

Journal of Algebraic Hyperstructures and Logical Algebras

Volume 1, Number 2, (2020), pp. 9-21

Two dimensional event set and its application in algebraic structures

Y.B. Jun¹

¹Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea skywine@gmail.com

Abstract

Two dimensional event set is introduced, and it is applied to algebraic structures. Two dimensional BCK/BCI-eventful algebra, paired B-algebra and paired BCK/BCI-algebra are defined, and several properties are investigated. Conditions for two dimensional eventful algebra to be a B-algebra and a BCK/BCI-algebra are provided. The process of inducing a paired B-algebra using a group is discussed. Using two dimensional BCI-eventful algebra, a commutative group is established.

Article Information

Corresponding Author: Y.B. Jun; Received: March 2020;

Accepted: Invited paper.

Keywords:

Two dimensional event (set), two dimensional BCK/BCIeventful algebra, paired Balgebra, paired BCK/BCIalgebra.

1 Introduction and Priliminaries

The notion of neutrosophic set is developed by Smarandache ([9], [10]), and is a more general platform that extends the notions of classic set, (intuitionistic) fuzzy set and interval valued (intuitionistic) fuzzy set. Smarandache [11] considered an entry (i.e., a number, an idea, an object etc.) which is represented by a known part (a) and an unknown part (bT, cI, dF) where T, I, F have their usual neutrosophic logic meanings and a, b, c, d are real or complex numbers, and then he introduced the concept of neutrosophic quadruple numbers. Neutrosophic quadruple algebraic structures and hyperstructures are discussed in . [1] and [2]. Neutrosophic quadruple BCK/BCI-algebra is studied in [5] and [7]. Using neutrosophic quadruple structures, Jun et al. [4] introduced the notion of events by considering two facts, and applied it to BCK/BCI-algebras. There are many things in our daily lives that we have to choose between two facts. For example, should I read a book or not, go to the movies or not, etc. To consider these two factors, we introduce two-dimensional event sets and try to apply them to algebraic structures. We introduce the notions of two dimensional BCK/BCI-eventful algebra, paired B-algebra and paired BCK/BCI-algebra, and investigate several properties. We provided conditions for two dimensional eventful algebra to be a B-algebra and a BCK/BCI-algebra. We discuss the process of inducing a paired B-algebra using a group, and establish a commutative group using two dimensional BCI-eventful algebra.

We describe the basic contents that will be needed in this paper. Let (X, *, 0) be an algebra, i.e., let X be a set with a special element "0" and a binary operation "*", and consider the following conditions.

$$(\forall u \in X) \ (u * u = 0). \tag{1}$$

$$(\forall u \in X) \ (u * 0 = u). \tag{2}$$

$$(\forall u \in X) \ (0 * u = 0). \tag{3}$$

$$(\forall u, v, w \in X) \ ((u * v) * w = u * (w * (0 * v))). \tag{4}$$

$$(\forall u, v \in X) \ (u * v = 0, \ v * u = 0 \ \Rightarrow \ u = v).$$
 (5)

$$(\forall u, v \in X) \ ((u * (u * v)) * v = 0). \tag{6}$$

$$(\forall u, v, w \in X) (((u * v) * (u * w)) * (w * v) = 0). \tag{7}$$

We say that X := (X, *, 0) is

- a B-algebra (see [8]) if it satisfies (1), (2) and (4),
- a *BCI-algebra* (see [6]) if it satisfies (1), (5), (6) and (7),
- a BCK-algebra (see [3]) if it is a BCI-algebra satisfying (3).

A BCI-algebra X := (X, *, 0) is said to be *p-semisimple* (see [3]) if it satisfies:

$$(\forall u \in X)(0 * (0 * u) = u). \tag{8}$$

2 Two dimensional event sets

Definition 2.1. Let $\ell: X \to Q$ be a mapping from a set X to a set Q. For any $a, x \in X$, the ordered pair (x, ℓ_a) is called a two dimensional event on X where ℓ_a is the image of a under ℓ .

The set of all two dimensional events on X is denoted by (X, ℓ_X) , that is,

$$(X, \ell_X) = \{ (x, \ell_a) \mid x, a \in X \} \tag{9}$$

and it is called a two dimensional X-event set. By a two dimensional X-eventful algebra we mean a two dimensional X-event set with a binary operation &, and it is denoted by $\langle (X, \ell_X), \& \rangle$.

Let $\langle (\mathbb{R}, \ell_{\mathbb{R}}), \oplus \rangle$, $\langle (\mathbb{R}, \ell_{\mathbb{R}}), \ominus \rangle$ and $\langle (\mathbb{R}, \ell_{\mathbb{R}}), \odot \rangle$ be two dimensional \mathbb{R} -eventful algebras in which " \oplus ", " \ominus " and " \odot " are defined as follows:

$$(x, \ell_a) \oplus (y, \ell_b) = (x + y, \ell_{a+b}),$$

$$(x, \ell_a) \ominus (y, \ell_b) = (x - y, \ell_{a-b}),$$

$$(x, \ell_a) \odot (y, \ell_b) = (x \cdot y, \ell_{a \cdot b}),$$

respectively, for any two dimensional events (x, ℓ_a) and (y, ℓ_b) on \mathbb{R} . For any $t \in \mathbb{R}$ and a two dimensional event (x, ℓ_a) on \mathbb{R} , we define

$$t(x, \ell_a) = (tx, \ell_{ta}). \tag{10}$$

In particular, if t = -1, then $-1(x, \ell_a) = (-x, \ell_{-a})$ and $-1(x, \ell_a)$ is simply denoted by $-(x, \ell_a)$.

Proposition 2.2. Let $\langle (\mathbb{R}, \ell_{\mathbb{R}}), \oplus \rangle$, $\langle (\mathbb{R}, \ell_{\mathbb{R}}), \ominus \rangle$ and $\langle (\mathbb{R}, \ell_{\mathbb{R}}), \odot \rangle$ be two dimensional \mathbb{R} -eventful algebras. Then

- (i) $((x, \ell_a) \oplus (y, \ell_b)) \oplus (z, \ell_c) = (x, \ell_a) \oplus ((y, \ell_b) \oplus (z, \ell_c)),$
- (ii) $(x, \ell_a) \oplus (y, \ell_b) = (y, \ell_b) \oplus (x, \ell_a),$
- (iii) $(x, \ell_a) \odot (y, \ell_b) = (y, \ell_b) \odot (x, \ell_a),$

- (iv) $((x, \ell_a) \odot (y, \ell_b)) \odot (z, \ell_c) = (x, \ell_a) \odot ((y, \ell_b) \odot (z, \ell_c)),$
- (v) $t((x, \ell_a) \oplus (y, \ell_b)) = t(x, \ell_a) \oplus t(y, \ell_b)$ for all $t \in \mathbb{R}$,
- (vi) $(t+s)(x,\ell_a) = t(x,\ell_a) \oplus s(x,\ell_a)$ for all $t,s \in \mathbb{R}$,
- (vii) $(x, \ell_a) \oplus (-(x, \ell_a)) = (0, \ell_0).$

(viii)
$$(x, \ell_a) \odot (x, \ell_a)^{-1} = (1, \ell_1)$$
 where $(x, \ell_a)^{-1} = (x^{-1}, \ell_{a^{-1}})$

for all two dimensional events (x, ℓ_a) , (y, ℓ_b) and (z, ℓ_c) on \mathbb{R} .

