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SUMMARY 
 In this paper the authors propose a new method of intelligent 
search called Neutrosophic-search to find the most suitable 
match for the predicates to answer any imprecise query  made 
by the database users.   The method is based on the theory of  
Neutrosophic sets introduced by  Samrandech[7].   It is also to 
be mentioned that the Neutrosophic-search method  could be 
easily incorporated in the existing  commercial query languages 
of DBMS to serve the lay users better. So in this Paper  
Authors are suggesting a new method  called Neutrosophic 
Relations and their operators to solve the imprecise query based 
on α-Neutrosophic-equality Search ,Neutrosophic Proximity 
search and combination of above two searches into single 
neutrosophic search with ranks. 
KEYWORDS 
Neutrosophic Search, α-Neutrosophic-equality 
Search  , Neutrosophic Search, β-value of an 
interval, , Neutrosophic proximity search, 
Neutrosophic relation. 
 
 

1.  INTRODUCTION 
 Today Databases  are Deterministic. An item is either  in 
the database or not , either the query answer is available 
in the database or not is a very serious matter .An item 
belongs to the database” is a probabilistic event,or  a 
tuple  is an answer to the query” is a probabilistic event, 
and it  Can be extended to all data models; here we 
discuss  probabilistic relational  data. Two Types of 
Probabilistic relational Data are there, Database is 
deterministic and Query answers are probabilistic or  
Database is probabilistic and Query answers are 
probabilistic. 
Probabilistic relational databases have been studied from 
the late 80’s until today.But today Application Need to 
manage imprecision’s in data. Imprecision can be of 
many types: non-matching data values, imprecise queries, 
inconsistent data, misaligned schemas, etc, etc. 
 
   The quest to manage imprecisions is equal to major 
driving force in the database community is the Ultimate 
cause for many research areas: data mining, 
semistructured data, schema matching, nearest neighbor. 
Processing probabilistic data is fundamentally more 
complex than other data models .Some previous 
approaches sidestepped complexity .Now our 
implementation includes Ranking query answers. Since 
our  Database is deterministic ,The query returns a 
ranked list of tuples But our User interested in top-k 

answers. Sometimes we get the empty answers for the 
user queries in the deterministic database.For eg. 
For example, consider a database of personal Computers 
with 8GB memory. and the database is given in Table 1 
as 
 
Model CPU Clock_ 

Rate 
Disk_ 
Size 

Access_
Time 
 

Price 

A 
B 
C 
D 
E 

8086 
8086 
8086 
8086 
8086 

20(MHz) 
25 
25 
25 
25 

40 
80 
75 
80 
85 

40 
28 
26 
24 
28 

1500 
2000 
2000 
3000 
2500 

                 Table 1:Database for PCs           
  

Now ,Consider the  query as 
SELECT  * FROM PC 
WHERE   CPU = ‘8086’ 
AND   MEMORY = 8 
RANK_BY  CLOCK_RATE    >= 25 
                     DISK_SIZE          >= 80 
                     ACCESS_TIME   <25 
                      PRICE       =   LOW 
 
  .Now Suppose a User may seek for the PC with an 8086 
Processor with a clock rate of  at least 25 MHz, 8 GB of 
Main Memory ,an 80 GB of Hard Disk with an access 
time of  less than 25 ms. And Of course he is interested 
in cheap offer. Now seeing at the above database only 
Model D fulfills the criteria  But on the other hand 
Models (B, C,E) which do not fully meet the requirement 
but cheaper than Model D. So to Answer this 
probabilistic query we have to consider  different 
neutrosophic predicates like “ about ” , “ at most ”, 
“ High” , “Low” ,” Some”.  Which our  existing standard 
query languages will fail to answer .   
This failure is because of the presence of imprecise 
constraints in the query predicate which can not be 
tackled due to the limitation of the grammar in standard 
query languages which work on crisp environment only.  
But this type of queries are very common in todays e- 
commerce world.  To deal with uncertainties in searching  
match for such queries, fuzzy logic ,Vague Logic or 
Neutrosophic Logic  will be the appropriate tool. And to 
deal with this imprecision we are using a Ranking 
method based on Neutrosophic Logic. So in the papers, 
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Authors are describing the neutrosophic relations and its 
operators then implementing these relation to their search 
methods. 
Definition 1.1         Ranking 
 Compute a similarity score between a tuple and the 
query, 
Consider the query 
 
