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Abstract

The mapping from the belief to the probability domain is a controversial issue, whose original purpose is to make (hard) deci-
sion, but for contrariwise to erroneous widespread idea/claim, this is not the only interest for using such mappings nowadays. 
Actually the probabilistic transformations of belief mass assignments are very useful in modern multitarget multisensor tracking
systems where one deals with soft decisions, especially when precise belief structures are not always available due to the exis-
tence of uncertainty in human being’s subjective judgments. Therefore, a new probabilistic transformation of interval-valued 
belief structure is put forward in the generalized power space, in order to build a subjective probability measure from any basic 
belief assignment defined on any model of the frame of discernment. Several examples are given to show how the new transfor-
mation works and we compare it to the main existing transformations proposed in the literature so far. Results are provided to 
illustrate the rationality and efficiency of this new proposed method making the decision problem simpler. 
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1. Introduction1

The information fusion technology originating from 
the end of 1970s results from the development of in-
formation science. Especially, since ten years or so 
ago, with the transfer of information fusion technology 
from the military applications to civil ones, the control 
architectures or the theories of belief functions have 
been developed very rapidly [1] for dealing with im-
perfect information (incomplete, imprecise, uncertain, 
inconsistent). Among the theories of belief functions 
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such as Dempster-Shafer theory (DST) [2-3], transfer-
able belief model (TBM) [4-6] and Dezert-Smaran- 
dache theory (DSmT) [7-9], the mapping from the 
belief to the probability offers interesting issues to 
combine uncertain sources of information expressed in 
terms of belief functions.  

And, it is more often that time critical decisions 
must be made with incomplete information for many 
real time information fusion systems, which means the 
elements in object set cannot get accurate evaluations 
using Dempster rule of combination thus adding 
greater complexity to decision-making. The belief 
function (or basic probability assignment (BPA), plau-
sibility function) should be transformed to the prob-
ability measure, when the decision is to be made based 
on the classical probabilistic theories and methods. 

Moreover, in many decision situations, precise belief 
structures are not always available due to the existence 
of uncertainty in human being’s subjective judgments. Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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In this case, an interval-valued belief degree rather 
than a precise one may be provided.  

However, most current probability transforms are 
based on single belief function [10-16] in DST, which 
will lead to incomplete use of belief functions and fra-
gility to immature information sets. Especially, when 
there exist complex static or dynamic fusion problems 
beyond the limits of the DST framework, and when the 
refinement of the frame of the problem under consid-
eration, denoted as , becomes inaccessible because of 
the vague, relative and imprecise nature of elements of 

, the generalized power space including DSmT may 
be considered in the information fusion.  

A classical transformation is the so-called pignistic 
probability [4-6], denoted as BetP, which offers a good 
compromise between the maximum of credibility Bel
and the maximum of plausibility (PI) for decision- 
support. Unfortunately, BetP does not provide the 
highest probabilistic information content (PIC) [10-17].

In this paper, we aim to design a new probability 
transformation approach which provides a low uncer-
tainty and a high PIC for expecting better perform-
ances.

The problem of probability transformation is con-
verted to an optimization problem with constraints in 
the generalized power space. The objective function is 
established based on the maximization of distance and 
the constraints are related to the given belief and plau-
sibility functions. Numerical examples show that the 
probability measure generated based on our approach 
has less uncertainty and more stability when compared 
with other available probability transformation ap-
proaches of belief function. 

2. Background Material  

2.1. DST 

A brief review of DST is as follows: 
In DST [2-3], the elements in the frame of discern-

ment (FOD)  are mutually exclusive. Define the 
function m 2 [0,1] as the BPA (also called a belief 
structure or a basic belief assignment), which satisfies 

( ) 1, , ( ) 0m A A U m         (1) 

then m(A) is defined as the BPA of A, representing the 
strength of all the incomplete information set for A.

The degree of one’s belief to a given proposition is 
represented by a two-level probabilistic portrayal of 
the information set: the belief level and the plausibility 
level (see Fig. 1). They are defined respectively as fol-
lows:  

Bel( ) ( )
B A

A m B             (2) 

Pl( ) 1 Bel( ) ( ),
A B

A A m B A  (3) 

with A = A. Bel(A) is the sum of m(B) for all sub-
sets B contained in A, representing all evidences that 
support the given proposition A. The Pl(A) is the sum 

of m(B) for all subsets B that have a non null intersec-
tion of A, representing all evidences that do not rule 
out the given proposition A. Absolutely, Pl(A) Bel(A).
The belief interval [Bel(A), Pl(A)] represents the un-
certainty of A. Bel(A)= Pl(A) means absolute confir-
mation to A.

Fig. 1  Description of evidence intervals of DST. 

2.2. Pignistic probability in TBM and DSmT 

Pignistic probability was firstly proposed by 
Smets[4-6] to solve the decision problem under uncer-
tainty. Smets analyzed the rationale more deeply and 
proved the decision efficiency of pignistic probability 
in the field of incomplete information fusion. 

Suppose  is the FOD. The classical pignistic prob-
ability transformation in TBM framework is given by 
BetP( )=0 and X 2 /{ }:

2 ,

| | ( )BetP( )
| | 1 ( )
i

i
B B

B m B
B m

     (4) 

where 2  is the power set of the finite and discrete 
frame  if Shafer’s model is applied, i.e. all elements 
of  are assumed truly exclusive. In Shafer’s ap-
proach, m( )=0 and Eq. (4) can be rewritten for any 
singleton i  as 

2 , 2 ,

1 ( )BetP( ) ( ) ( )
| | | |

i i

i i
Y Y Y Y

m Ym Y m
Y Y

 (5) 
This transformation has been generalized in DSmT 

for any regular normalized basic belief assignments 
(BBAS) m( ):G [0,1] (i.e. such that m( )=0 and 

( ) 1
X G

m X ) and for any model of the frame (free 

DSm model, hybrid DSm model and Shafer’s model as 
well) [17]. It is given by BetP( )=0 and X 2 /{ }:

M

M

( )
BetP( ) ( )

( )
i

i
Y G

C Y
m Y

C Y
       (6) 

where G  corresponds to the hyper-power set including 
all the integrity constraints of the model (if any), and 
CM(Y) the DSm cardinal of the DSm cardinal of the 
set Y. Eq. (6) reduces to Eq. (4) when G  reduces to 
classical power set 2  as Shafer’s model is adopted.  

