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Abstract: Fuzzy set and neutrosophic set are two efficient tools to handle the uncertainties and vagueness of any real-
world problems. Neutrosophic set is more useful than fuzzy set (intuitionistic fuzzy sets) to manage the uncertainties of
a real-life problem. This study introduces some new concepts of single-valued neutrosophic graph (SVNG). The
authors have discussed the definition of regular SVNG, complete SVNG and strong SVNG. The shortest path problem
is a well-known combinatorial optimisation problem in the field of graph theory due to its various applications.
Uncertainty is present in almost every application of shortest path problem which makes it very hard to decide the
edge weight properly. The main objective behind the work in this study is to determine an algorithmic technique for
shortest path problem which will be very easy and efficient for use in real-life scenarios. In this study, the authors
consider neutrosophic number to describe the edge weights of a neutrosophic graph for neutrosophic shortest path
problem. An algorithm is introduced to solve this problem. The uncertainties are incorporated in Bellman–Ford
algorithm for shortest path problem using neutrosophic number as arc length. They use one numerical example to
illustrate the effectiveness of the proposed algorithm.
1 Introduction

In 1965, Prof. Zadeh [1] described the idea of fuzzy set theory which
has been expeditiously utilised to model the several decision-making
problems in which uncertainties may exist. Fuzzy set is a modified
version of simple set, where all the elements of the fuzzy set
have changing degrees of membership values. The simple set
(crisp set) always have two truth values, either 0 (indicate false) or
1 (indicate true). Crisp set is unable to handle the uncertainties of
the problems. However, the fuzzy set allows for its objects to have
the membership degree within 1 and 0 which provides more
beneficial results, rather than considering only single value of
either 1 or 0. The membership degree of a fuzzy set is a specific
single value within 0 and 1. Experts are not able to handle with
the uncertainty of any decision-making problem properly using
fuzzy set. Atanassov [2] has introduced the idea of intuitionistic
fuzzy set (IFS) [3, 4] by including a non-membership grade and a
hesitancy grade of all the elements of the fuzzy set. IFS is present
to describe the elements/objects of the fuzzy set from three
different aspects of inferiority, superiority and hesitation, which
are generally modelled by the intuitionistic fuzzy numbers (IFNs).
To handle more useful information of real-life problem under
imprecise, vague and uncertain environment, Smarandache [5–7]
has presented the novel idea of neutrosophic set, by generalising
the idea of IFS. The neutrosophic set can be used to capture the
uncertainties due to inconsistent, vagueness and indeterminate data
of any problem. It is nothing but an extended edition of simple
classical set, fuzzy set and IFS. In neutrosophic set, each object
has three different types of membership grade: truth, false and
indeterminate. Those three membership grades of neutrosophic set
are not dependent on each other and always within ]0, 1[.

Graph is an efficient tool to model the real-life problems.
By modelling the graph, the objects and their relations are
symbolised by nodes and arcs. There exists many different types
of information in real-life problems and we need several types of
graphs to model those problems such as fuzzy graph, intuitionistic
fuzzy graphs and neutrosophic graph theory [8–15]. Shannon and
Atanassov [16] presented the concept of relationship between IFS.
Then they have introduced the concept of intuitionistic fuzzy
graphs and presented many theorems in [16]. Parvathi et al.
[17–19] proposed some operations between two intuitionistic fuzzy
graphs. In [20], Rashmanlou et al. proposed many products
operations such as lexicographic, direct product, strong product,
semi-strong product on intuitionistic fuzzy graphs. They have
described the Cartesian production, join, composition and union
on intuitionistic fuzzy graphs in their paper. For further study on
intuitionistic fuzzy graphs, please refer to [21–27]. Akram et al.
[28–32] have introduced the idea of pythagorean fuzzy graph.
They have described the several applications of pythagorean fuzzy
graph in their paper. Neutrosophic graph [33] is used to model
many real-world problems which consist of inconsistent
information. Recently, many scientists have researched on graph in
neutrosophic environment [34–41], for instance, Yang et al. [9],
Arkam [12, 14], Ye [8], Naz et al. [10], Das and Edalatpanah
[42], Dey et al. [43–47] and Broumi [48–51]. In 2020, Prof.
Smarandache introduced the idea of n-super hyper-graph [52] with
super-nodes and hyper-arcs for neutrosophic graph.