Q = SELECT * 
       FROM  R 
       WHERE A1=v1 AND … AND Am=vm  
 
Query is a vector given as   Q = (v1, …, vm) 
Tuple is a vector given as   T  = (u1, …, um) 
Consider the applications: personalized search engines, 
shopping agents, logical user profiles, “soft catalogs” 
To answer the queries realated with the above 
application  Two approaches are given: 

• Qualitative  Pare to semantics (deterministic) 
• Quantitative  alter the query ranking 

 
Definition 1.2 
 An imprecise attribute value tm(ai)must be specified as a 
discrete probability distribution 
over Di, that is tm(ai) = {(zj,Pj)\zj ∈Diand Pj ∈  [O, 1]} 
with ∑  Pj = α im, 0 <= α im <= 1. 
   (zj,Pj) ∈ fvn(a;) 
This definition covers both interpretations of null 
values as well as the usual interpretation of imprecise 
data: If aim = 1, we certainly know that an attribute value 
exists, and with aim = 0, we represent the fact that no 
value exists for this attribute. In the case of 0 < oi, < 1, oi, 
gives the probability that an attribute value exists: For 
example, someone who isgoing to have a telephone soon 
gave us his number,but we are not sure if this number is 
valid already.With imprecise values specified this way, 
their probabilistic indexing weight can be derived easily. 
Definition 1. 3    Probabilistic Relation 
A probabilistic relation r of the scheme R(A) is a finite 
set of probabilistic tuples of R(A). By domr(Ai) we will 
denote the set of all values of the attribute Ai in the 
relation r. 
 
Now, the failure of the RDBMS is due to  the presence of 
imprecise constraints in the query predicate which can 
not be tackled due to the limitation of the grammar in 
standard query languages which work on crisp 
environment only.  But this type of queries are very 
common in business world and   in fact more frequent 
than grammatical-queries, because the users are not 
always expected to have knowledge of DBMS and the 
query languages.  
Consequently, there is a genuine necessity for the 
different large size organizations, specially for the 
industries, companies having world wide business, to 

develop such a system which should be able to answer 
the users queries posed in natural language, irrespective 
of the QLs and their grammar, without giving much 
botheration to the users.  Most of these type of queries 
are not crisp in nature, and involve predicates with  fuzzy 
(or rather vague) data, fuzzy/vague hedges (with 
concentration or dilation).   Thus, this type of queries are 
not strictly confined within the domains always. The 
corresponding predicates are not hard as in crisp 
predicates.  Some predicates are soft because of 
vague/fuzzy nature and thus to answer a query a hard 
match is not always found from the databases by search, 
although the query is nice and very real,  and should not 
be ignored or replaced according to the business policy 
of the industry.  To deal with uncertainties in searching  
match for such queries, fuzzy logic and rather vague 
logic [1] and Neutrosophic logic by Smarandache [7]will 
be the appropriate tool.   
In this paper we propose two things .A neutrosophic 
relation and based on this relation they are suggesting a  
new type of searching techniques using Neutrosophic set 
theory of  to meet the predicates posed in natural 
language  in order to answer imprecise queries of the 
users.   Thus it is a kind of an intelligent search for match 
in order to answer imprecise queries of the lay users.  We 
call this method by  

α-Neutrosophic-equality search and,   
Neutrosophic proximity search 

 
  Our method, being an intelligent soft-computing  
method,  will support the users to make and find the  
answers to their queries without iteratively refining them 
by trial and error  which is really boring and sometimes it 
seriously effects the interest (mission and vision)  of the 
organization, be it an industry, or a company or a 
hospital or a private academic institution etc. to list a few 
only out of many.   Very often the innocent (having a 
lack of DBMS knowledge)  users go on refining their 
queries in order to get an answer. The users are from 
different corner of the academic world or business world 
or any busy world. For databases to support imprecise 
queries,  our intelligent system will produce answers that 
closely match the queries constraints, if des not exactly.  
This important issue of closeness can not be addressed 
with the crisp mathematics. That is why we have used 
the Neutrosophic tools . 