3. Previous Works 

Several pignistic probabilities of precise belief de-
gree in DST are recalled in this section [10-17].
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3.1. Sudano’s probabilities 

Sudano has proposed interesting alternatives similar 
to BetP, which are called PrPl, PrNPl, PraPl, PrBel  
and PrHyb and are all defined in DST framework [10-13].

PrPl and PrBel are defined for all X  by 

2
,

( )PrPl( ) Pl({ })
Pl({ })

i j jj

i i
jB

B B B

m B  (7) 

2
,

( )PrBel( ) Bel({ })
Bel({ })

i j jj

i i
jB

B B B

m B

 (8) 
PrNPl, PraPl and PrHyb are, respectively, in fact a 

mapping proportional to the normalized plausibility 
function, a mapping proportional to all plausibilities 
and a hybrid transformation defined by  

Pl({ })PrNPl( ) Pl({ })
j

ji i      (9) 

PraPl( ) Bel({ }) Pl({ })i i i     (10) 
with  

2 2
Bel({ })) Pl({ })(1

i i

i i    (11) 

2
,

( )PrHyb( ) PraPl({ })
PraPl({ })

i j jj

i i
iB

B B B

m B

 (12) 

3.2. Cuzzolin’s intersection probability 

A new transformation denoted as CuzzP  has been 
proposed in Ref. [14] by Cuzzolin in the framework of 
DST in 2007, which is defined on any finite and dis-
crete frame ={ 1, 2, , n}, n 2 satisfying Shafer’s 
model, by 

1

( )
CuzzP( ) ( ) TNSM

( )

i
i i n

j
j

m  (13) 

with ( ) Pl( ) ( )i i im  and  

1 2 ,| | 1
TNSM 1 ( ) ( )

n

j
j A A

m m A  (14) 

3.3. B&P1, B&P2 and B&P3 algorithms 

Three new pignistic probability transformations 
based on multiple belief functions were proposed by 
Pan [15].

The B&P1 proportional transformation hypothesis 
assumes that the BPA is proportional to the product of 
Bel( i ) and Pl( i) among each singleton element of 

i Y with Y for all Y 2 .

Bel( )Pl( )
PrBP1( ) ( )

Bel( )Pl( )
i

j

i i
i

j jY
Y

m Y   (15) 

The B&P2 transformation hypothesis assumes that 
the BPA is distributed proportionally to the parameter 

Bel( )
1 Pl( )

i
i

i
s  among each singleton element of i Y

with Y  for all Y 2 .

PrBP2( ) ( )
i

i
i

Y j
j

s m Y
s

        (16) 

The B&P3 transformation hypothesis assumes that 
the BPA is distributed proportionally to the parameter 

PrBP3( )
1 PrBP3( )

i
i

i
s  among each singleton element of 

i Y with Y  for all Y 2 , where s can be initiated 

by Bel( i ) and Pl( i ), that is, 
Bel( )

1 Pl( )
i

i
i

s .

PrBP3( ) ( )
i

i
i

jY
j

s
m Y

s
       (17) 

For each singleton element i , these pignistic prob-
ability transforms are bound between the belief and the 
plausibility, and these pignistic probability transforms 
are all normalized to 1. 

3.4. Dezert and Smarandache’s probability 

Another new transformation was proposed in 
Ref. [16] by Dezert and Smarandache in the frame-
work of DSmT (free DSm model, hybrid DSm model 
or Shafer’s model), which is called DSmP formula. 

Let us consider a discrete frame  with a given 
model (free DSm model, hybrid DSm model or 
Shafer’s model), and the DSmP mapping is defined by 
DSmP ( )=0 and X G /{ }:

( ) 1

( ) 1

( ) ( )

DSmP ( ) ( )
( ) ( )

Z X Y
C Z

Z Y
C Z

m Z C X Y

X m Y
m Z C Y

 (18) 

where 0 is a tuning parameter and G  corresponds 
to the hyper-power set including all the integrity con-
straints (if any) of the model M; C(X Y ) and C(Y )
denote the DSm cardinals of the sets X Y and Y re-
spectively.

Deng proposed a modified probability transforma-
tion based on fractal theory, called FPT in Ref. [17].  

Although there exist many different expressions 
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among the probability transforms, these transforma-
tions aim to enlarge the belief differences among all 
the propositions to derive a more reliable decision re-
sult. 

4. New Probability Transformation Based on Dis-
tance Maximization 

4.1. Interval evidence 

The interval operations defined here about impreci-
sion are similar to the rational interval extension 
through the interval arithmetics [7]. Then, the interval 
operations to any set operation are generalized, where 
real sub-unitary sets are needed and the defined set 
operation can be used for any kind of sets. 

