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a b s t r a c t

In Dempster–Shafer evidence theory, the basic probability assignment (BPA) can effectively represent
and process uncertain information. How to transform the BPA of uncertain information into a decision
probability remains a problem to be solved. In the light of this issue, we develop a novel decision
probability transformation method to realize the transition from the belief decision to the probability
decision in the framework of Dempster–Shafer evidence theory. The newly proposed method considers
the transformation of BPA with multi-subset focal elements from the perspective of the belief interval,
and applies the continuous interval argument ordered weighted average operator to quantify the data
information contained in the belief interval for each singleton. Afterward, we present an approach
to calculate the support degree of the singleton based on quantitative data information. According to
the support degree of the singleton, the BPA of multi-subset focal elements is allocated reasonably.
Furthermore, we introduce the concepts of probabilistic information content in this paper, which is
utilized to evaluate the performance of the decision probability transformation method. Eventually,
a few numerical examples and a practical application are given to demonstrate the rationality and
accuracy of our proposed method.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

To combine the different types of information provided by dif-
erent information sources, some new and interesting mathemat-
cal theories are gradually formed. These include rough sets [1–3],
empster–Shafer (DS) evidence theory [4–6], D number [7–9],
number [10–12], and fuzzy sets theory [13–15], etc. In these

heories, the DS evidence theory has attracted great attention.
S evidence theory is a combinatorial uncertainty and imprecise
easoning theory proposed and developed by Dempster [16] and
hafer [17]. This theory, also known as belief function theory,
as been successfully utilized in different areas [18–22] and has
ecome the mainstream theory of information fusion [23–25]. In
anagement, DS evidence theory can provide a new way to solve

he problems such as lot-sizing decisions in supply chains and
nventory model [26–31], and evaluation of the sustainable trans-
ortation system [32,33]. The interested authors can employ the
S evidence theory for performance measurement of inventory
nd supply chain systems [34–38]. Moreover, DS evidence theory
an effectively handle uncertain and imprecise information to
chieve decision support [39,40].
In the DS evidence theory, the basic probability assignment

BPA) of multi-subset focal elements can express uncertain infor-
ation directly. Due to the uncertainty, it is difficult to make a
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decision directly based on the BPA. How to make a reasonable
decision through the BPA is an issue that must be solved. A
simple and effective approach is to transform the BPA into a
decision probability [41] to deal with the uncertain information
contained in multi-subset focal elements. The BPA of multi-subset
focal elements can reflect the support degree for the singleton,
which can be quantified by decision probability transformation.
If we can put forward a reasonable method to transform the
BPA into a decision probability, and make use of the mature
probabilistic decision model, it is of great significance for the
system to get a correct decision analysis. Many researchers have
investigated the evidence theory model, and proposed many deci-
sion probability transformation methods [42–44]. Smets [45] first
presented a transferable belief model, and applying the Pignistic
probability transformation method to transform the BPA of multi-
subset focal elements into a decision probability. The Pignistic
probability transformation method has aroused great interest
and broadly utilized in various fields [46–48]. Unfortunately, the
Pignistic probability transformation method assigns the BPA of
multi-subset focal elements to the singleton by employing av-
erage allocation, which is too conservative and sometimes fails
to yield reasonable decision probability. Sudano [49] proposed
several transformation methods in the framework of DS evi-
dence theory for approximating any quantitative BPA by the
subjective probability. Pan and Deng [50] presented a decision

probability transformation method by combining the ordered
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eighted averaging with entropy difference. However, the trans-
ormation method cannot make reasonable allocation when a cer-
ain singleton is not contained in the multi-subset focal elements.
rom a geometric interpretation of Dempster’s combination rule,
uzzolin [51] defined a new decision probability transformation
ethod in the framework of DS evidence theory. This method
ssigns the BPA of multi-subset focal elements in terms of the un-
ertainty proportion of the singleton. However, when there is no
ntersection between singleton and multi-subset focal elements,
he proposed method will get unreasonable assignment results.
ezert and Smarandache [52,53] put forward a novel generalized
ignistic probability transformation method in the framework
f Dezert–Smarandache Theory (DSmT). This approach considers
oth the belief values and the cardinality of elements in the pro-
ess of the proportional redistribution. Since the transformation
erformance of the method varies with parameter ε, however, it

is difficult to determine the value of parameter ε in the practical
application.