 
2. THEORY OF NEUTROSOPHIC SET 
 In the real world there are vaguely specified data values 
in many applications, such as sensor 
information,Robotics etc. Fuzzy set theory has been 
proposed to handle such vagueness by generalizing the 
notion of membership in a set. Essentially, in a Fuzzy Set 
(FS) each element is associated with a point-value 
selected from the unit interval [0,1], which is termed the 
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grade of membership in the set. A Vague Set (VS), as 
well as an Intuitionistic Fuzzy Set (IFS), is a further 
generalization of an FS.  Now take an example, when we 
ask the opinion of an expert about certain statement, he 
or she may say that the possibility that the statement is 
true is between 0.5 and 0.7, and the statement is false is 
between 0.2 and 0.4, and the degree that he or she is not 
sure is between 0.1 and 0.3. Here is another example, 
suppose there are 10 voters during a voting process. In 
time t1, three vote “yes”, two vote “no” and five are 
undecided, using neutrosophic notation, it can be 
expressed as x(0.3,0.5,0.2); in time t2, three vote “yes”, 
two vote “no”, two give up and three are undecided, it 
then can be expressed as x(0.3,0.3,0.2). That is beyond 
the scope of the intuitionistic fuzzy set. So, the notion of 
neutrosophic set is more general and overcomes the 
aforementioned issues. In neutrosophic set, 
indeterminacy is quantified explicitly and truth 
membership, indeterminacy-membership and falsity-
membership are independent. This assumption is very 
important in many applications such as information 
fusion in which we try to combine the data from different 
sensors. Neutrosophy was introduced by Smarandache 
[7].  
Neutrosophic set is a powerful general formal framework 
which generalizes the concept of the classic set, fuzzy set 
[2], Vague set [1] etc. 
A neutrosophic set A defined on universe U. x = x(T,I,F) 
ε A with T,I and F being the real standard or non-
standard subsets of ]0-,1+[, T is the degree of truth-
membership of A, I is the degree of indeterminacy 
membership of A and F is the degree of falsity-
membership of A. 
 

Definition 2.1 
 

A Neutrosophic set A of a set U with tA(u), fA(u) and 
IA(u) ,    ∀ u∈U   is called  the  α- Neutrosophic set   of  
U,   where α ∈  [0,1]. 
 

Definition 2.2 
A Neutrosophic  number (NN)  is a Neutrosophic set of 
the set R of real numbers. 
 
3 .OPERATIONS WITH NEUTROSOPHIC  SETS 
 
We need to present these set operations in order to be 
able to introduce the neutrosophic connectors. 
Let S1 and S2 be two (unidimensional) real standard or 
non-standard subsets, then one defines: 
 
3.1     ADDITION OF SETS: 
S1 ⊕ S2 = {x|x=s1+s2, where s1∈S1 and s2∈S2}, 
with inf S1 ⊕ S2 = inf S1 + inf S2, sup S1 ⊕ S2 = sup S1 
+ sup S2; 

and, as some particular cases, we have 
{a} ⊕ S2 = {x|x=a+s2, where s2∈S2} 
with inf {a} ⊕ S2 = a + inf S2, sup {a} ⊕ S2 = a + sup 
S2. 
3.2       SUBTARCTION OF SETS:  
S1ӨS2 = {x|x=s1-s2, where s1∈S1 and s2∈S2}. 
For real positive subsets (most of the cases will fall in 
this range) one gets 
inf S1ӨS2 = inf S1 - sup S2, sup S1ӨS2 = sup S1 - inf 
S2; 
and, as some particular cases, we have 
{a}ӨS2 = {x|x=a-s2, where s2∈S2}, 
with inf {a}ӨS2 = a - sup S2, sup {a}ӨS2 = a - inf S2; 
 