Let s1 and s2 be two (unidimensional) real standard 
subsets of the unit interval [0,1], and a number 
k [0,1], then one defines 

Addition of sets: 

1 2 2 1 1 2 1 1 2 2{ | , , }s s s s x x s s s S s S

 (19) 
with 

1 2 1 2

1 2 1 2

inf( ) inf( ) inf( )
sup( ) sup( ) sup( )

s s s s
s s s s

     (20) 

and, as a particular case, it is defined as 
2 2 2 2 2{ | , }k s s k x x k s s S   (21) 

with 

2 2

2 2

inf({ } ) inf( )
sup({ } ) sup( )

k s k s
k s k s

      (22) 

Let us now consider some given sources of informa-
tion which are not able to provide us a specific/precise 
mass mj [0,1], but only an interval centered in 
mj [0,1], i.e. Ij = [mj j, mj+ j] where j [0,1] and Ij

[0,1] for all 1 j n. The cases when Ij are half- 
closed and open are similarly treated. 

A scalar  can be regarded as a particular interval 
[ ], thus the mass matrix m is extended to 

1 1 2 2inf( ) [ ]n nm m mm    (23) 

1 1 2 2sup( ) [ ]n nm m mm   (24) 

Of course, the closeness of this interval to the left 
and/or to the right depends on the closeness of the in-
terval Ij. If all of them are closed to the left, then m(A)
is also closed to the left. But, if at least one is open to 
the left, then m(A) is open to the left. The same is true 
with the closeness to the right. Because one has 

j=1, 2, , k:

0 0
lim (inf( )) lim (sup( ))

j j

m m m     (25) 

from which the following theorem can be obtained. 
Theorem 1: A G , j=1, 2, , k, one has 

supinf
[lim ( ), lim ( )]

jj

m A m A  with  

inf 0

inf 0

lim ( ) lim (inf( ( )))

lim ( ) lim (sup( ( )))
j j

j j

m A m A

m A m A
       (26) 

In other words, if all centered sub-unitary intervals 
converge to their corresponding mid points (the impre-
cision becomes zero), then the intervals converge to-
wards precise values for scalars. In what follows, we 
assume that interval-valued belief structures are all 
normalized. 

4.2. New method 

Our new mapping is straight, and can make decision 
more quickly than DSmP. It is different from Sudano’s, 
Pan’s and Cuzzolin’s mappings which are more refined 
but less interesting in our opinions than what we pre-
sent here. The basic idea of the new method consists in 
an optimization with constraints. This new transforma-
tion takes into account the values of the masses and the 
corresponding belief structures in the optimization 
process.  

Before putting forward the new transformation, we 
first recall the characteristic of probability distributions 

p , which must meet the usual requirements 
for probability distributions, i.e.  

0 1,

1

p
p           (27) 

Definition 1  Let m be a normalized interval belief 
structure with interval probability mass inf(m(Ai))
m(Ai) sup(m(Ai)) for i=1,2, , n and A be a subset of 

. The belief measure (Bel) and the plausibility meas-
ure (Pl) of A are the closed intervals respectively de-
fined by 

Bel ( ) [inf(Bel ( )),sup (Bel ( ))]m m mA A A    (28) 
Pl ( ) [inf(Pl ( )),sup (Pl ( ))]m m mA A A      (29) 

A reasonable probability distributions should not 
only satisfy the less uncertainty especially when it is 
difficult to make decision only with the BPA, but also 
make a reasonable decision, that is, if the evidence 
shows more possibility of some elements, the element 
should obtain more support. Moreover, due to the in-
terval characteristic of belief structure, the probability 
distribution is also an interval-value. 

Definition 2  Let m be an interval belief structure 
with interval probability masses inf(m(Ai)) m(Ai)
sup(m(Ai)) for i=1,2, , n and A be a subset of the 
generalized power space G . Its probability distribu-
tion, denoted by 

i
p , is also an interval belief structure 

defined by 
[inf( ),sup( )]

i i i
p p p           (30) 

The probability matrix P is extended to  0
lim ( )=

j

m A
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1 21 2inf( ) [ ]
n np p pP   (31) 

1 21 2sup( ) [ ]
n np p pP   (32) 

where i [0,1]. 
Theorem 2  , 1, 2, ,A G i n , one has 

0 inf sup
lim [lim , lim ]

i i i
i i i

p p p        (33) 

with 

inf 0

sup 0

lim lim (inf( ))

lim lim (sup( ))

i i
i i

i i
i i

p p

p p
       (34) 

Definition 3  Let m be an interval belief structure 
with interval probability masses inf(m(Ai)) m(Ai)
sup(m(Ai)) for i=1,2, , n and A be a subset of the 
generalized power space G . Its distance measure de-
noted by dP is also an interval belief structure defined 
by 

P P P[inf( ),sup( )]d d d          (35) 

where inf(dP) and sup(dP) are respectively the maxi-
mum of the following optimization problem: 

{

2
P| }

(Max ( ))
i

ii i

ip
d p m     (36) 

where there exist four kinds of constraints which are 
written as follows: 

Constraint 1 
s.t.  

( ) 1
A G

m A            (37) 

inf( ( )) ( ) sup( ( )),m A m A m A A G   (38) 

inf(Bel ( ))
inf(Pl ( ))

inf(Bel ( ))
inf(Pl ( ))

inf(Bel ( ))

inf(Pl ( ))
inf(Pl ( )) inf(Pl ( ))

i

i j

i

i

i j

m

m i

m

m i j

m

m

m i m j

A p
A A

A p p
A A

A p

A B
p p

(39)
0 1,

i ip G         (40) 

1
i

i

p             (41) 

  Constraint 2 
  s.t.  

( ) 1
A G

m A           (42) 

inf( ( )) ( ) sup( ( )),m A m A m A A G  (43) 

sup(Bel ( ))

sup (Pl ( ))
sup(Bel ( ))

sup (Pl ( ))

sup(Bel ( ))

sup (Pl ( ))
sup(Pl ( )) sup (Pl ( ))

i

i

j

i

i

i j

m

m i

m

m i j

m

m

m i m j

A p

A A
A p

p A A

A p

A A
p p

(44)
0 1,

i ip G           (45) 

1
i

i

p               (46) 

Constraint 3 
s.t.