Proof. Straightforward.

By Proposition 2.2, we have the following theorem.

Theorem 2.3. Two dimensional \mathbb{R} -eventful algebras $\langle (\mathbb{R}, \ell_{\mathbb{R}}), \oplus \rangle$ and $\langle (\mathbb{R}, \ell_{\mathbb{R}}), \odot \rangle$ are commutative groups with identities $(0, \ell_0)$ and $(1, \ell_1)$, respectively.

3 Two dimensional eventful algebras

Let (X, *, 0) be an algebra and $\langle (X, \ell_X), \circledast \rangle$ be a two dimensional X-eventful algebra in which " \circledast " is defined by

$$(x, \ell_a) \circledast (y, \ell_b) = (x * y, \ell_{a*b})$$

respectively, for all $x, y, a, b \in X$. In a two dimensional X-eventful algebra $\langle (X, \ell_X), \circledast \rangle$, the order " \ll " is defined as follows:

$$(x, \ell_a) \ll (y, \ell_b) \Leftrightarrow x \leq y \text{ and } a \leq b$$

for all $x, y, a, b \in X$ where $x \leq y$ means x * y = 0 and $a \leq b$ means a * b = 0.

Theorem 3.1. If (X, *, 0) is a B-algebra, then the two dimensional X-eventful algebra $\langle (X, \ell_X), \circledast \rangle$ is a B-algebra with the special element $(0, \ell_0)$.

Proof. For any $(x, \ell_a), (y, \ell_b), (z, \ell_c) \in (X, \ell_X)$, we have

$$(x, \ell_a) \otimes (x, \ell_a) = (x * x, \ell_{a*a}) = (0, \ell_0), (x, \ell_a) \otimes (0, \ell_0) = (x * 0, \ell_{a*0}) = (x, \ell_a),$$

and

$$((x, \ell_a) \circledast (y, \ell_b)) \circledast (z, \ell_c) = (x * y, \ell_{a*b}) \circledast (z, \ell_c)$$

$$= ((x * y) * z, \ell_{(a*b)*c})$$

$$= (x * (z * (0 * y)), \ell_{a*(c*(0*b))})$$

$$= (x, \ell_a) \circledast (z * (0 * y), \ell_{c*(0*b)})$$

$$= (x, \ell_a) \circledast ((z, \ell_c) \circledast (0 * y, \ell_{0*b}))$$

$$= (x, \ell_a) \circledast ((z, \ell_c) \circledast ((0, \ell_0) \circledast (y, \ell_b)))$$

by (1), (2) and (4), respectively. Therefore $\langle (X, \ell_X), \circledast \rangle$ is a B-algebra with the special element $(0, \ell_0)$. \square

We say that $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a paired B-algebra.

Example 3.2. Let $X = \{0, a, b\}$ be a set with the binary operation "*" as in Table 1. For $Q = \{0, \frac{1}{2}, 1\}$, define a mapping ℓ as follows:

$$\ell: X \to Q, \ x \mapsto \begin{cases} 0 & \text{if } x = 0, \\ \frac{1}{2} & \text{if } x = a, \\ 1 & \text{if } x = b. \end{cases}$$

Table 1: Cayley table for the binary operation "*"

*	0	a	b
0	0	b	\overline{a}
a	a	0	b
b	b	a	0

Then

$$(X, \ell_X) = \{(0, \ell_0), (0, \ell_a), (0, \ell_b), (a, \ell_0), (a, \ell_a), (a, \ell_b), (b, \ell_0), (b, \ell_a), (b, \ell_b)\}$$

= \{(0, 0), (0, \frac{1}{2}), (0, 1), (a, 0), (a, \frac{1}{2}), (a, 1), (b, 0), (b, \frac{1}{2}), (b, 1)\}

and the operation \circledast is given by Table 2. It is routine to verify that $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a paired B-algebra.

Table 2: Cayley table for the binary operation "*"

*	$(0, \ell_0)$	$(0,\ell_a)$	$(0,\ell_b)$	(a,ℓ_0)	(a,ℓ_a)	(a,ℓ_b)	(b,ℓ_0)	(b,ℓ_a)	(b,ℓ_b)
$(0, \ell_0)$	(0,0)	(0, 1)	$(0,\frac{1}{2})$	(b, 0)	(b, 1)	$(b, \frac{1}{2})$	(a, 0)	(a, 1)	$(a, \frac{1}{2})$
$(0,\ell_a)$	$(0,\frac{1}{2})$	(0,0)	$(0, \bar{1})$	$(b, \frac{1}{2})$	(b, 0)	$(b,ar{1})$	$(a, \frac{1}{2})$	(a,0)	$(a, \overline{1})$
$(0,\ell_b)$	$(0, \bar{1})$	$(0,\frac{1}{2})$	(0, 0)	$(b, \bar{1})$	$(b, \frac{1}{2})$	(b, 0)	$(a, \overline{1})$	$(a, \frac{1}{2})$	(a,0)
(a, ℓ_0)	(a,0)	$(a, \overline{1})$	$(a, \frac{1}{2})$	(0,0)	$(0, \bar{1})$	$(0,\frac{1}{2})$	(b, 0)	$(b, \bar{1})$	$(b,\frac{1}{2})$
(a, ℓ_a)	$(a, \frac{1}{2})$	(a, 0)	$(a, \overline{1})$	$(0,\frac{1}{2})$	(0, 0)	$(0, \bar{1})$	$(b, \frac{1}{2})$	(b,0)	$(b, \overline{1})$
(a, ℓ_b)	$(a, \overline{1})$	$(a, \frac{1}{2})$	(a,0)	$(0, \bar{1})$	$(0,\frac{1}{2})$	(0,0)	$(b, \overline{1})$	$(b, \frac{1}{2})$	(b, 0)
(b,ℓ_0)	(b, 0)	$(b,ar{1})$	$(b, \frac{1}{2})$	(a, 0)	$(a, \overline{1})$	$(a, \frac{1}{2})$	(0, 0)	$(0, \bar{1})$	$(0,\frac{1}{2})$
(b, ℓ_a)	$(b, \frac{1}{2})$	(b, 0)	$(b, \overline{1})$	$(a, \frac{1}{2})$	(a, 0)	$(a, \overline{1})$	$(0,\frac{1}{2})$	(0,0)	$(0, \bar{1})$
(b,ℓ_b)	$(b, \overline{1})$	$(b, \frac{1}{2})$	(b, 0)	$(a, \overline{1})$	$(a, \frac{1}{2})$	(a, 0)	$(0, \bar{1})$	$(0,\frac{1}{2})$	(0,0)

Proposition 3.3. If $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a paired B-algebra, then