3.3      MULTIPLICTAION OF SETS: 
S1 ⊗ S2 = {x|x=s1.s2, where s1∈S1 and s2∈S2}. 
For real positive subsets (most of the cases will fall in 
this range) one gets 
inf S1 ⊗ S2 = inf S1 . inf S2, sup S1 ⊗ S2 = sup 
S1 ⊗ sup S2; 
and, as some particular cases, we have 
{a} ⊗ S2 = {x|x=a ⊗ s2, where s2∈S2}, 
with inf {a} ⊗ S2 = a * inf S2, sup {a} ⊗ S2 = a ⊗ sup 
S2; 

3.4      DIVISION OF SETS BY A NUMBER: 
Let k ∈R* then S1/k = {x|x=s1/k, where s1∈S1}. 
 
4.   NEUTROSOPHIC LOGIC CONNECTORS 

 
One uses the definitions of neutrosophic probability and 
neutrosophic set operations. 
Similarly, there are many ways to construct such 
connectives according to each particular problem to 
solve; here we present the easiest ones: 
One notes the neutrosophic logic values of the 
propositions A1 and A2 by 
NL(A1) = ( T1, I1, F1 ) and NL(A2) = ( T2, I2, F2 ) 
respectively. 
For all neutrosophic logic values below: if, after 
calculations, one obtains numbers < 0 or > 1, one 
replaces 
them -0 or 1+ respectively. 
 
4.1   NEGATION: 
   NL( ¬ A1) = ( {1+}ӨT1, {1+}ӨI1, {1+}ӨF1 ) 
 
4.2 .CONJUNCTION: 
NL(A1 ∧  A2) = ( T1 ⊗ T2, I1 ⊗ I2, F1 ⊗ F2 ). 
(And, in a similar way, generalized for n propositions.) 
 
4.3 IMPLICATION: 
NL(A1 ↔  A2) = ( {1+}ӨT1 ⊕ T1 ⊗ T2, 
{1+}ӨI1 ⊕ I1 ⊗ I2, {1+}ӨF1 ⊕ F1 ⊗ F2 ). 
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5. NEUTROSOPHIC RELATION 
In this section, we will define the Neutrosophic relation. 
A tuple in a neutrosophic relation is assigned a measure. 
will be referred to as the truth factor and will be referred 
to as the false factor. The interpretation of this measure is 
that we believe with confidence and doubt with 
confidence that the tuple is in the relation. The truth and 
false confidence factors for a tuple need not add to 
exactly 1. This allows for incompleteness and 
inconsistency to be represented. If the truth and false 
factors add up to less than 1, we have incomplete 
information regarding the tuple’s status in the relation 
and if the truth and false factors add up to more than 1, 
we have inconsistent information regarding the tuple’s 
status in the relation.  
In contrast to vague relations where the grade of 
membership of a tuple is fixed, neutrosophic relations 
bound the grade of membership of a tuple to a 
subinterval [ βα −1, ]for the case, ≤+ βα 1.. The 
operators on fuzzy relations can also be generalized for 
neutrosophic relations. However, any such generalization 
of operators should maintain the belief system intuition 
behind neutrosophic relations.  
Definition 5.1      A neutrosophic relation on scheme R 
on ∑ is any subset of  

)(∑τ × [0,1] × [0,1],       Where  )(∑τ denotes the set 
of all tuples on any scheme ∑ . 
For any t ∈ )(∑τ ,we shall denote an element of R as 
〈 t,R(t)+,R(t)- 〉 ,where , R(t)+ is the truth factorr assigned 
to t by R and  R(t)- is the false factor assigned to t by 
R.Let V( ∑ ) be the set of all neutrosophic relation on 
∑ . 
 
Definition 5.2  A neutrosophic relationon scheme R on 
∑ is consistent if  R(t)++R(t)- ≤  1, for all t ∈ )(∑τ .Let 
C( ∑ )be the set of all consistent neutrosophic relations 
on ∑ .R is said to be complete if R(t)++R(t)- ≥  1, for all 
t ∈ )(∑τ . If R is both consistent and complete, i.e. 
R(t)++R(t)- = 1, for all t ∈ )(∑τ . then it is a total 
neutrosophic relation, and let T( ∑ ) be the set of total 
neutrosophic relation on ∑ . 