( ) 1
A G

m A             (47) 

inf( ( )) ( ) sup( ( )),m A m A m A A G  (48) 

inf(Bel ( ))

sup(Pl ( ))
inf(Bel ( ))

sup(Pl ( ))
inf(Bel ( ))

sup(Pl ( ))
sup(Pl ( )) sup(Pl ( ))

i

i j

i

i

i j

m

m i

m

m i j

m

m

m i m j

A p

A A
A p p

A A
A p

A A
p p

(49)

0 1,
i ip G          (50) 

1
i

i

p              (51) 

Constraint 4 
s.t.

( ) 1
A G

m A            (52) 

inf( ( )) ( ) sup( ( )),m A m A m A A G  (53) 

sup(Bel ( ))
inf (Pl ( ))

sup(Bel ( ))
inf (Pl ( ))

sup(Bel ( ))

inf (Pl ( ))
inf (Pl ( )) inf (Pl ( ))

i

i j

i

i

i j

m

m i

m

m i j

m

m

m i m j

A p
A A

A p p
A A

A p

A A
p p

(54)

0 1,
i ip G            (55) 

1
i

i

p                 (56) 
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Thus the final probability distributions 
i

p

[ , ]
i i

p p  must meet [min( ),max( )]
i i i

p p p  for 

i=1,2, ,n.
When the interval-valued belief structure is changed 

to precise belief structure, that is, inf(m(A))= 
sup(m(A)), inf(Belm(A))=sup(Belm(A)) and inf(Plm(A))=
sup(Plm(A)), and the optimality approach is 

|

2
P{ }

Max ( ( ))
i

ii i

ip
d p m     (57) 

s.t.
( ) 1

A G
m A             (58) 

inf( ( )) ( ) sup( ( ))m A m A m A A G   (59) 

Bel ( )

Pl ( )
Bel ( )

Pl ( )

Bel ( )

Pl ( )
                        Pl ( ) Pl ( )

i

i

j

i

i

i j

m

m i

m

m i j

m

m

m i m j

A p

A A
A p

p A A

A p

A A
p p

 (60) 

0 1,
i ip G          (61) 

1
i

i

p              (62) 

If we do not consider the relationship between 
and     in all the four constraints, some incredible 
results may be obtained, that is to say, Eq. (60) should 
be defined as follows: 

Bel ( ) Pl ( )

Bel ( ) Pl ( )

Bel ( ) Pl ( )

i

i j

i

i

m m i

m m i j

m m

A p A A

A p p A A

A p A A

(63)
Example 1  Let one BPA from a distinct source on 

frame ={ 1 , 2} be  

1 2 1 2({ }) 0.01, ({ }) 0.4, ({ }) 0.59m m m

If this new method chooses the constraint condition 
given in Eq. (63), different results may be obtained. 
The final result after probability transformation may be 
p1=P({ 1})=0.6, p2=P({ 2})=0.4 or p1=P({ 1})=0.2, 
p2=P({ 2})=0.8. The reason is that the objective func-
tion is not convex. So, the proposed approach in this 
paper is of statistical significance. Thus, if we use the 
proposed approach whose constraint condition is given 
in Eq. (60), the final result is p1=P({ 1})=0.01, p2=
P({ 2})=0.99. The difference among the two proposi-
tions can be further enlarged, which is helpful for the 
more consolidated and reliable decision.  

Example 2  Let one BPA from a distinct source on 

frame ={ 1 , 2 , 3} be 

1 2 2 3 1 3({ }) ({ }) ({ }) 1/ 3m m m

If this new method chooses the constraint condition 
given in Eq. (63), we can derive six different probabil-
ity distributions yielding the same maximal distance, 
which are listed as follows: 

1 2 31/ 3, 2 / 3, 0p p p

1 2 31/ 3, 0, 2 / 3p p p

1 2 30, 1/ 3, 2 / 3p p p

1 2 30, 2 / 3, 1/ 3p p p

1 2 32 / 3, 1/ 3, 0p p p

1 2 32 / 3, 0, 1/ 3p p p
It is clear that the problem of finding a probability 

distribution with maximal distance or even minimal 
entropy does not admit a unique solution in general [18].

So if we use the constraint conditions given in 
Eq. (60), the decision result is p1=1/3, p2=1/3, p3=1/3, 
which is the same as the result by the classical pignis-
tic probability transformation in TBM framework.  

Once m({ 1})> m({ 2}), even in very special situa-
tions where the difference between masses of single-
tons is very small, the mass of belief m({ 1 2})>0 
is always fully distributed back to 1 . The following 
example [18] illustrates this: 

1 2

1 2

({ }) 0.100 0001, ({ }) 0.1,
({ }) 0.799 999 9

m m
m

So if we use the constraint conditions given in 
Eq. (60), the decision result is p1=1/2, p2=1/2. Al-
though m({ 1})>m({ 2}), m({ 1}) is almost the same 
as m({ 2}) and so there is no solid reason to obtain a 
very high probability for 1  and a small probability for 

2 . Therefore, the decision based on the result derived 
from the new method is reasonable.  

From our analysis, it can be concluded that the 
maximization of distance without considering the es-
sential relationship of BPA is not sufficient for evalu-
ating the quality of a probability transformation and 
the maximization of distance with the essential rela-
tionship of BPA is useful to give more acceptable 
probability distribution from belief functions. 

Therefore, these constraints make sure that the pro-
posed approach is more reasonable, and more fit for 
the real world, that is, the more support one gets from 
its belief function, the more possibility one can obtain. 
Moreover, the optimization of the distance means once 
the probabilistic transformation satisfies these con-
straints, the more distance there exists, the larger pos-
sibility differences of certain hypotheses concerning 
the class membership of those patterns are, and thus 
more consolidated and reliable decision can be made. 