- (i) $(x, \ell_a) \circledast (y, \ell_b) = (x, \ell_a) \circledast ((0, \ell_0) \circledast ((0, \ell_0) \circledast (y, \ell_b))),$
- (ii) $((x, \ell_a) \circledast (y, \ell_b)) \circledast ((0, \ell_0) \circledast (y, \ell_b)) = (x, \ell_a),$
- (iii) $(x, \ell_a) \circledast (z, \ell_c) = (y, \ell_b) \circledast (z, \ell_c)$ implies $(x, \ell_a) = (y, \ell_b)$,
- $(\mathrm{iv}) \ (x,\ell_a) \circledast ((y,\ell_b) \circledast (z,\ell_c)) = ((x,\ell_a) \circledast ((0,\ell_0) \circledast (z,\ell_c))) \circledast (y,\ell_b),$
- (v) $(x, \ell_a) \circledast (y, \ell_b) = (0, \ell_0)$ implies $(x, \ell_a) = (y, \ell_b)$,
- (vi) $(0, \ell_0) \circledast (x, \ell_a) = (0, \ell_0) \circledast (y, \ell_b)$ implies $(x, \ell_a) = (y, \ell_b)$,
- (vii) $(0, \ell_0) \circledast ((0, \ell_0) \circledast (x, \ell_a)) = (x, \ell_a)$

for all $x, y, z, a, b, c \in X$.

Proof. Let $x, y, z, a, b, c \in X$. Then

$$(x, \ell_a) \circledast (y, \ell_b) = (x * y, \ell_{a*b}) = ((x * y) * 0, \ell_{(a*b)*0})$$

$$= (x * (0 * (0 * y)), \ell_{a*(0*(0*b))})$$

$$= (x, \ell_a) \circledast (0 * (0 * y), \ell_{0*(0*b)})$$

$$= (x, \ell_a) \circledast ((0, \ell_0) \circledast ((0, \ell_0) \circledast (y, \ell_b)))$$

which proves (i).

(ii) We have

$$\begin{split} &((x,\ell_a)\circledast(y,\ell_b))\circledast((0,\ell_0)\circledast(y,\ell_b)) = (x*y,\ell_{a*b})\circledast(0*y,\ell_{0*b}) \\ &= ((x*y)*(0*y),\ell_{(a*b)*(0*b)}) \\ &= (x*((0*y)*(0*y)),\ell_{a*((0*b)*(0*b))}) \\ &= (x*0,\ell_{a*0}) = (x,\ell_a). \end{split}$$

(iii) Assume that $(x, \ell_a) \circledast (z, \ell_c) = (y, \ell_b) \circledast (z, \ell_c)$. It follows from (ii) that

$$(x, \ell_a) = ((x, \ell_a) \circledast (z, \ell_c)) \circledast ((0, \ell_0) \circledast (z, \ell_c))$$
$$= ((y, \ell_b) \circledast (z, \ell_c)) \circledast ((0, \ell_0) \circledast (z, \ell_c))$$
$$= (y, \ell_b).$$

(iv) Using (i), we have

$$((x, \ell_a) \circledast ((0, \ell_0) \circledast (z, \ell_c))) \circledast (y, \ell_b)$$
= $(x, \ell_a) \circledast ((y, \ell_b) \circledast ((0, \ell_0) \circledast ((0, \ell_0) \circledast (z, \ell_c))))$
= $(x, \ell_a) \circledast ((y, \ell_b) \circledast (z, \ell_c)).$

- (v) Suppose that $(x, \ell_a) \otimes (y, \ell_b) = (0, \ell_0)$. Then $(x, \ell_a) \otimes (y, \ell_b) = (y, \ell_b) \otimes (y, \ell_b)$, and so $(x, \ell_a) = (y, \ell_b)$ by (iii).
 - (vi) Assume that $(0, \ell_0) \circledast (x, \ell_a) = (0, \ell_0) \circledast (y, \ell_b)$. Then

$$\begin{aligned} (0,\ell_0) &= (x,\ell_a) \circledast (x,\ell_a) = (x,\ell_a) \circledast ((0,\ell_0) \circledast ((0,\ell_0) \circledast (x,\ell_a))) \\ &= (x,\ell_a) \circledast ((0,\ell_0) \circledast ((0,\ell_0) \circledast (y,\ell_b))) \\ &= (x,\ell_a) \circledast (y,\ell_b) \end{aligned}$$

and so $(x, \ell_a) = (y, \ell_b)$ by (v).

(vii) We have

$$\begin{split} (0,\ell_0) \circledast (x,\ell_a) &= ((0,\ell_0) \circledast (x,\ell_a)) \circledast (0,\ell_0) \\ &= ((0*x)*0,\ell_{(0*a)*0}) \\ &= (0*(0*(0*x)),\ell_{0*(0*(0*a))}) \\ &= (0,\ell_0) \circledast ((0,\ell_0) \circledast ((0,\ell_0) \circledast (x,\ell_a))) \end{split}$$

and so
$$(0, \ell_0) \circledast ((0, \ell_0) \circledast (x, \ell_a)) = (x, \ell_a)$$
 by (vi).

We provide conditions for two dimensional X-eventful algebra to be a B-algebra.

Theorem 3.4. For an algebra (X, *, 0), the two dimensional X-eventful algebra $\langle (X, \ell_X), \circledast \rangle$ is a B-algebra with the special element $(0, \ell_0)$ if and only if it satisfies Proposition 3.3(vii) and

$$(x, \ell_a) \circledast (x, \ell_a) = (0, \ell_0), \tag{11}$$

$$((x,\ell_a) \circledast (z,\ell_c)) \circledast ((y,\ell_b) \circledast (z,\ell_c)) = (x,\ell_a) \circledast (y,\ell_b)$$
(12)

for all $(x, \ell_a), (y, \ell_b), (z, \ell_c) \in (X, \ell_X)$.

Proof. Assume that the two dimensional X-eventful algebra $\langle (X, \ell_X), \circledast \rangle$ is a B-algebra with the special element $(0, \ell_0)$. The condition Proposition 3.3(vii) is by Proposition 3.3. It is clear that (11) is true by the definition of B-algebra. Also, we have

$$\begin{aligned} &((x,\ell_a)\circledast(z,\ell_c))\circledast((y,\ell_b)\circledast(z,\ell_c)) = (x,\ell_a)\circledast(((y,\ell_b)\circledast(z,\ell_c))\circledast((0,\ell_0)\circledast(z,\ell_c))) \\ &= (x,\ell_a)\circledast((y,\ell_b)\circledast(((0,\ell_0)\circledast(z,\ell_c))\circledast((0,\ell_0)\circledast(z,\ell_c)))) \\ &= (x,\ell_a)\circledast((y,\ell_b)\circledast(0,\ell_0)) = (x,\ell_a)\circledast(y,\ell_b) \end{aligned}$$

for all $(x, \ell_a), (y, \ell_b), (z, \ell_c) \in (X, \ell_X)$.