 
5.1 Operator Generalizations  
It is easily seen that neutrosophic relations are a 
generalization of vague relations, in that for each vague 
relation there is a neutrosophic relation with the same 
information content, but not vice versa. It is thus natural 
to think of generalizing the operations on vague relations 
such as union, join, and projection etc. to neutrosophic 

relations. However, any such generalization should be 
intuitive with respect to the belief system model of 
neutrosophic relations. We now construct a framework 
for operators on both kinds of relations and introduce 
two different notions of the generalization relationship 
among their operators. 
An n-ary operator on fuzzy relations with signature 
〈∑ 1,………, ∑ n+1 〉 is a function Θ :F( ∑ 1) 
× … × F( ∑ n)  ∑ n+1,where ∑ 1,…., ∑ n+1 are any 
schemes. Similarly  An n-ary operator on neutrosophic 
relations with signature 〈∑ 1,………, ∑ n+1 〉 is a function  
Ψ :V( ∑ 1) ×…×V( ∑ n) V( ∑ n+1). 
Definition 5.3 
An operator Ψ on neutrosophic relations with signature 
〈∑ 1,………, ∑ n+1 〉 is totality preserving if for any total 
neutrosophic relations R1,….Rn on schemes ∑ 1,…., ∑ n+1, 
respectively. Ψ (R1,….Rn) is also total. 
Definition 5.4  
A totality preserving operator Ψ on neutrosophic 
relations with signature 〈∑ 1,………, ∑ n+1 〉   is a weak 
generalization of an operator Θ on fuzzy relations with 
the same signature, if for any total neutrosophic relations 
R1,….Rn on  schemes ∑ 1,…., ∑ n, respectively ,we have 

λ ∑ n+1(Ψ(R1,….Rn))= Θ ( λ ∑ 1(R1),….., λ ∑ n(Rn)). 
The above definition essentially requires Ψ to coincide 
with Θ on total neutrosophic realtions (which are in One-
one correspondence with the vague relations). In general, 
there may be many operators on neutrosophic relations 
that are weak generalizations of a given operator Θ on 
fuzzy relations. The behavior of the weak generalizations 
of Θ on even just the consistent neutrosophic relations 
may in general vary. We require a stronger notion of 
operator generalization under which, at least when 
restricted to consistent neutrosophic relations, the 
behavior of all the generalized operators is the same. 
Before we can develop such a notion, we need that of 
‘representation’ of a neutrosophic relation. 
We associate with a consistent neutrosophic relation R 
the set of all (vague relations corresponding to) total 
neutrosophic relations obtainable from R by filling the 
gaps between the truth and false factors for each tuple. 
Let the map be  reps ∑ :C( ∑ ) 2F( ∑ ).is given by , 
reps ∑ (R)={Q∈F( ∑ )| Λ       (R(ti)+ ≤  Q(ti) ≤ 1-R(ti)-

)}. 
  ti∈ )( ∑τ  
The set reps ∑ (R)  contains all fuzzy relations that are 
‘completions’ of the consistent neutrosophic relation 
R .Observe that reps ∑ is defined only for consistent 
neutrosophic relations and produces sets of fuzzy 
relations. Then we have following observation. 
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Proposition 5.1  For any consistent neutrosophic relation 

R on scheme ∑ , reps ∑ (R) is the singleton {λ ∑ ( R)}, 
iff R is total. 
Proposition 5.2  If Ψ is a strong generalization of Θ , 
then Ψ is also a weak generalization of Θ. 
6.  Generalized Algebra on Neutrosophic Relations  
In this section, we present one strong generalization each 
for the vague relation operators such as union, join, and 
projection. To reflect generalization, a hat is placed over 
a vague relation operator to obtain the corresponding 
neutrosophic relation operator. For example, ∞ denotes 

the natural join mong fuzzy relations, and 
Λ

∞ denotes 
natural join on neutrosophic relations. These generalized 
operators maintain the truth system intuition behind 
neutrosophic relations.  
6.1   Set-Theoretic Operators  
We first generalize the two fundamental set-theoretic 
operators, union and complement.  
Definition 6.1    Let R and S be neutrosophic relations 
on scheme ∑  . Then,  

 The union of R and S ,denoted R 
Λ

∪ S , is a 
neutrosophic relation on scheme ∑ ,given by                       

R
Λ

∪ S=

})(,)(min{},)(,)(max{
−−++

tStRtStR  

for any t ∈ )(∑τ . 