Furthermore, this new method works for all models 
(free, hybrid and Shafer’s). In order to apply classical 
BetP, CuzzP, DSmP, Pan’s or Sudano’s mappings, we 
need at first to refine the frame in order to work with 
Shafer’s model, and then apply their formulas [16]. In 

j
p

i
p
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the case where refinement makes sense, one can apply 
other subjective probabilities on the refined frame. 
This new method works on the refined frame as well 
and gives the same result as it does on the non-refined 
frame. 

5. Measuring Information and Uncertainty 

In probability theory a well-known concept is the 
Shannon entropy measure, which is most widely used 
in Ref. [19]. 

If P is a probability distribution on = 1 , 2 ,
n}, then the entropy of P is expressed as 

2
1

( ) log
i i

n

i
H P p p        (64) 

where
i

p  is the probability of i .
It is well known that entropy measures the uncer-

tainty associated with the probability distribution P.
When total information is available and there is no 
ambiguity for decision-making, Hmin(P) = 0. When 

i
p = 1/n,

max 2 2
1

1 1( ) log log
n

i
H P n

n n
   (65) 

So the normalized measure evaluation of probability 
distribution EH  is 

2
1

2

log
EH( )

log

i i

n

i
p p

P
n

        (66) 

The less EH, the less uncertainty of information, and 
the more accurate for decision-making. When 
EH(P)=0, there is only one hypothesis with a probabil-
ity value of 1 and the rest has zero value, and the sys-
tem can make decision unambiguously. When EH(P)=
1, it is impossible to make a correct decision. 

The probabilistic information content (PIC) of a 
probability measure P  associated with a probabilistic 
source over a discrete finite set ={ 1, 2 , n} is 
defined as [11]:

2
12

1PIC( ) 1 log
log i i

n

i
P p p

n
 (67) 

The PIC is nothing but the dual of the normalized 
Shannon entropy and thus is actually unit less. PIC(P)
takes its values in [ 0, 1]. PIC(P) is maximum, i.e. 
PICmax=1 with any deterministic probability; it is 
minimum, i.e. PICmin=0, with the uniform probability 
over the frame . The simple relationships between 
these measures are 

maxPIC( ) 1 ( ( ) / ) 1 EH( )P H P H P    (68) 

max max( ) ( )(1 PIC( )) ( ) EH( )H P H P P H P P
(69)

maxEH( ) 1 PIC( ) ( ) / ( )P P H P H P    (70) 
For information fusion at decision level, the uncer-

tainty should be reduced as much as possible. The less 

the uncertainty in probability measure is, the more 
consolidated and reliable decision can be made. The 
larger dP, the better/bigger PIC(P) value, the worse/ 
smaller H(P) value, and the worse/smaller EH(P)
value. Given belief function (or the BPA, the plausibil-
ity), by the above new method, a probability distribu-
tion can be derived, which has less uncertainty meas-
ured by Shannon entropy or larger stability measured 
by PIC(P) and thus is more proper to be used in deci-
sion procedure.  

6. Examples with Precise BPA 

The following numerical examples and comparisons 
with respect to other transformations illustrate some 
design concepts presented in this paper. To make the 
results more comparable, we use the data provided in 
Ref. [16] directly.  

6.1. Example 3 (Shafer’s model) 

Let us define Shafer’s model and the vacuous BPA 
characterizing the totally ignorant source, i.e. 
m ( 1 2 ) = 1 . It can be verified that all mappings 
coincide with the uniform probability measure over 
singletons of , except PrBel, PrBPl and Deng’s 
method which are mathematically not defined in that 
case. This result can be easily proved for any size of 
the frame with | |>2.  

6.2. Example 4 (Shafer’s model and a probabilistic-
source) 

Let us still apply Shafer’s model and see what hap-
pens when applying all the transformations on a 
probabilistic source which commits a belief mass only 
to singletons of 2 . If we consider for example the 
uniform Bayesian mass defined by m( 1) = m( 2 ) = 1/2,
all transformations coincide with the probabilistic input 
mass as expected, so that the idempotency property is 
satisfied. Only Cuzzolin’s transformation fails which is 
mathematically not defined in that case because one 
gets 0/0 indetermination. The result is important only 
from the mathematical point of view.  

6.3. Example 5 (Shafer’s model and non-Bayesian 
mass) 

Assume that Shafer’s model and the non-Bayesian 
mass (more precisely the simple support mass) have 
been given in Table 1. We summarize the results ob-
tained with all transformations in Table 2. We use NaN 
acronym here standing for Not a Number due to zero 
assignment to singletons.  

Table 1  Input of precise BPA for Example 5 

Subsets { 1 }  { 2 } { 1 2 }

m( ) 0.4 0 0.6 
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Table 2  Probability transformation results of Example 5 based on different approaches 