To overcome the defects of these methods, we develop a novel
decision probability transformation method. The new decision
probability transformation method considers the transformation
of BPA for multi-subset focal elements from the perspective of
the belief interval. The data information contained in the belief
interval of the singleton can reflect the degree of support for the
singleton by other multi-subset focal elements. In our work, we
use the continuous interval argument ordered weighted average
(C-OWA) operator to quantify the data information about the
belief interval of each singleton. Then, we propose a method to
calculate the support degree of the singleton based on quanti-
tative data information. According to the support degree of the
singleton, the BPA of multi-subset focal elements is allocated
reasonably. Besides, we also introduce the concepts of proba-
bilistic information content (PIC) in our work. Afterward, the PIC
criterion is applied to evaluate the performance of the decision
probability transformation method. The new decision probability
transformation method can overcome the defects of the tradi-
tional methods, and obtain more reasonable and precise decision
probability. Finally, several numerical examples and a practical
application are given to illustrate the rationality and accuracy of
our method.

This article is composed as follows. Some basics knowledge
about DS evidence theory is briefly depicted in Section 2. Sec-
tion 3 reviews some traditional decision probability transfor-
mation methods. A novel decision probability transformation
method based on the belief interval is presented, and some prop-
erties of the new decision probability transformation method are
proved in Section 4. Section 5 introduces the related concepts of
probabilistic information content. Section 6 gives a few numerical
examples to demonstrate the rationality and accuracy of our
proposed method. A practical application of our proposed method
is described in Section 7. Section 8 summarizes and analyzes this
paper.

2. Basics of Dempster–Shafer evidence theory

DS evidence theory can handle the uncertain information
caused by the randomness and fuzziness of the objective in-
formation. Compared with the traditional uncertainty reasoning
method, DS evidence theory can effectively distinguish unknown
and uncertain information, decrease the redundancy of informa-
tion, and improve the certainty of decision-making. The proposal
of DS evidence theory provides a practical mathematical tool for
the field of decision analysis and artificial intelligence, which can
realize the representation and combination of uncertain infor-
mation, and has great advantages in modeling uncertain infor-
mation [54–56]. In this chapter, some basics knowledge of DS
evidence theory is briefly introduced.
2

The theory of belief function is constructed on the complete
set Θ composed of finite mutually exclusive elements. We call
Θ = {F1, F2, . . . , FN} the frame of discernment (FOD), which
contains all possible results of the considered problem. The set
of propositions formed by all subsets in Θ is called the power
set, denoted as 2Θ . The power set 2Θ of Θ is described as:

2Θ
= {∅, F1, F2, . . . , FN , {F1, F2}, . . . , {F1, F2, F3}, . . . , Θ} (1)

where ∅ denotes the empty set.
Under the Shafer’s model, the basic probability assignment

(BPA) of any proposition C on the FOD Θ is described as a
mapping of its power set 2Θ from 0 to 1, namely,m : 2Θ

→ [0, 1],
which meets as follows:∑
C∈2Θ

m(C) = 1, m(∅) = 0 (2)

m(C) is the basic probability assignment of the proposition
C , which indicates the support degree of the evidence m to the
proposition C . ∀C ⊆ Θ , if m(C) > 0, C is a focal element of the
evidence m.

In the FOD Θ , Shafer defines the belief function and plausibil-
ity function of C ⊆ Θ as follows:

Bel(C) =

∑
D∈2Θ ,D⊆C

m(D) (3)

Pl(C) =

∑
D∈2Θ ,D∩C ̸=∅

m(D) = 1 − Bel(C̄) (4)

Bel(C) characterizes the total degree of belief in proposition C ,
and constitutes the lower bound of the probability distribution of
proposition C . Pl(C) denotes the degree to which proposition C is
not opposed, and constitutes the upper bound of the probability
distribution of proposition C .

From the above definition, we know that Bel(C) ≤ Pl(C).
[Bel(C), Pl(C)] is the belief interval of the proposition C . The
longer the length of the belief interval, the greater the uncer-
tainty of the corresponding proposition. DS evidence theory de-
scribes the uncertain information through the belief interval,
which can solve the problem that traditional probability theory
cannot effectively deal with the uncertain information.

In the DS evidence theory, Dempster’s combination rule is
utilized to combine the multiple sources of evidence. Dempster’s
combination rule is defined as follows.

m(C) =

{
0 C = ∅

1
1−k

∑
Ci∩Cj=C m1(Ci)m2(Cj) C ̸= ∅

(5)

=

∑
Ci∩Cj=∅

m1(Ci)m2(Cj)

here k is the conflict coefficient.