(a) The complement of R ,denoted by 
Λ

− R,is a 
neutrosophic relation on scheme ∑ ,given by 

(
Λ

− R)(t)= 〈 R(t)+,R(t)- 〉 ,for any t ∈ )(∑τ . 
An intuitive appreciation of the union operator can be 
obtained as follows: Given a tuple t, since we believed 
that it is present in the relation R with confidence R(t)+ 
and that it is present in the relation S with confidence 
S(t)+, we can now believe that the tuple t is present in the 
“either  -R  or - S ” relation with confidence which is 
equal to the larger of R(t)+ and S(t)+ . Using the same 
logic, we can now believe in the absence of the tuple t 
from the “either - R - or - S ” relation with confidence 
which is equal to the smaller (because t must be absent 
from both R and S for it to be absent from the union) of 
R(t)- and S(t)-.  

Proposition 6.1 :The operator 
Λ

∪  and 
Λ

−  on 
neutrosophic relation are strong generalization of the 
operators ∪ and unary – on vague relations. 
 

Definition 6.2   Let R and S be neutrosophic relations on 
scheme ∑  . Then, The intersection of R and S denoted 

as 
Λ

∩  , is a neutrosophic relation on scheme ∑ ,given by 

        R
Λ

∩ S(t)= 〈 min{R(t)+,S(t)+},max{R(t)-,S(t)-} 〉 , for 
any t ∈ )(∑τ .The difference of R and S denoted as R 
Λ

−  S,is a neutrosophic relation on scheme ∑ ,given by    

         (R 
Λ

−  S) (t) = 〈 min{R(t)+,S(t)-},max{R(t)-,S(t)+} 〉 , 
for any t ∈ )(∑τ . 
The following proposition relates the intersection and 
difference operators in terms of the more fundamental 
set-theoretic operators union and complement. 
Proposition 6.2 :  For any neutrosophic relation on the 
same scheme 

                            R
Λ

∩ S =
Λ

− (
Λ

− R
Λ

∪
Λ

− S) and 

                          R 
Λ

− S=
Λ

− (
Λ

− R
Λ

∪ S). 
 
7.A NOTE  ON INTERVAL MATHEMATICS 
Dealing with the mathematics of Neutrosphic set  theory,  
the crisp theory of interval mathematics is sometimes 
useful.  In this section, we recollect some basic notions 
of interval mathematics.  For our purpose in this paper, 
we need to consider intervals of non-negative real 
numbers only. 
Let  I1 = [a,b]  and I2 = [c,d]  be two intervals of non-
negative real numbers.  A  point valued non-negative real 
number r also can be viewed, for the sake of  arithmetic,  
as  an  interval  [r,r].  
7.1   SOME ALGEBRAIC OPERATIONS 
(i)   Interval Addition     :   I1  +  I2  =   [a+c,b+d] 
(ii)  Interval Subtraction :   I1  -  I2   =   [a-c,b-d] 
(iii) Interval Multiplication :   I1  *  I2  =   [ac,bd] 
(iv) Interval Division :     I1 ÷  I2 =   [a/d,b/c] ,        when  
c, d ≠ 0. 
(v)  Scalar Multiplication :     k . I1  =   [ka, kb]. 
 