Conversely, suppose that $\langle (X, \ell_X), \circledast \rangle$ satisfies three conditions (11), (12) and Proposition 3.3(vii). Then

$$(x, \ell_a) = (0, \ell_0) \circledast ((0, \ell_0) \circledast (x, \ell_a))$$

= $((x, \ell_a) \circledast (x, \ell_a)) \circledast ((0, \ell_0) \circledast (x, \ell_a))$
= $(x, \ell_a) \circledast (0, \ell_0)$

and

$$((x,\ell_a)\circledast(y,\ell_b))\circledast((0,\ell_0)\circledast(y,\ell_b)) = (x,\ell_a). \tag{13}$$

Combining (12) with (13) induces

$$(x, \ell_a) \circledast ((z, \ell_c) \circledast ((0, \ell_0) \circledast (y, \ell_b)))$$

$$= (((x, \ell_a) \circledast (y, \ell_b)) * ((0, \ell_0) \circledast (y, \ell_b))) \circledast ((z, \ell_c) \circledast ((0, \ell_0) \circledast (y, \ell_b)))$$

$$= ((x, \ell_a) \circledast (y, \ell_b)) \circledast (z, \ell_c)$$

for all $(x, \ell_a), (y, \ell_b), (z, \ell_c) \in (X, \ell_X)$. Therefore $\langle (X, \ell_X), \circledast \rangle$ is a B-algebra with the special element $(0, \ell_0)$.

Theorem 3.5. For an algebra (X, *, 0), the two dimensional X-eventful algebra $\langle (X, \ell_X), \circledast \rangle$ is a B-algebra with the special element $(0, \ell_0)$ if and only if it satisfies (11) and

$$(x, \ell_a) \circledast ((((0, \ell_0) \circledast (y, \ell_b)) \circledast (z, \ell_c)) \circledast (((0, \ell_0) \circledast (x, \ell_a)) \circledast (z, \ell_c))) = (y, \ell_b)$$
(14)

for all $(x, \ell_a), (y, \ell_b), (z, \ell_c) \in (X, \ell_X)$.

Proof. Assume that the two dimensional X-eventful algebra $\langle (X, \ell_X), \circledast \rangle$ is a B-algebra with the special element $(0, \ell_0)$. Then (11) is valid in Theorem 3.4. Using (12), we get

$$(((0, \ell_0) \circledast (y, \ell_b)) \circledast (z, \ell_c)) \circledast (((0, \ell_0) \circledast (x, \ell_a)) \circledast (z, \ell_c))$$

$$= ((0, \ell_0) \circledast (y, \ell_b)) \circledast ((0, \ell_0) \circledast (x, \ell_a)).$$
(15)

It follows that

$$\begin{aligned} &(x,\ell_{a}) \circledast ((((0,\ell_{0})\circledast (y,\ell_{b}))\circledast (z,\ell_{c}))\circledast (((0,\ell_{0})\circledast (x,\ell_{a}))\circledast (z,\ell_{c}))) \\ &= (x,\ell_{a})\circledast (((0,\ell_{0})\circledast (y,\ell_{b}))\circledast ((0,\ell_{0})\circledast (x,\ell_{a}))) \\ &= ((x,\ell_{a})\circledast (x,\ell_{a}))\circledast ((0,\ell_{0})\circledast (y,\ell_{b})) \\ &= (0,\ell_{0})\circledast ((0,\ell_{0})\circledast (y,\ell_{b})) \\ &= (y,\ell_{b}) \end{aligned}$$

which proves (14).

Conversely, suppose that $\langle (X, \ell_X), \circledast \rangle$ satisfies (11) and (14). If we substitute (y, ℓ_b) for (x, ℓ_a) in (14) and use (11), then

$$(x, \ell_a) = (x, \ell_a) \circledast ((((0, \ell_0) \circledast (x, \ell_a)) \circledast (z, \ell_c)) \circledast (((0, \ell_0) \circledast (x, \ell_a)) \circledast (z, \ell_c)))$$

= $(x, \ell_a) \circledast (0, \ell_0)$ (16)

If we put $(x, \ell_a) = (0, \ell_0) = (z, \ell_c)$ and $(y, \ell_a) = (x, \ell_a)$ in (14), then

$$(x, \ell_a) = (0, \ell_0) \circledast ((((0, \ell_0) \circledast (x, \ell_a)) \circledast (0, \ell_0)) \circledast (((0, \ell_0) \circledast (0, \ell_0)) \circledast (0, \ell_0)))$$

$$= (0, \ell_0) \circledast ((0, \ell_0) \circledast (x, \ell_a))$$
(17)

by (16). Assume that $(0, \ell_0) \circledast (x, \ell_a) = (0, \ell_0) \circledast (y, \ell_b)$. Then

$$(x, \ell_a) = (0, \ell_0) \otimes ((0, \ell_0) \otimes (x, \ell_a)) = (0, \ell_0) \otimes ((0, \ell_0) \otimes (y, \ell_b)) = (y, \ell_b)$$

by (17) which proves

$$(0, \ell_0) \circledast (x, \ell_a) = (0, \ell_0) \circledast (y, \ell_b) \implies (x, \ell_a) = (y, \ell_b). \tag{18}$$

Putting $(x, \ell_a) = (0, \ell_0), (y, \ell_b) = (0, \ell_0) \otimes (y', \ell_{b'})$ and $(z, \ell_c) = (z', \ell_{c'})$ in (14) induces

$$(0,\ell_0) \circledast (y',\ell_{b'}) = (0,\ell_0) \circledast ((((0,\ell_0) \circledast ((0,\ell_0) \circledast (y',\ell_{b'})) \circledast (z',\ell_{c'})) \circledast (((0,\ell_0) \circledast (0,\ell_0)) \circledast (z',\ell_{c'})))$$

$$= (0,\ell_0) \circledast (((y',\ell_{b'}) \circledast (z',\ell_{c'})) \circledast ((0,\ell_0) \circledast (z',\ell_{c'}))).$$

It follows from (18) that

$$(y', \ell_{b'}) = (((y', \ell_{b'}) \circledast (z', \ell_{c'})) \circledast ((0, \ell_0) \circledast (z', \ell_{c'}))). \tag{19}$$