Result 1 2 dP EH( ) PIC( )
PrBel( ) 1.000 00 0 0.600 00 NaN NaN 

PrPl( ) 0.775 00 0.225 00 0.437 32 0.769 19 0.230 81 

PrNPl( ) 0.625 00 0.375 00 0.437 32 0.954 43 0.045 57 

BetP( ) 0.700 00 0.300 00 0.424 26 0.881 29 0.118 71 

CuzzP( ) 0.700 00 0.300 00 0.424 26 0.881 29 0.118 71 

PraPl( ) 0.775 00 0.225 00 0.437 32 0.769 19 0.230 81 

PrHyb( ) 0.865 00 0.135 00 0.484 20 0.570 99 0.429 01 

DSmP =0.001( ) 0.998 51 0.001 49 0.598 51 0.016 16 0.983 84 

PrBPl( ) 1.000 00 0 0.600 00 NaN NaN 

PrBP2( ) 0.841 18 0.158 82 0.468 89 0.631 49 0.368 51 

PrBP3( ) 0.999 73 0.000 27 0.599 73 0.003 55 0.996 45 

Ref. [17] 1.000 00 0 0.600 00 NaN NaN 

This paper 1.000 00 0 0.600 00 0 1.000 00 

One sees that PrBel , PrBPl and Deng’s method do
not work correctly since they cannot have a division 
by zero. That is to say, they do not work when the 
masses of all singletons involved in an ignorance are 
null since they give the indetermination 0/0. In the case 
when at least one singleton mass involved in an igno-
rance is zero, that singleton does not receive any mass 
from the distribution even if it is involved in an igno-
rance, which is not fair/good. So, the new method
solves their problem by doing a redistribution of the 
ignorance mass with an optimization process, whether 
all masses of singletons involved in all ignorances are 
different from zero or at least one singleton mass in-
volved in ignorance is zero, which has the best PIC 
value and smallest EH value. 

6.4. Example 6 (free DSm model) 

Let us assume the free DSm model (i.e. 1 2 )
and the generalized mass given in Table 3.  

Table 3  Input of precise BPA for Example 6 
Subset { 1 2 } { 1 }  { 2 } { 1 2 }

m( ) 0.4 0.2 0.1 0.3 

In the case of free-DSm (or hybrid DSm) models, 
almost all methods cannot be derived directly for such 
models, so it needs to refine the frame  into r ef

which satisfies Shafer’s model, that is, the original 2D 
frame ={ 1, 2} with m( ) given in Table 3 is 
changed into a refined 3D frame r ef = { 1 = 1/

1 2}, 2 = 2 / 1 2}, 3 = 1 2}, which is 
considered to satisfy Shafer’s model with the equiva-
lent BPA m(·) defined in Table 4. 

Table 4  Input of precise BPA on ref for Example 6 

Subset 3{ } 1 3{ } 1 3{ } 1 2 3{ }

m( ) 0.4 0.2 0.1 0.3 

The results are then given in Table 5. One sees that 
PIC(P) of the new method is the maximum value. And 
EH(P) of the new method is minimum. PrBel, PrBPl 
and Deng’s method still do not work correctly because 
they cannot be directly evaluated for 1  and 2  since 
the underlying probabilities are mathematically unde-
fined in such case.  

Table 5  Probability transformation results of Example 6 based on different approaches 

Result 1 2 3 dP EH( ) PIC( )

PrBel( ) NaN NaN 1.000 00 NaN NaN NaN 
PrBl( ) 0.145 61 0.091 73 0.762 66 0.401 42 0.642 94 0.357 06 

PrNPl( ) 0.263 16 0.210 53 0.526 32 0.359 90 0.925 86 0.074 14 
BetP( ) 0.200 00 0.150 00 0.650 00 0.353 55 0.806 90 0.193 11 

CuzzP( ) 0.200 00 0.160 00 0.640 00 0.351 00 0.819 88 0.180 13 
PraPl( ) 0.157 90 0.126 32 0.715 79 0.374 98 0.721 03 0.278 97 
PrHyb( ) 0.083 51 0.052 90 0.863 59 0.474 02 0.445 54 0.554 46 

DSmP =0.001( ) 0.001 24 0.000 99 0.997 77 0.597 78 0.015 85 0.984 15 
PrBPl( ) NaN NaN 1.000 00 NaN NaN NaN 
PrBP2( ) 0.104 60 0.066 11 0.829 30 0.446 77 0.519 70 0.480 30 
PrBP3( ) 0.000 10 0.000 04 0.999 86 0.599 86 0.001 36 0.998 64 
Ref. [17] NaN NaN 1.000 00 NaN NaN NaN 

This paper 0 0 1.000 00 0.600 00 0 1.000 00 
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6.5. Example 7 (Shafer’s model and non-Bayesian 
mass) 

This example is selected from Ref. [13]. Let us apply 
Shafer’s model and the non-Bayesian belief mass given 
by m( 1) = 0.35, m( 2 ) = 0.25, m( 3) = 0.02, m( 1 2)= 
0.20, m( 1 3) = 0.20, m( 2 3) = 0.20 and m( 1

2 3 )=0.06. The results of the mappings are given 
in Table 6. One sees that although all transformation 
methods can get reasonable results when the masses of 
all singletons involved in an ignorance are not null, the 
new method provides the best performance. 

6.6. Example 8 (Shafer’s model with non-Bayesian 
mass) 

Let us apply Shafer’s model and change a bit the 
non-Bayesian input mass by taking m ( 1 ) = 0.10, 
m( 2 ) =0, m( 3 ) = 0.20, m( 1 2 )=0.30, m( 1 3 )=
0.10, m( 2 3 ) = 0 and m( 1 2 3 ) = 0.30. The 
results of the mappings are given in Table 7. 

Table 7 shows that although all transformation 
methods can provide the better performance than the 
original BPA in decision-making, the new method 
achieves the best performance which has the largest 
PIC value and smallest EH value. 