7.2    RANKING OF INTERVALS 
Intervals are not ordered. Owing to this major weakness, 
there is no universal method of ranking a finite (or 
infinite) number of intervals.   But in real life problems 
dealing with intervals, we need to have some tactic to 
rank them in order to arrive at some conclusion.  We will 
now present a method of ranking of intervals,  which we 
shall use in our work here in subsequent sections. We 
consider a decision maker (or any intelligent agent like a 
company manager, a factory supervisor, an intelligent 
robot, an intelligent network, etc)  who makes a pre-
choice of a decision parameter β ∈ [0,1].   The intervals 
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are to be ranked once the decision-parameter β  is fixed. 
But ranking may differ if the pre-choice β  is renewed.  
Definition 7.1    β-value of an interval   
Let  J  =  [a,b]   be an interval.   The β-value of the 
interval J is a non-negative real number Jβ,  given by      
Jβ  =    (1- β).a + β.b.      
 Clearly,    0 ≤ Jβ  ≤ 1,  and   for β = 0   Jβ = a   which 
signifies that the decision-maker is pessimistic,   and also  
for β = 1   Jβ = b  which signifies that the decision-maker 
is optimistic.   For β = .5  it is the arithmetic-mean to be 
choosen usually for a moderate decision.   
Comparison of two or more intervals we will do here on 
the basis of β-values of them.  If the value of β  is 
renewed, the comparison-results may change. The 
following definition will make it clear. Now Author is 
proposing α-Neutrosophic-equality search. 
 
8.  α-NEUTROSOPHIC EQUALITY SEARCH 
    Consider a normal type of query like  
                        PROJECT (EMPLOYEE_NAME) 
                WHERE     AGE   =   “approximately 20” .    
The standard SQL is unable to provide any answer to this 
query as the search for an exact match for the predicate 
will fail.   The value “approximately 20” is not a precise 
data.  Any data of type “approximately x”, “little more 
than x”, “slightly less than x”, much greater than x” etc. 
are not precise or crisp, but they are neutrosophic 
numbers(NN)   which are a special case of vague 
numbers.  Denote any one of them , say the vague 
number “approximately x”   by  the notation  I(x).     We 
know that a Neutrosophic number is a  Neutrosophic Set 
of the real numbers.   Clearly for every member  a ∈ 
dom(AGE),  there is a membership value tI(x)(a) 
proposing the degree of equality of this crisp number a  
with the quantity “approximately x”,  and a non-
membership value fI(x)(a) proposing the degree of non-
equality .  Thus, in neutrosophic philosophy of 
samarandache, every element of dom(AGE) satisfies the 
predicate  AGE =  “approximately 20”  upto certain 
extent  and does not satisfy too, upto certain extent. But 
we will restrict ourselves  to those members of 
dom(AGE) which are α-neutrosophic-equal, the concept 
of which we will define below.  Any imprecise predicate  
of  type   AGE  =  “approximately 20”,  or  of type  AGE 
= “young”   (where the attribute value “young” is not a 
member of the dom(AGE)),    is to be called  by 
Neutrosophic-predicate, and a query involving 
Neutrosophic-predicate is called to be a Neutrosophic-
query.   
 
Definition  8.1 
Consider a choice-parameter  α ∈ [0,1].   A member of a 
of dom(AGE) is said to be α-Neutrosophic-equal to the 
quantity   “approximate x”       if  a ∈ Iα(x),       where 
Iα(x) is the α-cut of the Neutrosophic number I(x).  The 

degree or amount  of this equality is measured by the 
interval  mI(x)(a) = [tI(x)(a), 1-fI(x)(a)].   Denote the 
collection of all such α-neutrosophic-equal members 
from dom(AGE) by the notation AGEα(x), which is a 
subset of dom(AGE).  If AGEα(x) is not a null-set or 
singleton, then the members can be ranked by ranking 
their corresponding degrees of equality.  
  
Definition  8.2 
Consider a choice value β ∈ [0,1].    At β level of choice,  
for every element a  of AGEα(x), the truth-value t(p1,p2) 
of the matching of  the predicate   p1:    given by  AGE =  
“approximately x”    with the predicate p2:  AGE = a     is 
equal to the β-value of the interval mI(x)(a). 
 
9.Neutrosophic-Proximity Search 
The notion of α-Neutrosophic-equality search as 
explained above is appropriate while there is an 
Neutrosophic-predicate in the query involving 
neutrosophic numbers.  But there could be a variety of  
neutrosophic predicates existing in a neutrosophic query,  
many of them may involve neutrosophic fuzzy hedges 
(including concentration/dilation)   like “good”, “very 
good”, “excellent”, “too much tall”, “young”, “not old”, 
etc.     In this section we present another type of search 
for finding out a suitable match to answer imprecise 
queries.  In this search we will use the theory of 
neutrosophic-proximity relation [4,5].  We know that a 
neutrosophic-proximity relation  on  a universe U is a 
neutrosophic relation on U which is both neutrosophic-
reflexive and neutrosophic-symmetric. 
 