The shortest path problem (SPP) is a well-known network optimisa-
tion problem in the area of operation research. In this problem, deci-
sion maker focuses on determining a shortest path between a
specified starting node and other nodes. The SPP has been considered
to model in many real-life problems, e.g. economics, telecommunica-
tions, transportation, scheduling, routing and supply chain manage-
ment. Many researchers have studied intensively on the SPPs with
deterministic edge costs. These SPPs are referred to as standard
SPPs. Decision maker can solve the standard SPPs efficiently using
several well-known algorithms introduced by some excellent research-
ers. Although in standard SPP, the costs of the arcs are considered real
numbers ([ R), most real-life scenarios, however, have many para-
meters that may not be always precise (i.e. travelling demands, travel-
ling costs, travelling capacities, travelling time etc.). Several types of
uncertainty are generally encountered in practical applications of SPP
due to imperfect data, maintenance, failure or other reasons. In such
scenarios, the arc costs are non-deterministic in nature. Some research-
ers [53] use type-1 fuzzy numbers for handling the uncertainties in
standard SPP and this type of SPP is defined as fuzzy SPP (FSPP).
The FSPP cannot manage the several types of uncertainties because
the membership degree of type 1 fuzzy numbers is simply real
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number. To solve this problem, few researchers worked on intuitionis-
tic FSPP. In intuitionistic FSPP, the arc lengths are considered as
IFNs. It can work with uncertain information about the arc length
which consists of membership grade and non-membership grade sim-
ultaneously. The main disadvantage of intuitionistic FSPP is that it
cannot handle the uncertain information of arc length if the sum of
non-membership and membership is bigger than 1. In such real-life
scenarios, an appropriate modelling technique may justifiably
employ the neutrosophic set, and so does the name neutrosophic
SPP [48–51] appears in the area of graph theory. The neutrosophic
SPP, involving addition operation and comparison operation of neu-
trosophic set, is different from the standard SPP (FSPP), which only
uses crisp numbers (fuzzy number). In a neutrosophic SPP, the arc
length being neutrosophic numbers, the main objective of determining
a path between two nodes being smaller than all the other paths is not
easy, as the ranking of neutrosophic set as a comparison operation can
be described in several ways. The Bellman–Ford algorithm is a
common and efficient algorithm to solve the standard SPP. The clas-
sical Bellman–Ford algorithm is easy to implement for standard SPP.
In this manuscript, an extended Bellman–Ford algorithm is designed
to solve the neutrosophic SPP. In this algorithm, we need to address
two key issues to find the solution of SPP with neutrosophic para-
meters. The first issue is how to find the summing operation of two
edges, i.e. neutrosophic numbers. It is needed to calculate the path
length. The second one is that how to compare the two different neu-
trosophic paths with their arc costs described by neutrosophic
numbers. To solve these problems, the ranking method of neutro-
sophic set is adopted to extend the classical Bellman–Ford algorithm.

This research paper introduces some new concepts of
single-valued neutrosophic graph (SVNG). We have discussed the
definition of regular SVNG, complete SVNG and strong SVNG.
In this manuscript, we consider neutrosophic number to describe
the edge weights of a neutrosophic graph for neutrosophic SPP.
An algorithm is introduced to solve this problem. The
uncertainties are incorporated in Bellman–Ford algorithm for SPP
using neutrosophic number as arc length. We use one numerical
example to illustrate the effectiveness of the proposed algorithm.
2 Preliminary

In this section, we define neutrosophic graph and introduce different
types of regular neutrosophic graph, strong neutrosophic graph,
complete neutrosophic graph and complement neutrosophic graph.