If we substitute (x, ℓ_a) , (y, ℓ_b) and (z, ℓ_c) for $(x', \ell_{a'})$, $(0, \ell_0) \otimes ((z', \ell_{c'}) \otimes (x', \ell_{a'}))$ and $(0, \ell_0)$, respectively, in (14), then

$$(0, \ell_{0}) \circledast ((z', \ell_{c'}) \circledast (x', \ell_{a'}))$$

$$= (x', \ell_{a'}) \circledast ((((0, \ell_{0}) \circledast ((0, \ell_{0}) \circledast ((z', \ell_{c'}) \circledast (x', \ell_{a'})))) \circledast (0, \ell_{0}))$$

$$\circledast (((0, \ell_{0}) \circledast (x', \ell_{a'})) \circledast (0, \ell_{0})))$$

$$= (x', \ell_{a'}) \circledast (((z', \ell_{c'}) \circledast (x', \ell_{a'})) \circledast ((0, \ell_{0}) \circledast (x', \ell_{a'})))$$

$$= ((x', \ell_{a'}) \circledast (z', \ell_{c'}))$$

$$(20)$$

In (14), taking $(x, \ell_a) = (y', \ell_{b'}) \otimes (w, \ell_d)$, $(y, \ell_b) = (y', \ell_{b'}) \otimes (z', \ell_{c'})$ and $(z, \ell_c) = (0, \ell_0) \otimes (y', \ell_{b'})$ imply that

$$(y', \ell_{b'}) \circledast (z', \ell_{c'}) = ((y', \ell_{b'}) \circledast (w, \ell_d)) \circledast [(((0, \ell_0) \circledast ((y', \ell_{b'}) \circledast (z', \ell_{c'}))) \circledast ((0, \ell_0) \circledast (y', \ell_{b'}))) \circledast (((0, \ell_0) \circledast ((y', \ell_{b'}) \circledast (w, \ell_d))) \circledast ((0, \ell_0) \circledast (y', \ell_{b'})))]$$

$$(21)$$

Using (19) and (20), we get

$$((0, \ell_0) \circledast ((y', \ell_{b'}) \circledast (z', \ell_{c'}))) \circledast ((0, \ell_0) \circledast (y', \ell_{b'}))$$

$$= ((z', \ell_{c'}) \circledast (y', \ell_{b'})) \circledast ((0, \ell_0) \circledast (y', \ell_{b'})) = (z', \ell_{c'}).$$
(22)

Similarly, we have

$$((0,\ell_0) \circledast ((y',\ell_{b'}) \circledast (w,\ell_d))) \circledast ((0,\ell_0) \circledast (y',\ell_{b'})) = (w,\ell_d). \tag{23}$$

Combining (21), (22) and (23) induces

$$(y', \ell_{b'}) \otimes (z', \ell_{c'}) = ((y', \ell_{b'}) \otimes (w, \ell_d)) \otimes ((z', \ell_{c'}) \otimes (w, \ell_d)).$$

Therefore $\langle (X, \ell_X), \circledast \rangle$ is a B-algebra with the special element $(0, \ell_0)$ by Theorem 3.4.

The following theorem shows the process of inducing a paired B-algebra using a group.

Theorem 3.6. If $(X, \circ, 0)$ is a group, then the two dimensional X-eventful algebra $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a paired B-algebra where

$$\circledast: (X, \ell_X) \times (X, \ell_X) \to (X, \ell_X), \ ((x, \ell_a), (y, \ell_b)) \mapsto (x \circ y^{-1}, \ell_{a \circ b^{-1}}) = (x * y, \ell_{a * b}).$$

Proof. Let $(x, \ell_a), (y, \ell_b), (z, \ell_c) \in (X, \ell_X)$. Then $(x, \ell_a) \circledast (x, \ell_a) = (x \circ x^{-1}, \ell_{a \circ a^{-1}}) = (0, \ell_0)$ and $(x, \ell_a) \circledast (0, \ell_0) = (x \circ 0^{-1}, \ell_{a \circ 0^{-1}}) = (x \circ 0, \ell_{a \circ 0}) = (x, \ell_a)$. Also

$$((x, \ell_a) \circledast (y, \ell_b)) \circledast (z, \ell_c) = (x \circ y^{-1}, \ell_{a \circ b^{-1}}) \circledast (z, \ell_c)$$

$$= ((x \circ y^{-1}) \circ z^{-1}, \ell_{(a \circ b^{-1}) \circ c^{-1}})$$

$$= (x \circ (z \circ y)^{-1}, \ell_{a \circ (c \circ b)^{-1}})$$

and

$$(x, \ell_a) \circledast ((z, \ell_c) \circledast ((0, \ell_0) \circledast (y, \ell_b))) = (x, \ell_a) \circledast ((z, \ell_c) \circledast (0 \circ y^{-1}, \ell_{0 \circ b^{-1}}))$$

$$= (x, \ell_a) \circledast ((z, \ell_c) \circledast (y^{-1}, \ell_{b^{-1}})) = (x, \ell_a) \circledast (z \circ (y^{-1})^{-1}, \ell_{c \circ (b^{-1})^{-1}})$$

$$= (x, \ell_a) \circledast (z \circ y, \ell_{c \circ b}) = (x \circ (z \circ y)^{-1}, \ell_{a \circ (c \circ b)^{-1}}).$$

Hence $((x, \ell_a) \circledast (y, \ell_b)) \circledast (z, \ell_c) = (x, \ell_a) \circledast ((z, \ell_c) \circledast ((0, \ell_0) \circledast (y, \ell_b)))$. Therefore $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a paired B-algebra.

Let X := (X, *, 0) be an algebra. In a two dimensional X-eventful algebra $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$, we consider the following assertions.

$$(((x,\ell_a)\circledast(y,\ell_b))\circledast((x,\ell_a)\circledast(z,\ell_c)))\circledast((z,\ell_c)\circledast(y,\ell_b))=(0,\ell_0),$$
(24)

$$((x,\ell_a)\circledast((x,\ell_a)\circledast(y,\ell_b)))\circledast(y,\ell_b) = (0,\ell_0), \tag{25}$$

$$(0, \ell_0) \circledast (x, \ell_a) = (0, \ell_0),$$
 (26)

$$(x, \ell_a) \otimes (y, \ell_b) = (0, \ell_0), (y, \ell_b) \otimes (x, \ell_a) = (0, \ell_0) \Rightarrow (x, \ell_a) = (y, \ell_b)$$
 (27)

for all $x, y, z, a, b, c \in X$.

Definition 3.7. Given an algebra X := (X, *, 0), let $\langle (X, \ell_X), \circledast \rangle$ be a two dimensional X-eventful algebra with a special element $(0, \ell_0)$. If it satisfies (11), (24) and (25), we say that $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a two dimensional BCI-eventful algebra. If a two dimensional BCI-eventful algebra $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ satisfies the condition (26), it is called a two dimensional BCK-eventful algebra.

Example 3.8. (1) Consider an algebra X := (X, *, 0) where $X = \{0, a\}$ and the binary operation "*" is given by Table 3. Given a set $Q = \{\alpha, \beta\}$, define a mapping ℓ as follows:

Table 3: Cayley table for the binary operation "*"

*	0	a
0	0	0
a	a	0

$$\ell: X \to Q, \ x \mapsto \left\{ \begin{array}{ll} \alpha & \text{if } x = 0, \\ \beta & \text{if } x = a. \end{array} \right.$$

Then $(X, \ell_X) = \{(0, \ell_0), (0, \ell_a), (a, \ell_0), (a, \ell_a)\} = \{(0, \alpha), (0, \beta), (a, \alpha), (a, \beta)\}$ and the operation \circledast is given by Table 4. It is routine to verify that $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a two dimensional BCK-eventful algebra.