Table 6  Probability transformation results of Example 7 based on different approaches 

Result 1 2 3 dP EH( ) PIC( )

PrBel( ) 0.566 75 0.403 82 0.029 42 0.265 96 0.720 68 0.279 33 

PrPl( ) 0.542 10 0.400 50 0.057 40 0.246 88 0.785 02 0.214 98 

PrNPl( ) 0.472 22 0.388 89 0.138 89 0.219 92 0.906 40 0.093 60 

BetP( ) 0.505 00 0.395 00 0.100 00 0.226 83 0.857 61 0.142 39 

CuzzP( ) 0.502 93 0.393 66 0.103 42 0.225 79 0.862 28 0.137 72 

PraPl( ) 0.529 44 0.397 78 0.072 78 0.238 38 0.813 83 0.186 17 

PrHyb( ) 0.557 51 0.401 93 0.040 56 0.258 00 0.748 29 0.251 71 

DSmP =0.001( ) 0.566 46 0.403 70 0.029 83 0.265 66 0.721 74 0.278 26 

PrBPl( ) 0.582 15 0.394 68 0.023 17 0.273 56 0.700 09 0.299 91 

PrBP2( ) 0.588 96 0.386 48 0.024 56 0.275 23 0.701 11 0.298 89 

PrBP3( ) 0.603 34 0.372 91 0.023 76 0.281 60 0.693 19 0.306 81 

Ref. [17] 0.566 75 0.403 82 0.029 42 0.265 96 0.720 68 0.279 33 

This paper 0.680 00 0.300 00 0.020 00 0.333 77 0.638 70 0.361 30 

Table 7  Probability transformation results of Example 8 based on different approaches 

Result 1 2 3 dP EH( ) PIC( )

PrBel( ) 0.533 33 0 0.466 67 0.508 81 NaN NaN 

PrPl( ) 0.448 57 0.218 57 0.332 86 0.432 35 0.963 16 0.036 84 

PrNPl( ) 0.400 00 0.300 00 0.300 00 0.435 89 0.991 16 0.008 84 

BetP( ) 0.400 00 0.250 00 0.350 00 0.418 33 0.983 54 0.016 46 

CuzzP( ) 0.388 24 0.247 06 0.364 71 0.413 82 0.983 62 0.016 38 

PraPl( ) 0.380 00 0.210 00 0.410 00 0.408 17 0.965 74 0.034 26 

PrHyb( ) 0.455 32 0.169 78 0.374 90 0.430 89 0.934 91 0.065 09 

DSmP =0.001( ) 0.530 50 0.003 93 0.465 57 0.505 84 0.649 91 0.350 09 

PrBPl( ) 0.560 00 0.000 00 0.440 00 0.518 85 NaN NaN 

PrBP2( ) 0.452 45 0.201 29 0.346 26 0.431 43 0.954 60 0.045 40 

PrBP3( ) 0.635 42 0.051 54 0.313 04 0.549 64 0.732 34 0.267 66 

Ref. [17] 0.533 33 0 0.466 67 0.508 81 NaN NaN 

This paper 0.800 00 0 0.200 00 0.700 00 0.455 49 0.544 51 
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6.7. Example 9 (hybrid DSm model) 

Consider the hybrid DSm model in which all in-
tersections of elements of  are empty except .
In this case, G  reduces to nine elements { ,

}.
The input masses of focal elements are given by 
m( )=0.20, m( )=0.10, m( )=0.20, m(

) = 0.30, m( )=0.10 and m( ) = 
0.10.

In order to apply all methods, the refined frame 
ref={ 1 = 1/( 1 2 ) , 2 = 2 /( 1 2) , 3 = 3 ,

4 = 1 2} with Shafer’s model as depicted in Fig. 2 
is given in Table 8. 

As shown in Table 9, the new method provides the 
best results in terms of PIC and EH metric. Moreover, 
in the refined frame ref, the masses of 1  and 2

involved in the ignorance are null, so PrBel , PrBPl 
and Deng’s method do not work correctly because 
they cannot be directly evaluated for 1  and 2  in 
such case. 

Fig. 2  Refined 3D frame for Example 9.

Table 8  Input of precise BPA for Example 9 

Subset m( )

3{ } 0.2 

4{ } 0.2 

1 4{ } 0.1 

1 2 4{ } 0.3 

1 3 4{ } 0.1 

1 2 3 4{ } 0.1 

Table 9  Probability transformation results of Example 9 based on different approaches 

Result 1 2 3 4 dP EH( ) PIC( )

PrBel( ) NaN NaN 0.300 00 0.700 00 NaN NaN NaN 

PrPl( ) 0.203 46 0.084 85 0.240 40 0.471 28 0.351 89 0.887 62 0.112 38 

PrNPl( ) 0.272 73 0.181 82 0.181 82 0.363 64 0.366 80 0.968 13 0.031 87 

BetP( ) 0.208 33 0.125 00 0.258 33 0.408 33 0.325 32 0.939 28 0.060 72 

CuzzP( ) 0.200 00 0.133 33 0.266 67 0.400 00 0.319 72 0.944 62 0.055 38 

PraPl( ) 0.163 64 0.109 09 0.309 09 0.418 18 0.313 34 0.912 79 0.087 21 

PrHyb( ) 0.133 91 0.058 28 0.265 60 0.542 21 0.377 81 0.807 12 0.192 88 

DSmP =0.001( ) 0.002 47 0.001 73 0.299 63 0.696 18 0.506 09 0.460 97 0.539 03 

PrBPl( ) NaN NaN 0.266 67 0.733 33 NaN NaN NaN 

PrBP2( ) 0.180 07 0.076 00 0.243 81 0.500 12 0.360 82 0.862 16 0.137 84 

PrBP3( ) 0.032 18 0.004 99 0.228 76 0.734 07 0.535 83 0.505 97 0.494 03 

Ref. [17] NaN NaN 0.300 00 0.700 00 NaN NaN NaN 

This paper 0 0 0.200 00 0.8 0.600 00 0.360 96 0.639 04 

6.8.  Example 10 (free DSm model) 

Consider the free DSm model depicted in Fig. 3 

Fig. 3  Free DSm models for 3D frame for Example 10.

with the input masses given in Table 10. One works on 
the refined frame ref= 1 2 3 4 5 6 7{ , , , , , , }  where 
the elements of ref are exclusive (assuming such 
refinement has a physical sense) according to Fig. 3. 
The PIC values obtained with different mappings are 
given in Table 11. One sees that the new method gets  