Definition 1: Let U be a classical universal set. A neutrosophic set
[54] D on the U is described by three independent membership
functions: true membership function TD(x), indeterminate
membership function ID(x) and false membership function FD(x)

−0 ≤ supTD(x)+ sup ID(x)+ supFD(x) ≤ 3+ (1)

Definition 2: Let U be a universal set. The single-valued
neutrosophic set [55] D on the universal U is denoted as follows:

A = {kx:TD(x), ID(x), FD(x)|x [ U l} (2)

The functions TD(x) [ [0, 1], IA(x) [ [0, 1] and FA(x) [ [0, 1] are
named as degree of truth, indeterminacy and falsity membership of
x in A, satisfy the following condition:

−0 ≤ supTD(x)+ sup ID(x)+ supFD(x) ≤ 3+ (3)

Definition 3: Let A = (TD, ID, FD) be a single-valued neutrosophic
set. A score function S [34] is defined as follows:

S(D) = (1+ (TD − 2ID − FD)(2− TD − FD))
2

(4)

Definition 4: : Let G∗ = V, E( ) be a simple graph. A pair G = C, D( )
is a neutrosophic graph on G∗ where C = TC, IC, FC

( )
is a picture
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fuzzy set on j and D = TD, ID, FD
( )

is a picture fuzzy set on E #
V × V such that for each arc ij [ E

TD i, j
( ) ≤ min TC i( ), TC j

( )( )
,

ID i, j
( ) ≤ min IC i( ), IC j

( )( )
,

FD i, j
( ) ≥ max FC i( ), FC j

( )( )
(5)

Definition 5: A neutrosophic graph G = C, D( ) is said to be regular
neutrosophic graph if

∑

i
i=j

TD i, j
( ) = constant,

∑

i
i=j

ID i, j
( ) = constant,

∑

i
i=j

FD i, j
( ) = constant, ∀i, j [ E

(6)

Definition 6: A neutrosophic graph G = C, D( ) is defined as strong
neutrosophic graph if

TD i, j
( ) = TC i( ) ^ TC j

( )
,

ID i, j
( ) = IC i( ) ^ IC j

( )
,

FD i, j
( ) = FC i( ) _ FC j

( ) ∀i, j [ E

(7)

Definition 7: A neutrosophic graph G = C, D( ) is defined as
complete neutrosophic graph if

TD i, j
( ) = TC i( ) ^ TC j

( )
,

ID i, j
( ) = IC i( ) ^ IC j

( )
,

FD i, j
( ) = FC i( ) _ FC j

( )∀i, j [ V

(8)

Definition 8: A path p in a neutrosophic graph G = C, D( ) is a
sequence of different vertices p0, p1, p2, . . . , pk such that

TD pi−1pi
( )

ID pi−1pi
( )

FD pi−1pi
( )( )

. 0, i = 1, 2, . . . , k. (9)

Here, k represents the length of path.

Definition 9: Let G = C, D( ) be a neutrosophic graph. Then, G is said
to be connected neutrosophic graph if for every vertices i, j [ V ,
T1
B (i, j) . 0 or I1B (i, j) . 0 or F1

B (i, j) , 1.

Definition 10: The complement of a neutrosophic graph G = C, D( )
is a neutrosophic graph G′ = C′, D′( )

if and only if follows the
following equation:

(T ′
C, I

′
C, F

′
C) = (TC, IC, FC)

T ′
D i, j
( ) = TC i( ) ^ TC j

( )− TB i, j
( )

,

I ′D i, j
( ) = IC i( ) ^ IC j

( )− IB i, j
( )

,

F ′
D i, j
( ) = FC i( ) _ FC j

( )− FB i, j
( ) ∀i, j [ V

(10)

Definition 11: A neutrosophic graph G is said to be

(i) The G is self-complementary neutrosophic graph then G = G′.
(ii) The G is self-weak complement neutrosophic graph then G is
weak isomorphic to G′.
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3 Operations on neutrosophic graph

In this section, we introduce six operations on neutrosophic graph,
viz., Cartesian product, composition, join, direct product,
lexicographic and strong product.