. Decision probability transformation method

In the DS evidence theory, the BPA can express and process
ncertain information effectively. When using BPA to describe the
ncertain information of multi-element propositions, it is difficult
or us to get accurate decision results through the BPA. How to
ake an effective decision through the BPA is still a problem to be
olved. All along, many researchers have studied the probability
ransformation methods. A simple and intuitive idea is to trans-
orm the BPA into a probability function for decision-making.
n this section, we briefly introduce several common probability
ransformation methods.

1) Pignistic probability transformation



Z. Deng and J. Wang Knowledge-Based Systems 208 (2020) 106427

t

i

D

t
t

To solve the decision-making problem under uncertainty situ-
ation, Smets [45] presented the Pignistic probability transforma-
tion method in the transferable belief model, denoted as BetP . In
the FOD Θ , the definition of the Pignistic probability transforma-
tion method is described below.

BetP(C) =

∑
D∈2Θ ,D̸=∅

|C ∩ D|

|D|

m(D)
1 − m(∅)

(6)

where 2Θ is the power set of the FOD Θ , |D| is the cardinality of
set D.

The Pignistic probability transformation method does not take
full advantage of the known information, and directly transforms
the BPA of multi-element propositions into the single element
proposition by means of equal distribution. This transformation
method is conservative, which is not beneficial to making a
correct decisions.

(2) Sudano’s probability transformation method
In the framework of DS evidence theory, Sudano [49] proposed

several decision probability transformation methods by using
belief function and plausibility function. These methods apply
the mapping proportional to the plausibility(PrPl), the mapping
proportional to the belief(PrBel), the mapping proportional to
the normalized plausibility(PrNPl), and the mapping proportional
to all plausibilities(PraPl), respectively. The definitions of these
approaches are depicted below:

The PrPl transformation method is defined as follows:

PrPl(C) = Pl(C) ·

∑
D∈2Θ ,C⊆D

1∑
Di∈2Θ ,|Di |=1

∪iDi=D
Pl(Di)

m(D) (7)

The PrBel transformation method is shown below:

PrBel(C) = Bel(C) ·

∑
D∈2Θ ,C⊆D

1∑
Di∈2Θ ,|Di |=1

∪iDi=D
Bel(Di)

m(D) (8)

The PrNPl transformation method is denoted as follows:

PrNPl(C) =
Pl(C)∑

D∈2Θ Pl(D)
(9)

The PraPl transformation method is described as follows:

PraPl(C) = Bel(C) + ε · Pl(C) (10)

ε =
1 −

∑
C∈2Θ Bel(C)∑

C∈2Θ Pl(C)

(3) Cuzzolin’s probability transformation method
From the geometric significance of Dempster’s combination

rule, Cuzzolin [51] presented a new probability transformation
method in the framework of DS evidence theory. This method
processes the BPA of multi-element propositions through the
uncertainty proportion, and proportionally repartition the non-
specific mass to the singleton. The definition of Cuzzolin’s prob-
ability(CuzzP) transformation method is described as follows:

In the FOD Θ = {F1, F2, . . . , Fn}, Cuzzolin’s probability trans-
formation method is defined as follows:

CuzzP(Fi) = m(Fi) +
∆(Fi)∑n
j=1 ∆(Fj)

× TNSM (11)

where ∆(Fi) = Pl(Fi) − m(Fi) and

TNSM = 1 −

n∑
j=1

m(Fj) =

∑
F∈2Θ ,|F |>1

m(F ) (12)

However, Cuzzolin’s probability transformation method has
some limitations. When Fi ∈ Θ, Fi ∩ F = ∅, the uncertain
information contained in the TNSM will also be assigned to the
3

singleton Fi. This distribution is not reasonable and does not make
sense in our point of view. Furthermore, it is easy to see from
the definition of CuzzP that when the belief value of the evidence
m is a probability distribution, there is no definition of CuzzP in
he mathematical sense. Because in this case all ∆(∗) equals 0,
and we will get 0/0 indetermination, which is meaningless from
a mathematical point of view.

(4) DSmP probability transformation method
In the theoretical framework of DSmT [52], Dezert and

Smarandache [53] proposed a novel generalized Pignistic prob-
ability transformation method, represented as DSmP , which is
defined as follows.

Let Θ be the FOD in the given model, the definition of DSmP
s described as follows:

SmP(C) =

∑
D∈GΘ

∑
B⊆C∩D,|B|=1 m(B) + ε · |C ∩ D|∑

B⊆D,|B|=1 m(B) + ε · |D|
· m(D) (13)

where ε ≥ 0 is a adjustment parameter. GΘ is the corresponding
hyper power set, which includes all the integrity restrains of the
DSmT theoretical framework.