Consider the  EMPLOYEE database as described below  
and  a query like  
                   PROJECT (EMPLOYEE_NAME) 
                 WHERE     EYE-COLOR  =  “dark-brown”.    
The value/data  “dark-brown”   is not in the set 
dom(EYE-COLOR).  Therefore a crisp search will fail to 
answer this.  The objective of this research work is to 
overcome this   
type of drawbacks  of the classical SQL.   For this we 
notice that  there may be one or more members of the set  
dom(EYE-COLOR)   which may closely match the eye-
color of  “brown”  or  “dark- brown”.     
 
Consider a new universe given by  
     W   =   dom(EYE-COLOR) U  {dark-brown}.   
Propose a  neutrosophic-proximity relation R over W.   
Choose a decision-parameter α ∈ [0,1].      We propose 
that search is to be made for the match  e ∈ dom(EYE-
COLOR)   such that                    
                                              tR(dark-brown, e)   ≥   α.  
( It may be mentioned here that the condition tR(dark-
brown,e) ≥ α   does also imply  the condition  fR(dark-
brown,e) ≤ 1- α ).     
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We say that e is a close match with “dark-brown”  with 
the degree or amount of closeness being  the interval   
mdark-brown(e)   given by 
                    mdark-brown(e)     =      [ tR(dark-brown,e),  1- 
fR(dark-brown,e) ].   
 
At β level of choice, the truth-value t(p1,p2) of the 
matching of  the predicate   p1: given by  EYE-COLOR =  
“dark-brown”      with the predicate    p2:  AGE = e     is 
equal to the β-value  of the interval  mdark-brown(e). 
 
10.    Neutrosophic-search  
In this section we will now present the most generalized 
method of search called by Neutrosophic-search.  The 
neutrosophic-search of matching is actually a combined 
concept of α-neutrosophic-equality search,  
neutrosophic-proximity search  and  crisp search.   
For example, consider a query like  
 PROJECT  (EMPLOYEE_NAME) 
      WHERE (SEX = “M”,  EYE-COLOR  =  “dark-
brown”,  AGE= “approximately 20”) . 
This is  a neutrosophic-query.   
 
To answer such a query, matching is to be searched for 
the three predicates p1, p2 and p3   given by     

(i) p1:     SEX = “M”,     
(ii) p2:     EYE-COLOR  =  “dark-brown”      

and     
(iii) p3 :    AGE  =  “approximately 20”,   

where  p1 is crisp  and   p2, p3  are neutrosophic.   
 
Clearly, to answer this query  the proposed neutrosophic 
search method is to b applied,   because  in addition to 
crisp search, both of α-neutrosophic-equality search and 
neutrosophic-proximity search will be used to answer 
this query.  The truth-value of the matching of the 
conjunction  p  of  p1, p2 and p3  will be the product of the 
individual truth values,  (where it is needless to mention 
that for crisp match the truth-value will be exactly 1).  
There could be a multiple number of answers to this 
query,  and the system will  display all the results 
ordered or ranked according to the truth-values of p.   
It is obvious that the neutrosophic-search technique for 
predicate-matching  reduces  to a  new type of fuzzy-
search technique as a special case. 
 
CONCLUSION 

 
In this paper, we have introduced a new method to 
answer imprecise queries of the lay users from the 
databases (details of the databases may not be known to 
the lay (users).  We have adopted Neutrosophic set tool 
to solve the problem of searching an exact match or a 
close match (if an exact match is not available) of the 
predicates so that we will be able to get the answer of 

‘evidence for you’(i.e. exact/ truth match) and ‘evidence 
against you’(i.e false match) and the ‘undecidability’(i.e. 
indeterminacy) This is a complete new Method of 
Answering Queries based on Neutrosophic logic. 
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