Table 4: Cayley table for the binary operation "*"

*	$(0,\ell_0)$	$(0,\ell_a)$	(a,ℓ_0)	(a, ℓ_a)
$(0, \ell_0)$	$(0, \alpha)$	$(0, \alpha)$	$(0,\alpha)$	$(0,\alpha)$
$(0,\ell_a)$	$(0,\beta)$	$(0, \alpha)$	$(0,\beta)$	$(0, \alpha)$
(a,ℓ_0)	(a, α)	(a, α)	$(0, \alpha)$	$(0, \alpha)$
(a,ℓ_a)	(a, β)	(a, α)	$(0, \beta)$	$(0, \alpha)$

(2) The paired B-algebra $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ in Example 3.2 is two dimensional BCI-eventful algebra.

In general, two dimensional BCK/BCI-eventful algebra $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ does not satisfy the condition (27) as seen in the following examples.

*	0	a	b	c
0	0	0	c	b
a	a	0	c	b
b	b	b	0	c
c	c	c	b	0

Table 5: Cayley table for the binary operation "*"

Example 3.9. Consider an algebra X = (X, *, 0) where $X = \{0, a, b, c\}$ and the binary operation "*" is given by Table 5.

Given a set $Q = \{0.2, 0.5, 0.7\}$, define a mapping ℓ as follows:

$$\ell: X \to Q, \ x \mapsto \left\{ \begin{array}{ll} 0.2 & \text{if } x \in \{0, a\} \\ 0.7 & \text{if } x \in \{b, c\}. \end{array} \right.$$

Then the two dimensional X-event set is given as follows:

$$(X, \ell_X) = \{(0, 0.2), (0, 0.7), (a, 0.2), (a, 0.7), (b, 0.2), (b, 0.7), (c, 0.2), (c, 0.7)\}$$

and it is routine to check that $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a two dimensional BCI-eventful algebra. But it is not a two dimensional BCK-eventful algebra since $(0, \ell_0) \circledast (b, \ell_c) = (c, \ell_b) \neq (0, \ell_0)$. Note that $(0, \ell_0) \circledast (0, \ell_b) = (0, \ell_c) = (0, 0.7)$ and $(0, \ell_b) \circledast (0, \ell_0) = (0, 0.7)$, but $(0, \ell_0) \neq (0, \ell_b)$. Hence $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ does not satisfy the condition (27).

Lemma 3.10. If X := (X, *, 0) is a BCK/BCI-algebra, then $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a two dimensional BCK/BCI-eventful algebra.

Proof. Straightforward.
$$\Box$$

By a paired BCK/BCI-algebra we mean a two dimensional BCK/BCI-eventful algebra $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ which satisfies the condition (27).

Example 3.11. (1) Consider a BCK-algebra X = (X, *, 0) where $X = \{0, a, b, c\}$ and the binary operation "*" is given by Table 6.

Table 6: Cayley table for the binary operation "*"

*	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	b
c	c	c	c	0

Given a nonempty set Q, define a mapping ℓ as follows:

$$\ell: X \to Q, \ x \mapsto u.$$

Then $(X, \ell_X) = \{(0, u), (a, u), (b, u), (c, u)\}$, and it is clear that $\langle (X, \ell_X), \circledast, (0, u) \rangle$ is a two dimensional BCK-eventful algebra by Lemma 3.10. It is routine to verify that $\langle (X, \ell_X), \circledast, (0, u) \rangle$ satisfies the condition (27). Hence it is a paired BCK-algebra.

(2) Consider the algebra X = (X, *, 0) in Example 3.9 and let ℓ be a mapping from X to a nonempty set Q given by $\ell(x) = v \in Q$ for all $x \in X$. Then $(X, \ell_X) = \{(0, v), (a, v), (b, v), (c, v)\}$, we recall that X = (X, *, 0) is a BCI-algebra, and thus $\langle (X, \ell_X), \circledast, (0, v) \rangle$ is a two dimensional BCI-eventful algebra by Lemma 3.10. It is routine to verify that $\langle (X, \ell_X), \circledast, (0, u) \rangle$ satisfies the condition (27). Hence it is a paired BCI-algebra.

We consider a generalization of Example 3.11.

Theorem 3.12. Let X = (X, *, 0) be a BCK/BCI-algebra. Given a nonempty set Q, let $\ell : X \to Q$ be a constant mapping, say $\ell(x) = q$ for all $x \in X$. Then $\langle (X, \ell_X), \circledast, (0, q) \rangle$ is a paired BCK/BCI-algebra.

Proof. Using Lemma 3.10, we know that $\langle (X, \ell_X), \circledast, (0, q) \rangle$ is a two dimensional BCK/BCI-eventful algebra. Let $x, y, a, b \in X$ be such that $(x, \ell_a) \circledast (y, \ell_b) = (0, q)$ and $(y, \ell_b) \circledast (x, \ell_a) = (0, q)$. Then $(0, q) = (x, \ell_a) \circledast (y, \ell_b) = (x * y, \ell_{a*b}) = (x * y, q)$ and $(0, q) = (y, \ell_b) \circledast (x, \ell_a) = (y * x, \ell_{b*a}) = (y * x, q)$. It follows that x * y = 0 and y * x = 0. Hence x = y, and so $(x, \ell_a) = (x, q) = (y, q) = (y, \ell_b)$. This shows that $\langle (X, \ell_X), \mathfrak{m}, (0, u) \rangle$ satisfies the condition (27). Therefore it is a paired BCK/BCI-algebra.

Theorem 3.12 shows that it can induce many other BCK/BCI-algebras from given a BCK/BCI-algebra. These induced BCK/BCI-algebras are isomorphic each other. Thus a BCK/BCI-algebra induce a unique paired BCK/BCI-algebra up to isomorphism.

Theorem 3.13. Let X = (X, *, 0) be a BCK/BCI-algebra. Given a nonempty set Q, if a mapping $\ell : X \to Q$ is ono-to-one, then $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a paired BCK/BCI-algebra.

Proof. Using Lemma 3.10, we know that $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a two dimensional BCK/BCI-eventful algebra. Let $x, y, a, b \in X$ be such that $(x, \ell_a) \circledast (y, \ell_b) = (0, \ell_0)$ and $(y, \ell_b) \circledast (x, \ell_a) = (0, \ell_0)$. Then $(0, \ell_0) = (x, \ell_a) \circledast (y, \ell_b) = (x * y, \ell_{a*b})$ and $(0, \ell_0) = (y, \ell_b) \circledast (x, \ell_a) = (y * x, \ell_{b*a})$. It follows that x * y = 0, y * x = 0, $\ell_{a*b} = \ell_0$ and $\ell_{b*a} = \ell_0$. Since ℓ is one-to-one, we have a * b = 0 and b * a = 0. It follows that x = y and a = b. Hence $(x, \ell_a) = (y, \ell_b)$. This shows that $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ satisfies the condition (27). Therefore it is a paired BCK/BCI-algebra.

Theorem 3.14. Let X = (X, *, 0) be a BCK/BCI-algebra. Given a nonempty set Q, if a mapping $\ell : X \to Q$ satisfies $\ell^{-1}(\ell_0) = \{0\}$, then $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a paired BCK/BCI-algebra.

