAD and the Olympic-

SVNLCWLAD measures, can be created. 

According to the properties of the OWLAD measure, it is clear that the SVNLCWLAD satisfies 

the desirable properties of monotonicity, idempotency, boundedness and: 

(1) Monotonicity: If ( , ) ( , )SVNL i i SVNL i id x y d x y   for 1, 2,..., ,i n  then 

   1 1 1 1( , ),...,( , ) ( , ),...,( , )n n n nSVNLCWLAD x y x y SVNLCWLAD x y x y      

(2) Idempotency: If ( , )SVNL i id x y d  for 1, 2,..., ,i n  then 

 1 1( , ),..., ( , )n nSVNLCWLAD x y x y d   

(3) Commutativity: If  1 1( , ),...,( , )n nx x x x   is any permutation of  1 1( , ),...,( , )n ny y y y  , then 

   1 1 1 1( , ),...,( , ) ( , ),...,( , )n n n nSVNLCWLAD x x x x SVNLCWLAD y y y y      

(4) Boundedness: Let  min min ( , )i i
i

d d y y  and  max max ( , )i i
i

d d y y , then 
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 min 1 1 max( , ),...,( , )n nd SVNLCWLAD y y y y d     

In addition, we can provide a more generalized SVNL combined weighted logarithmic distance 

measure, by using the generalized mean method [41]; the result is the generalized SVNLCWLAD 

(GSVNLCWLAD) measure: 

   
1

1 1 ( ) ( )
1

( , ),..., ( , ) exp ln ( , )
n

n n j SVNL j j
j

GSVNLCWLAD x y x y d x y




 


   
   

   
  (14) 

where   is a parameter that meets ( , ) {0}     . Some representative cases of the 

GSVNLCWALD measure can be determined from the variation of parameter  , for example, the 

SVNLCWLAD is formed when 1  , the SVNL combined weighted logarithmic quadratic distance 

(SVNLCWLQD) is obtained if 2  , and the SVNL combined weighted logarithmic harmonic 

distance (SVNLCWLHD) is rendered if 1   . Other more special families of the GSVNLCWLAD 

measure can be analyzed by using similar methods, provided in reference [41–43]. 

4. Application in MAGDM 

The SVNLCWLAD is applicable to decision making, pattern recognition, data analysis, financial 

investment, social management, and many other fields. In this paper, we present its application in 

MAGDM problems under SVNL environments. Consider a MAGDM problem, which includes m

different alternatives denoted as 1 2, ,..., mB B B  and several experts invited to evaluate n  finite 

attributes 1 2, ,..., nA A A . The weight vector for these attributes is represented by 

1 2( , ,..., )Tnw w w w such that [0,1]jw  and
1

1
n

j
j

w


 . Following the available information, the 

general procedure for MAGDM can be summarized below. 

Step 1: Let each expert qe  
( 1,2,..., )q t (whose weight is q , with 0q  and 

1

1
t

q
q




 ) 

expresses his or her assessment for different alternatives under given attributes by means of SVNLNs, 

thus formulate SVNL individual decision matrix  ( )

ij

q q

m n
R r


 . 

Step 2: The collective decision matrix  
ij m n

R r


 is calculated by using the SVNL weighted average 

(SVNLWA) operator [8] to aggregate individual assessment, where 
( )

1
ij ij

t
q

q
q

r r


 . 

Step 3: Set the ideal performances for each attribute to construct the ideal scheme (Table 1). 

Table 1. Ideal scheme. 

 1A  2A    nA  

I  1I  2I   nI  

Step 4: Apply the SVNLCWLAD measure to compute the distances between the alternative 

( 1,2,..., )iB i m
 
and the ideal scheme I : 
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   ( ) ( )
1

, exp ln ( , )
n

i j SVNL ij j
j

SVNLCWLAD B I d r I 


 
  

 
  (15) 

Step 5: Sort the alternatives according to the lowest value of distance obtained in the previous step 

and hence, select the best one(s). 

Step 6: End. 

5. Numerical Example for Supplier Selection of Fresh Aquatic Products 

At present, China has the largest aquatic product market in the world. With economic and social 

development, people’s awareness for the quality and safety of aquatic products are also increasing. 

The most important obstacle to the further development of aquatic products has shifted from the 

processing field to the market circulation field. The importance and urgency of the effective 

maintenance of the supply chain by aquatic product processing enterprises is increasingly prominent. 