Definition 12: Let G1 = C1, D1

( )
and G2 = C2, D2

( )
are two

neutrosophic graphs of G∗
1 = V1, E1

( )
and G∗

2 = V2, E2

( )
,

respectively. The Cartesian product G1 × G2 of neutrosophic
graph G1 and G2 is defined by C, D( ), where C = TC, IC, FC

( )
and

D = TD, ID, FD
( )

are two neutrosophic sets on V = V1 × V2

( )
,

and E = { i, i2
( )

, i, j2
( )|i [ V1, i2j2 [ E2}< { i1, k

( )
, j1, k
( )|k [

V2, i1j1 [ E1}, respectively, which satisfies the following:
(i) ∀(i1, i2) [ V1 × V2,

(a) TC((i1, i2)) = TC1 (i1) ^ TC2 (i2)
(b) IC((i1, i2)) = IC1 (i1) ^ IC2 (i2)
(c) FC((i1, i2)) = FC1 (i1) _ FC2 (i2)

(ii) ∀i [ V1 and ∀(i2, j2) [ E2,

(a) TD((i, i2)(i, j2)) = TC1 (i1) ^ TD2
(i2j2)

(b) ID((i, i2)(i, j2)) = IC1 (i1) ^ ID2
(i2j2)

(c) FD((i, i2)(i, j2)) = FC1 (i1) _ FD2
(i2j2)

(iii) ∀k [ V2 and ∀(i1, i2) [ E1,

(a) TD((i1, k)(j1, k)) = TD1
(i1j1) ^ TC2 (k)

(b) ID((i1, k)(j1, k) = ID1
(i1j1) ^ IC2 (k)

(c) FD((i1, k)(j1, k)) = FD1
(i1j1) _ FC2 (k)

Definition 13: The composition G1G2 of two neutrosophic graphs
G1 = C1, D1

( )
and G2 = C2, D2

( )
defined as a pair C, D( ), where

C = TC, IC, FC
( )

and D = TD, ID, FD
( )

are two neutrosophic sets
on V = V1 × V2

( )
, and E = { i, i2

( )
, i, j2
( )|i [ V1, i2j2 [ E2}<

{ i1, k
( )

, j1, k
( )|k [ V2, i1j1 [ E1}<{ i1, i2

( )
, j1, j2
( )|i2j2[V2= j2,

i1j1 [ E1}, respectively, which satisfies the following:
(i) ∀(i1, i2) [ V1 × V2,

(a) TC((i1, i2)) = TC1 (i1) ^ TC2 (i2)
(b) IC((i1, i2)) = IC1 (i1) ^ IC2 (i2)
(c) FC((i1, i2)) = FC1 (i1) _ FC2 (i2)

(ii) ∀i [ V1 and ∀(i2, j2) [ E2,

(a) TD((i, i2)(i, j2)) = TC1 (i1) ^ TD2
(i2j2)

(b) ID((i, i2)(i, j2)) = IC1 (i1) ^ ID2
(i2j2)

(c) FD((i, i2)(i, j2)) = FC1 (i1) _ FD2
(i2j2)

(iii) ∀k [ V2 and ∀(i1, i2) [ E1,

(a) TD((i1, k)(j1, k)) = TD1
(i1j1) ^ TC2 (k)

(b) ID((i1, k)(j1, k) = ID1
(i1j1) ^ IC2 (k)

(c) FD((i1, k)(j1, k)) = FD1
(i1j1) _ FC2 (k)

(iv) ∀i2j2 [ V2, i2 = j2 and ∀(i1j1) [ E1,

(a) TD((i1, i2)(j1, j2)) = TC2 (i2) ^ TC2 (j2) ^ TD1
(i1j1)

(b) ID((i1, i2)(j1, j2)) = IC2 (i2) ^ IC2 (j2) ^ ID1
(i1j1)

(c) FD((i1, i2)(j1, j2)) = FC2 (i2) ^ FC2 (j2) ^ FD1
(i1j1)

Definition 14: The union G1 < G2 of two neutrosophic graph G1 =
C1, D1

( )
and G2 = C2, D2

( )
is defined as C, D( ), where C =

TC, IC, FC
( )

is a neutrosophic set on V = V1 < V2 and D =
TD, ID, FD
( )

is an another neutrosophic set on E = E1 < E2,
which satisfies the following:
310 This is an open access article publis
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(a) TC(i) = TC1 (i) if i [ V1 and i � V2
(b) TC(i) = TC2 (i) if i [ V2 and i � V1
(c) TC(i) = TC1 (i) ^ TC2 (i) if i [ V1 > V2

(ii)

(a) IC(i) = IC1 (i) if i [ V1 and i � V2
(b) IC(i) = IC2 (i) if i [ V2 and i � V1
(c) IC(i) = IC1 (i) ^ IC2 (i) if i [ V1 > V2