Table 10  Input of precise BPA for Example 10 

Subset m(A)

1 2 3{ } 0.1 

1 2{ } 0.2 

1{ } 0.3 

1 2{ } 0.1 

1 2 3{ } 0.3 
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Table 11  Probability transformation results of Example 10 based on different approaches 

Result 1 2 3 4 5 6 7 dP EH( ) PIC( )

PrBel( ) 0 0 0 0 0 0 1.000 00 0.900 00 NaN NaN 

PrPl( ) 0.128 44 0.037 03 0.020 46 0.259 87 0.128 44 0.037 03 0.388 74 0.432 50 0.963 16 0.194 04

PrNPl( ) 0.159 09 0.090 91 0.068 18 0.204 55 0.159 09 0.090 91 0.327 27 0.406 56 0.991 16 0.026 60

BetP( ) 0.134 52 0.059 52 0.042 86 0.234 52 0.134 52 0.059 52 0.334 52 0.393 85 0.983 54 0.117 63

CuzzP( ) 0.146 51 0.083 72 0.062 79 0.188 37 0.146 51 0.083 72 0.288 37 0.363 13 0.983 62 0.062 16

PraPl( ) 0.143 18 0.081 82 0.061 36 0.184 09 0.143 18 0.081 82 0.304 55 0.365 90 0.965 74 0.069 28

PrHyb( ) 0.113 63 0.033 26 0.018 41 0.221 45 0.113 63 0.033 26 0.466 35 0.460 03 0.934 91 0.237 48

DSmP =0.001( ) 0.006 63 0.003 75 0.002 80 0.008 59 0.006 63 0.003 75 0.967 85 0.867 96 0.649 91 0.898 57

PrBPl( ) 0 0 0 0 0 0 1.000 00 0.900 00 NaN NaN 

PrBP2( ) 0.124 74 0.036 10 0.019 95 0.249 88 0.124 74 0.036 10 0.408 49 0.437 87 0.954 60 0.203 74

PrBP3( ) 0.028 80 0.002 24 0.000 68 0.148 08 0.028 80 0.002 24 0.789 17 0.706 08 0.732 34 0.637 06

Ref. [17] 0 0 0 0 0 0 1.000 00 0.900 00 NaN NaN 

This paper 0 0 0 0 0 0 1 0.900 00 0 1.000 00

here again the best results in terms of PIC and EH. 
Although PrBel, PrBPl and Deng’s method can get the 
largest distance, values of PIC and EH do not work 
due to zero assignment to singletons. 

This new method is complicated and indeed results 
in a nonlinear problem. However, those above exam-
ples reveal the rationality and usefulness of the new 
method. So, when the size of the frame of discernment 
is not too large and the high computational complexity 
due to the nonlinearity of the maximization problem 
can be ignored, we advice to apply this new method. 
Moreover, it can solve the probability transformation 
of interval-valued belief structure.  

7. Example with Imprecise BPA 

The above examples are all precise belief structures. 
This section gives an interval-valued belief in Table 12, 
which shows an illustrative example and the results of 
belief and plausibility measures in an interval-valued
belief environment.  

Table 12  An interval-valued belief structure and corre-
sponding belief and plausibility measures in 
Example 11 

Result m(A) Belm(A) Plm(A)

1{ } [0.15,0.16] [0.15,0.16] [0.51,0.52] 

2{ } [0.22,0.23] [0.22,0.23] [0.60,0.61] 

3{ } [0.06,0.07] [0.06,0.07] [0.49,0.50] 

1 2{ } [0.13,0.14] [0.50,0.51] [0.93,0.94] 

1 3{ } [0.18,0.19] [0.39,0.40] [0.77,0.78] 

2 3{ } [0.20,0.21] [0.48,0.49] [0.84,0.85] 

1 2 3{ } [0.05,0.06] [1.00,1.00] [1.00,1.00] 

Thus the final probability transform is 
[0.329 66,0.330 00], [0.600 00,0.610 00]A Bp p

[0.060 34,0.070 07]Cp
where the imprecise probability obtained by this new 
probability transform is compatible with its lower and 
upper bounds provided by imprecise Bel  and Pl
given in Table 13. 

Table 13  Probability transformations in four con-
straints in Example 11 

Constraint pA pB pC

Constraint 1 0.330 00 0.600 00 0.070 00 

Constraint 2 0.329 96 0.600 00 0.070 04 

Constraint 3 0.329 66 0.610 00 0.060 34 

Constraint 4 0.329 94 0.600 00 0.070 07 

8. Conclusions 

Decision rules play an important role in complex 
and real time information fusion systems. Probability 
transformation of belief function can be considered as 
a probabilistic approximation of belief assignment, 
which aims to gain more reliable decision results.  

This paper proposes a novel probability transforma-
tion of belief function based on distance maximization, 
and gives examples in all models including Shafer’s 
model, free DSm model and hybrid DSm model in 
precise belief and interval-valued belief environments.  

The experimental results based on these provided 
numerical examples show that the probability measure 
generated based on the proposed approach has less 
uncertainty and more stability when compared with 
other available probability transformation approaches 
of belief function. It can be concluded that the pro-
posed approach is rational and effective. Significant 
differences in all the propositions can be further 
enlarged no matter the evidence is precise or impre-
cise, which is helpful for more consolidated and reli-
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able decision.  
Also, the proposed approach in this paper is more 

robust. But it should be noted that, the probability dis-
tribution derived based on the proposed approach is 
not definitely the optimal result, which relies on the 
optimization algorithms chosen. Therefore, the design 
of more reasonable objective function and the design 
of more powerful global optimization algorithm are 
important works in future.  
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