High-quality suppliers can provide safe and fresh raw materials and high-quality products, to help 

enterprises expand the market and increase competitiveness [44]. With the increasing position and 

role of suppliers in the production of aquatic processing enterprises, the selecting suppliers of fresh 

aquatic products is considered to be the most important strategic decision in the aquatic product 

supply chain. Thus, finding an effective method for evaluating suppliers is the key issue for buyers 

of fresh aquatic products. In this section, we provide uses of the proposed framework for handling 

this problem within SVNL environments, to highlight the theory and application of the SVNLS. Four 

possible fresh aquatic products suppliers ( 1,2,3,4)iB i   are needed to evaluate from below 

attributes: 1A : quality and safety (including product safety, quality of goods, delivery performance 

and fulfill the full orders); 2A : costs (including material cost and transportation costs); 3A : delivery 

level (including delivery time, responsiveness to customers and return products time); and 4A : 

supply capacity (inventory amount, ability to meet delivery demand, ability to produce new raw 

materials and ability to receive returns products). Three experts (expert’s weight 

(0.37,0.30,0.33)  ) utilize SVNL information to evaluate these alternatives under four attributes, 

where the linguistic term set is supposed to S  { 1s , 2s , 3s , 4s , 5s , 6s , 7s }. The results are represented 

by means of SVNLNs, listed in Tables 2–4. 

Table 2. Single-valued neutrosophic linguistic (SVNL) decision matrix 
1R . 

 1A  2A  3A  4A  

1B  
(1)
4 , (0.6,0.1,0.2)s  (1)

6 , (0.6,0.1,0.2)s  
5

(1) , (0.7,0.0,0.1)s
 3

(1) , (0.3,0.1,0.2)s  

2B  5

(1) , (0.6,0.1,0.2)s  (1)
3 , (0.6, 0.2, 0.4)s  

6

(1) , (0.6,0.1,0.2)s  
4

(1) , (0.5,0.2,0.2)s  

3B  
4

(1) , (0.5,0.2,0.3)s  (1)
5 , (0.3,0.5,0.2)s  

4

(1) , (0.3,0.2,0.3)s  
3

(1) , (0.5,0.3,0.1)s  

4B  5

(1) , (0.4,0.2,0.3)s  (1)
4 , (0.5,0.3,0.3)s  

5

(1) , (0.4,0.2,0.3)s  (1)
3 , (0.3,0.2,0.5)s  

Table 3. SVNL decision matrix 
2R . 

 1A  2A  3A  4A  

1B  
(3)
4 , (0.5,0.2,0.2)s  (3)

5 , (0.7, 0.2, 0.1)s  
4

(3) , (0.6,0.1,0.2)s
 

(3)
3 , (0.4,0.1,0.1)s  
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2B  
(3)
4 , (0.7,0.2,0.2)s  (3)

6 , (0.4,0.6,0.2)s  
5

(3) , (0.5,0.2,0.3)s  (3)
5 , (0.7,0.2,0.1)s  

3B  
(3)
5 , (0.6,0.1,0.3)s  (3)

4 , (0.3, 0.6, 0.2)s  
6

(3) , (0.5,0.1,0.3)s  (3)
4 , (0.6,0.2,0.1)s  

4B  
(3)
6 , (0.6,0.2,0.4)s  (3)

4 , (0.5, 0.2, 0.3)s  
6

(3) , (0.5,0.2,0.3)s  (3)
5 , (0.2,0.1,0.6)s  

Table 4. SVNL decision matrix 
3R . 

 1A  2A  3A  4A  

1B  5

(2) , (0.7,0.2,0.3)s  
6

(2 ) , (0.6,0.3, 0.3)s  
4

(2) , (0.8,0.1,0.2)s
 

(2)
4 , (0.4,0.2,0.2)s  

2B  6

(2) , (0.7,0.2,0.3)s  ( 2)
4 , (0.5,0.4, 0.2)s  

6

(2) , (0.7,0.2,0.3)s  (2)
5 , (0.6,0.2,0.2)s  

3B  6

(2) , (0.6,0.3,0.4)s  (2)
5 , (0.4,0.4,0.1)s  

6

(2) , (0.4,0.2,0.4)s  (2)
4 , (0.6,0.1,0.3)s  

4B  6

(2) , (0.5,0.1,0.2)s  (2)
3 , (0.7,0.1,0.1)s  

5

(2) , (0.4,0.3,0.4)s  (2)
5 , (0.3,0.1,0.6)s  

According to the individual opinions and weights of the experts, the collective decision matrix 

can be calculated by using the SVNLWA operator, shown in Table 5. 

Table 5. Group SVNL decision matrix R . 

 1A  2A  3A  4A  

1B  4.33,(0.611,0.155,0.229)s  5.70 ,(0.633,0.180,0.186)s  
4.37

,(0.714,0.000,0.155)s
 

3.67 ,(0.365,0.128,0.163)s  

2B  4.70 ,(0.666,0.155,0.229)s  4.23,(0.514,0.350,0.258)s  
5.70

, (0.611,0.155,0.258)s  2.37 ,(0.602,0.200,0.162)s  

3B  4.96 ,(0.566,0.186,0.330)s  4.70 ,(0.335,0.491,0.159)s  
5.26

,(0.399,0.163,0.330)s  3.37 ,(0.566,0.185,0.144)s  

4B  5.63,(0.450,0.159,0.286)s  3.67 ,(0.578,0.185,0.209)s  
5.30

,(0.432,0.229,0.330)s  2.37 ,(0.271,0.129,0.561)s  

Based on the available information of the potential suppliers, the experts determine the ideal 

supplier that has a good performance for each attribute, shown in Table 6. 