(iii)

(a) FC(i) = FC1 (i) if i [ V1 and i � V2
(b) FC(i) = FC2 (i) if i [ V2 and i � V1
(c) FC(i) = FC1 (i) ^ IC2 (i) if i [ V1 > V2

(iv)

(a) TD(ij) = TD1
(ij) if ij [ E1 and ij � E2

(b) TD(ij) = TD2
(ij) if ij [ E2 and ij � E1

(c) TD(ij) = TD1
(ij) ^ TD2

(ij) if ij [ E1 > E2

(v)

(a) ID(ij) = ID1
(ij) if ij [ E1 and ij � E2

(b) ID(ij) = ID2
(ij) if ij [ E2 and ij � E1

(c) ID(ij) = ID1
(ij) ^ ID2

(ij) if ij [ E1 > E2

(vi)

(a) FD(ij) = FD1
(ij) if ij [ E1 and ij � E2

(b) FD(ij) = FD2
(ij) if ij [ E2 and ij � E1

(c) FD(ij) = FD1
(ij) ^ FD2

(ij) if ij [ E1 > E2

Definition 15: The joining G1 + G2 of two neutrosophic graphs
G1 = C1, D1

( )
and G2 = C2, D2

( )
is defined as C, D( ),

where C = TC, IC, FC
( )

is a neutrosophic set on V = V1 < V2 and
D = TD, ID, FD

( )
is an another neutrosophic set on E =

E1 < E2 < E′((E′ represents all edges joining the vertex of V1
and V2), which satisfies the following:

(i)

(a) TC(i) = TC1 (i) if i [ V1 and i � V2
(b) TC(i) = TC2 (i) if i [ V2 and i � V1
(c) TC(i) = TC1 (i) ^ TC2 (i) if i [ V1 > V2

(ii)

(a) IC(i) = IC1 (i) if i [ V1 and i � V2
(b) IC(i) = IC2 (i) if i [ V2 and i � V1
(c) IC(i) = IC1 (i) ^ IC2 (i) if i [ V1 > V2

(iii)

(a) FC(i) = FC1 (i) if i [ V1 and i � V2
(b) FC(i) = FC2 (i) if i [ V2 and i � V1
(c) FC(i) = FC1 (i) ^ IC2 (i) if i [ V1 > V2
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(iv)

(a) TD(ij) = TD1
(ij) if ij [ E1 and ij � E2

(b) TD(ij) = TD2
(ij) if ij [ E2 and ij � E1

(c) TD(ij) = TD1
(ij) ^ TD2

(ij) if ij [ E1 > E2

(v)

(a) ID(ij) = ID1
(ij) if ij [ E1 and ij � E2

(b) ID(ij) = ID2
(ij) if ij [ E2 and ij � E1

(c) ID(ij) = ID1
(ij) ^ ID2

(ij) if ij [ E1 > E2

(vi)

(a) FD(ij) = FD1
(ij) if ij [ E1 and ij � E2

(b) FD(ij) = FD2
(ij) if ij [ E2 and ij � E1

(c) FD(ij) = FD1
(ij) ^ FD2

(ij) if ij [ E1 > E2

(vii)

(a) TD(ij) = TD1
(i) _ TD2

(j) if ij [ E′

(b) ID(ij) = ID1
(i) _ ID2

(j) if ij [ E′

(c) FD(ij) = FD1
(i) ^ FD2

(j) if ij [ E′

Definition 16: The direct product G1
∗G2 of two neutrosophic

graph G1 and G2 is defined as a pair C, D( ), where C =
TC, IC, FC
( )

is a neutrosophic set on V = V1 × V2 and D =
TD, ID, FD
( )

is an another neutrosophic set on E = { i1, i2
( )

j1, j2
( )|i1j1 [ E1, i2j2 [ E2}, which satisfies the following:

(i) ∀(i1, i2) [ V1 × V2

(a) TC(i1, i2) = TC1 (i1) _ TC2 (i2)
(b) IC(i1, i2) = IC1 (i1) _ IC2 (i2)
(c) FC(i1, i2) = FC1 (i1) ^ FC2 (i2)