Proof. Using Lemma 3.10, we know that $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a two dimensional BCK/BCI-eventful algebra. Let $x, y, a, b \in X$ be such that $(x, \ell_a) \circledast (y, \ell_b) = (0, \ell_0)$ and $(y, \ell_b) \circledast (x, \ell_a) = (0, \ell_0)$. Then $(0, \ell_0) = (x, \ell_a) \circledast (y, \ell_b) = (x * y, \ell_{a*b})$ and $(0, \ell_0) = (y, \ell_b) \circledast (x, \ell_a) = (y * x, \ell_{b*a})$. It follows that x * y = 0, y * x = 0, $\ell_{a*b} = \ell_0$ and $\ell_{b*a} = \ell_0$. Hence $a * b \in \ell^{-1}(\ell_0) = \{0\}$ and $b * a \in \ell^{-1}(\ell_0) = \{0\}$ which shows that a * b = 0 and b * a = 0. It follows that x = y and a = b. Hence $(x, \ell_a) = (y, \ell_b)$. This shows that $\langle (X, \ell_X), \mathfrak{R}, (0, \ell_0) \rangle$ satisfies the condition (27). Therefore it is a paired BCK/BCI-algebra.

Lemma 3.15 ([3]). Given a BCI-algebra X = (X, *, 0), the following are equivalent,

- (i) X is p-semisimple.
- (ii) x * (0 * y) = y * (0 * x) for all $x, y \in X$.

Theorem 3.16. The two dimensional BCI-eventful algebra $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ induced by a p-semisimple BCI-algebra X = (X, *, 0) is a commutative group under the operation \odot which is given by

$$\odot: (X, \ell_X) \times (X, \ell_X) \to (X, \ell_X), \ ((x, \ell_a), (y, \ell_b)) \mapsto (x, \ell_a) \circledast ((0, \ell_0) \circledast (y, \ell_b)).$$

Proof. By Lemma 3.10, we know that $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a two dimensional BCI-eventful algebra. Let $(x, \ell_a), (y, \ell_b), (z, \ell_c) \in (X, \ell_X)$. Then

$$(x, \ell_{a}) \odot (y, \ell_{b}) = (x, \ell_{a}) \circledast ((0, \ell_{0}) \circledast (y, \ell_{b})) = (x, \ell_{a}) \circledast (0 * y, \ell_{0*b})$$

$$= (x * (0 * y), \ell_{a*(0*b)}) = (y * (0 * x), \ell_{b*(0*a)})$$

$$= (y, \ell_{b}) \circledast (0 * x, \ell_{0*a}) = (y, \ell_{b}) \circledast ((0, \ell_{0}) \circledast (x, \ell_{a}))$$

$$= (y, \ell_{b}) \odot (x, \ell_{a})$$

$$(28)$$

by Lemma 3.15, and

$$((y, \ell_b) \odot (z, \ell_c)) \odot (x, \ell_a)$$

$$= ((y, \ell_b) \circledast ((0, \ell_0) \circledast (z, \ell_c))) \circledast ((0, \ell_0) \circledast (x, \ell_a))$$

$$= ((y * (0 * z)) * (0 * x), \ell_{(b*(0*c))*(0*a)})$$

$$= ((y * (0 * x)) * (0 * z), \ell_{(b*(0*a))*(0*c)})$$

$$= ((y, \ell_b) \circledast ((0, \ell_0) \circledast (x, \ell_a))) \circledast ((0, \ell_0) \circledast (z, \ell_c))$$

$$= ((y, \ell_b) \odot (x, \ell_a)) \odot (z, \ell_c).$$
(29)

Using (28) and (29), we get

 $(x,\ell_a)\odot((y,\ell_b)\odot(z,\ell_c))=((y,\ell_b)\odot(z,\ell_c))\odot(x,\ell_a)=((y,\ell_b)\odot(x,\ell_a))\odot(z,\ell_c)=((x,\ell_a)\odot(y,\ell_b))\odot(z,\ell_c).$ Now,

$$\begin{aligned} (0,\ell_0)\odot(x,\ell_a) &= (0,\ell_0)\circledast((0,\ell_0)\circledast(x,\ell_a)) \\ &= (0,\ell_0)\circledast(0*x,\ell_{0*a}) \\ &= (0*(0*x),\ell_{0*(0*a)}) = (x,\ell_a), \end{aligned}$$

which shows that $(0, \ell_0)$ is the identity element of (X, ℓ_X) . Finally, we show that $(0, \ell_0) \otimes (x, \ell_a)$ is the inverse of any element (x, ℓ_a) . In fact,

$$\begin{split} &(x,\ell_a)\odot((0,\ell_0)\circledast(x,\ell_a))=(x,\ell_a)\circledast((0,\ell_0)\circledast((0,\ell_0)\circledast(x,\ell_a)))\\ &=\big(x*(0*(0*x)),\ell_{a*(0*(0*a))}\big)\\ &=(x*x,\ell_{a*a})=(0,\ell_0). \end{split}$$

Therefore $\langle (X, \ell_X), \odot, (0, \ell_0) \rangle$ is a commutative group.

Corollary 3.17. Let X = (X, *, 0) be a BCI-algebra which satisfies any one of the following assertions.

$$(\forall x \in X)(0 * x = 0 \Rightarrow x = 0), \tag{30}$$

$$(\forall a \in X)(X = \{a * x \mid x \in X\}),\tag{31}$$

$$(\forall a, x \in X)(a * (a * x) = x), \tag{32}$$

$$(\forall a, x, y, z \in X)((x * y) * (z * a) = (x * z) * (y * a)), \tag{33}$$

$$(\forall x, y \in X)(0 * (y * x) = x * y), \tag{34}$$

$$(\forall x, y, z \in X)((x * y) * (x * z) = z * y). \tag{35}$$

Then the two dimensional BCI-eventful algebra $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a commutative group under the operation \odot .

Theorem 3.18. Let $f: X \to Y$ be an onto homomorphism of BCK/BCI-algebras. If $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ satisfies the condition (27), then $\langle (Y, \zeta_Y), \circledast, (0, \zeta_0) \rangle$ is a paired BCK/BCI-algebra where ζ is a mapping from Y to Q.