Table 6. Ideal supplier. 

 1A  2A  3A  4A  

I  7
, (1,0, 0.1)s  

7
, (0.9,0.1,0)s  

6
, (0.9, 0, 0)s  7 , (0.9,0,0.1)s  

The weighting vectors of the SVNLCWLAD measure and the attributes are considered as 

(0.2,0.3,0.1,0.4)T  and (0.2,0.3,0.3,0.2)Tw  , respectively. Without loss of generality, let 

0.5  , then the distances between the alternative ( 1,2,3,4)iB i  and
 
the ideal scheme I  are 

calculated by using the SVNLCWLAD as follows: 

1 2( , ) 5.0778, ( , ) 5.7808,SVNLCWLAD B I SVNLCWLAD B I    
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3 4( , ) 6.7281, ( , ) 6.6661.SVNLCWLAD B I SVNLCWLAD B I   

The smaller the value of the ( , ),iSVNLVWLAD B I the closer the iB  to the ideal supplier. 

Therefore, the alternatives are ranked as: 

1 2 4 3.B B B B     

Hence, the best alternative is 1B . 

Moreover, we apply two special cases of the SVNLCWLAD, i.e., the SVNLOWLAD and the 

SVNLWLAD measures, to calculate the distances between the alternatives and the ideal scheme. By 

the SVNLOWLAD measure, we have: 

1 2

3 4

( , ) 5.1159, ( , ) 5.7758,

( , ) 6.7648, ( , ) 6.8483.

SVNLOWALD B I SVNLOWLAD B I

SVNLOWLAD B I SVNLOWLAD B I

  

 
  

The results obtained by the SVNLWLAD measure are: 

1 2

3 4

( , ) 5.0401, ( , ) 5.7857,

( , ) 6.6916, ( , ) 6.4887.

SVNLWALD B I SVNLWLAD B I

SVNLWLAD B I SVNLWLAD B I

  

 
  

Thus, the ranking orders based on the SVNLOWALAD and SVNLWLAD measures are 

1 2 3 4B B B B    and 1 2 4 3B B B B   , respectively. Then, we obtain the same best supplier 

using the SVNLCWLAD, SVNLOWLAD and SVNLWLAD measures, although all the ranking orders 

are different. Moreover, following the analysis in the aforementioned numerical examples, the 

SVNLWLAD and SVNLOWLAD measures emphasize different points in aggregation process. 

Generally, the SVNLWLAD accounts for the importance of attributes, while the SVNLOWLAD 

consider the the importance of ordered deviation. However, the SVNLCWLAD measure unifies all 

of features of previous methods, therefore it can overcome the limitations of the previous measures 

and achieve a more rational aggregation result. Furthermore, the MAGDM method based on 

SVNLCWLAD is more flexible than the existing MAGDM approaches based on the SVNLOWAD 

measure [15], as decision makers can determine some desired values of   in the SVNLCWLAD, 

according to their preferences or practical demands. 

6. Conclusions 

This paper introduces several SVNL logarithmic distance measures, including the SVNLWLAD, 

SVNLOWLAD and SVNLCWLAD measures. Some of their properties and particular cases are 

investigated. We prove that all the SVNLWLAD and SVNLOWLAD are the special cases of the 

SVNLCWLAD measure. Thus, the SVNLCWLAD measure combines the desired properties of 

SVNLWLAD and SVNLOWLAD. Moreover, it presents a more general method to handle complex 

situations in a more efficient and flexible way, as it can overcome the shortcomings of the existing 

distance measures. 

Guaranteeing the quality and safety of fresh aquatic products is crucial for mankind’s health and 

the wellbeing of fishery companies. Therefore, an appropriate supplier selection is considered as the 

most important strategic decision in the aquatic product supply chain. In this paper, a MAGDM 

approach is provided, based on the SVNLCWALD measure, and a mathematical example of selecting 

a fresh aquatic products problem is taken to verify its feasibility and validity. The application shows 

that the proposed method is effective, as the SVNLCWLAD can not only highlight the decision 

makers’ interests through the ordered weighted mechanism, but can also integrate the importance of 

attributes by the weighted average function. Moreover, it provides a possibility for decision makers 
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to flexibly select the parameter, based on the demands for the specific problem or actual interests. In 

addition, this study also presents an effective guideline for selecting suppliers in other industries. 

In subsequent work, we will consider the application of the proposed method in other fields, 

such as pattern recognition, innovation management and investment selection [45–50]. We also 

develop some new extensions of the proposed distance measures in complex fuzzy situations. 
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