(ii) ∀(i1j1) [ E1, ∀(i2j2) [ E2

(a) TD(i1, i2)(j1, j2) = TD1
(i1j1) _ TD2

(i2j2)
(b) ID(i1, i2)(j1, j2) = ID1

(i1j1) _ ID2
(i2j2)

(c) FD(i1, i2)(j1, j2) = FD1
(i1j1) ^ TD2

(i2j2)

Definition 17: The lexicographic product G1 · G2 of two neutrosophic
graph G1 = C1, D1

( )
and G2 = C2, D2

( )
is defined as a pair C, D( ),

where C = TC, IC, FC
( )

is a neutrosophic set on V = V1 × V2 and
D = TD, ID, FD

( )
is an another neutrosophic set on E = { i, i2

( )×
i, j2
( )|i [ V1, i2j2 [ E2}< { i1, i2

( )
j1, j2

( )|i1j1 [ E1, i2j2 [ E2}
which satisfies the following:

(i) ∀(i1, i2)
(a) TC(i1, i2) = TC1 (i1) _ TC2 (i2) = IC1 (i1) _ IC2 (i2) = FC1 (i1)^
FC2 (i2)

(ii) ∀i [ V1, ∀(i2j2) [ E2

(a) TD(i, i2)(i, j2) = TC1 (i) _ TD2
(i2j2)

(b) ID(i, i2)(i, j2) = IC1 (i) _ ID2
(i2j2)

(c) FD(i, i2)(i, j2) = FC1 (i) ^ FD2
(i2j2)

(iii) ∀i1j1 [ E1, ∀(i2j2) [ E2

(a) TD(i1, i2)(j1, j2) = TD1
(i1j1) _ TD2

(i2j2)
(b) ID(i1, i2)(j1, j2) = ID1

(i1j1) _ ID2
(i2j2)

(c) FD(i1, i2)(j1, j2) = FD1
(i1j1) ^ FD2

(i2j2)

Definition 18: The strong product G1G2 of two neutrosophic graphs
G1 = C1, D1

( )
and G2 = C2, D2

( )
is defined as a pair C, D( ), where

C = TC, IC, FC
( )

is a neutrosophic set on V = V1 × V2 and D =
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TD, ID, FD
( )

is an another neutrosophic set on E = { i, i2
( )

i, j2
( )|i [

V1, i2j2 [ E2}< { i1, k
( )

j1, k
( )|k [ V2, i1j1 [ E1}< { i1, i2

( )×
j1, j2

( )|i1j1 [ E1, i2j2 [ E2} which satisfies the following:

(i) ∀(i1, i2) [ V1 × V2

(a) TC(i1, i2) = TC1 (i1) _ TC2 (i2)
(b) IC(i1, i2) = IC1 (i1) _ IC2 (i2)
(c) FC(i1, i2) = FC1 (i1) ^ FC2 (i2)

(ii) ∀i [ V1, ∀(i2j2) [ E2

(a) TD(i, i2)(i, j2) = TC1 (i) _ TD2
(i2j2)

(b) ID(i, i2)(i, j2) = IC1 (i) _ ID2
(i2j2)

(c) FD(i, i2)(i, j2) = FC1 (i) ^ FD2
(i2j2)

(iii) ∀i1j1 [ E1, ∀(i2j2) [ E2

(a) TD(i1, i2)(j1, j2) = TD1
(i1j1) _ TD2

(i2j2)
(b) ID(i1, i2)(j1, j2) = ID1

(i1j1) _ ID2
(i2j2)

(c) FD(i1, i2)(j1, j2) = FD1
(i1j1) ^ FD2

(i2j2)

(iv) ∀i1j1 [ E1, k [ V2

(a) TD(i1, k)(j1, k) = TD1
(i1j1) _ TC2 (k)

(b) ID(i1, k)(j1, k) = ID1
(i1j1) _ IC2 (k)

(c) FD(i1, k)(j1, k) = FD1
(i1j1) ^ FC2 (k)