Proof. By Lemma 3.10, we know that $\langle (X, \ell_X), \circledast, (0, \ell_0) \rangle$ is a two dimensional BCK/BCI-eventful algebra. Let $(x', \zeta_{a'}), (y', \zeta_{b'}), (z', \zeta_{c'}) \in (Y, \zeta_Y)$. Then there exist $x, y, z, a, b, c \in X$ such that f(x) = x', f(y) = y', f(z) = z', f(a) = a', f(b) = b' and f(c) = c'. Hence

$$\begin{aligned} &(((x',\zeta_{a'})\circledast(y',\zeta_{b'}))\circledast((x',\zeta_{a'})\circledast(z',\zeta_{c'})))\circledast((z',\zeta_{c'})\circledast(y',\zeta_{b'})) \\ &= (((f(x),\zeta_{f(a)})\circledast(f(y),\zeta_{f(b)}))\circledast((f(x),\zeta_{f(a)})\circledast(f(z),\zeta_{f(c)})))\circledast((f(z),\zeta_{f(c)})\circledast(f(y),\zeta_{f(b)})) \\ &= ((f(x)*f(y),\zeta_{f(a)*f(b)})\circledast(f(x)*f(z),\zeta_{f(a)*f(c)}))\circledast(f(z)*f(y),\zeta_{f(c)*f(b)}) \\ &= ((f(x*y),\zeta_{f(a*b)})\circledast(f(x*z),\zeta_{f(a*c)}))\circledast(f(z*y),\zeta_{f(c*b)}) \\ &= (f(x*y)*f(x*z),\zeta_{f(a*b)*f(a*c)})\circledast(f(z*y),\zeta_{f(c*b)}) \\ &= (f(((x*y)*(x*z))*(z*y)),\zeta_{f(((a*b)*(a*c))*(c*b))}) \\ &= (f(0),\zeta_{f(0)}) = (0,\zeta_0), \end{aligned}$$

$$(((x', \zeta_{a'}) \circledast ((x', \zeta_{a'}) \circledast (y', \zeta_{b'}))) \circledast (y', \zeta_{b'}))$$

$$= (((f(x), \zeta_{f(a)}) \circledast ((f(x), \zeta_{f(a)}) \circledast (f(y), \zeta_{f(b)}))) \circledast (f(y), \zeta_{f(b)}))$$

$$= ((f(x), \zeta_{f(a)}) \circledast (f(x) * f(y), \zeta_{f(a) * f(b)})) \circledast (f(x), \zeta_{f(a)})$$

$$= ((f(x), \zeta_{f(a)}) \circledast (f(x * y), \zeta_{f(a * b)})) \circledast (f(x), \zeta_{f(a)})$$

$$= (f(x * (x * y)), \zeta_{f(a * (a * b))}) \circledast (f(x), \zeta_{f(a)})$$

$$= (f((x * (x * y)) * y), \zeta_{f((a * (a * b))) * b})$$

$$= (f(0), \zeta_{f(0)}) = (0, \zeta_{0}),$$

and $(x',\zeta_{a'})\circledast(x',\zeta_{a'})=(f(x),\zeta_{f(a)})\circledast(f(x),\zeta_{f(a)})=(f(x*x),\zeta_{f(a*a)})=(f(0),\zeta_{f(0)})=(0,\zeta_0)$. Hence $\langle (Y,\zeta_Y),\circledast,(0,\zeta_0)\rangle$ is a two dimensional BCI-eventful algebra. Since $(0,\zeta_0)\circledast(x',\zeta_{a'})=(f(0),\zeta_{f(0)})\circledast(f(x),\zeta_{f(a)})=(f(0*x),\zeta_{f(0*a)})=(f(0),\zeta_{f(0)})=(0,\zeta_0)$, we know that $\langle (Y,\zeta_Y),\circledast,(0,\zeta_0)\rangle$ is a two dimensional BCK-eventful algebra. Assume that $(x',\zeta_{a'})\circledast(y',\zeta_{b'})=(0,\zeta_0)$ and $(y',\zeta_{b'})\circledast(x',\zeta_{a'})=(0,\zeta_0)$. Then

$$(0,\zeta_0) = (x',\zeta_{a'}) \circledast (y',\zeta_{b'}) = (f(x),\zeta_{f(a)}) \circledast (f(y),\zeta_{f(b)}) = (f(x)*f(y),\zeta_{f(a)*f(b)})$$

and

$$(0,\zeta_0) = (y',\zeta_{b'}) \circledast (x',\zeta_{a'}) = (f(y),\zeta_{f(b)}) \circledast (f(x),\zeta_{f(a)}) = (f(y)*f(x),\zeta_{f(b)*f(a)}),$$

which imply that f(x) * f(y) = 0, f(y) * f(x) = 0, f(a) * f(b) = 0 and f(b) * f(a) = 0. Hence x' = f(x) = f(y) = y' and a' = f(a) = f(b) = b'. Therefore $(x', \zeta_{a'}) = (y', \zeta_{b'})$. Consequently, $\langle (Y, \zeta_Y), \circledast, (0, \zeta_0) \rangle$ is a paired BCK/BCI-algebra.

4 Conclusions

We have introduced two-dimensional event sets and have applied it to algebraic structures. We have introduced the notions of two dimensional BCK/BCI-eventful algebra, paired B-algebra and paired BCK/BCI-algebra, and have investigated several properties. We have considered conditions for two dimensional eventful algebra to be a B-algebra and a BCK/BCI-algebra. We have discussed the process of inducing a paired B-algebra using a group, and have established a commutative group using two dimensional BCI-eventful algebra. We have presented examples to show that a two dimensional eventful BCK/BCI-algebra is not a BCK/BCI-algebra, and then we have considered conditions for a two dimensional eventful BCK/BCI-algebra to be a BCK/BCI-algebra. We have studied a paired BCK/BCI-algebra in relation to the BCK/BCI-homomorphism.

References

- [1] A.A.A. Agboola, B. Davvaz, F. Smarandache, Neutrosophic quadruple algebraic hyperstructures, Annals of Fuzzy Mathematics and Informatics, 14(1) (2017), 29–42.
- [2] S.A. Akinleye, F. Smarandache, A.A.A. Agboola, On neutrosophic quadruple algebraic structures, Neutrosophic Sets and Systems, 12 (2016), 122–126.
- [3] Y. Huang, BCI-algebra, Science Press, Beijing, 2006.
- [4] Y.B. Jun, S.Z. Song, S.J. Kim, Event and its application in algebraic structures, New Mathematics and Natural Computation, (in press).
- [5] Y.B. Jun, S.Z. Song, F. Smarandache, H. Bordbar, Neutrosophic quadruple BCK/BCI-algebras, Axioms, 7 (2018), 41.
- [6] J. Meng, Y.B. Jun, BCK-algebras, Kyungmoonsa Co. Seoul, Korea, 1994.

- [7] M. Mohseni Takallo, Y.B. Jun, Commutative neutrosophic quadruple ideals of neutrosophic quadruple BCK-algebras, Journal of Algebraic Hyperstructures and Logical Algebras, 1(1) (2020), 95–105.
- [8] J. Neggers, H.S. Kim, On B-algebras, Matematicki Vesnik, 54(1-2) (2002), 21–29.
- [9] F. Smarandache, Neutrosophy, neutrosophic probability, set, and logic, Proquest Information and Learning, Ann Arbor, Michigan, USA, 105 p., 1998. http://fs.gallup.unm.edu/eBook-neutrosophics6.pdf (last edition online).
- [10] F. Smarandache, A unifying field in logics: Neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability, American Reserch Press, Rehoboth, NM, 1999.
- [11] F. Smarandache, Neutrosophic quadruple numbers, refined neutrosophic quadruple numbers, absorbance law, and the multiplication of neutrosophic quadruple numbers, Neutrosophic Sets and Systems, 10 (2015), 96–98.