4 Proposed Bellman–Ford algorithm for
neutrosophic SPP

Our proposed algorithmic approach is the modification of classical
Bellman–Ford algorithm for neutrosophic SPP. In this algorithm,
we have incorporated the uncertainties in Bellman–Ford algorithm
using neutrosophic set as an edge weight. We have shown the
pseudocode of our proposed algorithm for neutrosophic SPP in
Algorithm 1 (see Fig. 1). The flowchart of our proposed algorithm
is given in Fig. 2. The proposed algorithm finds all possible
shortest paths between the source node and all other nodes in the
neutrosophic graph G. Our proposed algorithm needs that the
neutrosophic graph does not consist of any neutrosophic cycles of
negative neutrosophic length. However, if the graph contains any
neutrosophic cycle, then our proposed algorithm is able to find it.
The source is denoted, respectively, by source.
5 Numerical examples

A numerical example of neutrosophic SPP is used to describe our
proposed Bellman–Ford algorithm. For this purpose, we use an
example neutrosophic graph, shown in Fig. 3, with five vertices
and eight edges. Our modified Bellman–Ford algorithm detects the
shortest path between the starting vertex and all other nodes in the
neutrosophic graph with neutrosophic sets as edge weights. For
this neutrosophic SPP, we consider the starting vertex is vertex s.
The following eight neutrosophic number, shown in Table 1, are
used as edge weights of the neutrosophic graph. Those
neutrosophic sets are number from one to eight. For the
neutrosophic graph, shown in Fig. 3, we assign those neutrosophic
sets to the edges of the neutrosophic graph randomly.

The steps of our algorithm are given below:

Step 1: Let the starting vertex be s. It is changed permanent node and
the shortest path distance, i.e. dist_score[u] between (s) and (s) is 0.
The accessible adjacent vertices between starting vertex s are v1, v2
and v3. The score values (distance) of the each adjacent edge of
starting vertex (s) are calculated by using (4). Among all the 3
nodes, the shortest one (s) � (v1) is taken out with score value 0.43.
Step 2: Now, our proposed algorithm moves the node v1 and the
finding the shortest path started from the vertex (v1). The lowest
score (shortest distance) from (s) � (v1) to its adjacent is
311n for Artificial Intelligence and
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Fig. 1 Algorithm 1: neutrosophic Bellman–Ford algorithm

Fig. 2 Flowchart of neutrosophic Bellman–Ford algorithm

Fig. 3 Neutrosophic network with neutrosophic numbers as arc lengths for
example 1

Table 1 Arc lengths of the neutrosophic graph, represented as
neutrosophic number

Index SVNs

1 k(4.6, 5.5, 8.6)l
2 k(4.7, 6.9, 8.5)l
3 k(6.2, 7.6, 8.2)l
4 k(6.2, 8.9, 9.1)l
5 k(4.4, 5.9, 7.2)l
6 k(6.6, 8.8, 10)l
7 k(6.3, 7.5, 8.9)l
8 k(6.2, 7.6, 8.2)l
determined. Any one is minimum than the path (s) � (v2) by
comparing all the score values.
Step 3: The vertex v2 is changed to permanent and all the searching
of shortest path begins with vertex (v1) and vertex (s). We find the
score of the each adjacent of the path (s) � (v2). The shortest
score among all the unvisited path is (s) � (v3).
Step 4: Similarity, we determine the path with lowest score (i.e. the
shortest path) between the source vertex and every other vertex (t),
the neutrosophic shortest path is (s) � (v2) � t.
312 This is an open access article publis
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6 Conclusion

Graph theory has many real-life applications to the problems in
operations research, computer network, economics, systems
analysis, urban traffic planning and transportation. In real-life
scenarios, however, uncertainty may exist in almost every graph
theoretic problem. Neutrosophic set is a popular and useful tool to
work in uncertain environment. This paper presents some new
operation of SVNG model. We describe the definition of regular
CAAI Trans. Intell. Technol., 2020, Vol. 5, Iss. 4, pp. 308–313
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SVNG, complete SVNG and strong SVNG. In this manuscript, we
consider neutrosophic number to describe the edge weights of a
neutrosophic graph for neutrosophic SPP. An algorithm is
introduced to solve this problem. The uncertainties are
incorporated in Bellman–Ford algorithm for SPP using
neutrosophic number as arc length. We use one numerical example
to illustrate the effectiveness of the proposed algorithm. The
SVNG can be utilised to model the social network, image
processing, telecommunication, expert systems and computer
networks.
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