This method uses the parameter ε to combine the Pignis-
tic probability transformation method with the proportional be-
lief transformation method. However, parameter ε is not easily
determined in the practical application.

4. A new decision probability transformation method

In the DS evidence theory, the BPA can effectively represent
the uncertain information of multi-subset focal elements. Due to
the uncertain of the focal element, it is sometimes impossible to
make a decision through the BPA in practical application. There-
fore, the BPA needs to be transformed into a decision probability.
The mapping from the belief function to the probability domain
is a controversial problem. How to transform the BPA into a
decision probability accurately is still a hot topic. In our work, a
novel decision probability transformation approach is presented
to consider the transformation of BPA from the perspective of
the belief interval. The continuous interval argument ordered
weighted average(C-OWA) operator is utilized to quantify the
data information about the belief interval of each singleton, and
then using the preference degree of the singleton to modify the
quantitative data information, so as to obtain the support degree
of the singleton. According to the support degree of the singleton,
the BPA of multi-subset focal elements is reasonably distributed.

4.1. A new measure for the singleton support degree

In the DS evidence theory, the data information contained in
the belief interval can reflect the support degree of the multi-
subset focal elements to the singleton. To quantify the data in-
formation contained in the belief interval, the C-OWA operator
is introduced in our work. According to the belief interval of the
singleton, the support degree of the singleton is calculated by us-
ing the C-OWA operator. We first review some basics knowledge
of the interval number and C-OWA operator.

4.1.1. Some properties of interval number
In this chapter, we first introduce some properties of interval

numbers.
Assuming that F = [f L, f U ] = {x|f L ≤ x ≤ f U }, then F is called

he nonnegative interval number [57]. Note that, we only discuss
he nonnegative interval numbers in this article.

Suppose F1 = [f L1 , f U1 ] and F2 = [f L2 , f U2 ] are two interval
numbers, and l = f U − f L and l = f U − f L are the length of
1 1 1 2 2 2
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wo intervals, respectively. Then the possibility degree of F1 ≥ F2
s defined as follows [57]:

(F1 ≥ F2) = max
{
1 − max

(
f U2 − f L1
l1 + l2

, 0
)

, 0
}

(14)

Similarly, the possibility degree of F2 ≥ F1 can be defined as
ollows:

(F2 ≥ F1) = max
{
1 − max

(
f U1 − f L2
l1 + l2

, 0
)

, 0
}

(15)

As can be seen from the above definition:

1. 0 ≤ p(F1 ≥ F2) ≤ 1, 0 ≤ p(F2 ≥ F1) ≤ 1
2. p(F1 ≥ F2) + p(F2 ≥ F1) = 1
3. p(F1 ≥ F1) = p(F2 ≥ F2) =

1
2

For convenience, we set pij = p(Fi ≥ Fj)(i, j = 1, 2, . . . , n).
Assuming that there are n interval numbers, we use Eq. (14) to
calculate the possibility degree between each interval number Fi
and all interval number Fj. Then construct the possibility degree
matrix P = (pij)n×n. Where pij ≥ 0, pij + pji = 1, pii = 0.5.

4.1.2. C-OWA operator
In the process of handling continuous interval data, Yager [58,

59] firstly proposed the C-OWA operator for processing the con-
tinuous data information, and applying the C-OWA operator to
integrate the continuous interval data. The definition of C-OWA
operator is described as follows:

For any interval number [a, b], if satisfied

fs([a, b]) =

∫ 1

0

ds(x)
dx

(b − x(b − a)) dx (16)

here function s(x) satisfies the following properties:

1. s(0) = 0
2. s(1) = 1
3. if x > y, then s(x) ≥ s(y)

hen f is called the C-OWA operator, s(x) is the basic unit-interval
onotonic (BUM).
The C-OWA operator has the following properties:
For any BUM function s(x), there exists

a ≤ fs([a, b]) ≤ b

If get s(x) = xr (r ≥ 0), then the C-OWA operator can be
expressed as follows:

fs([a, b]) =
b + ar
r + 1

(17)

The C-OWA operator can quantify the interval data informa-
ion. Based on this, the C-OWA operator is utilized to quantify the
ata information contained in the belief interval.

.1.3. Singleton support degree measurement based on C-OWA op-
rator
The interval number can effectively express the uncertain in-

ormation, and the belief interval can represent the uncertainty of
he given evidence in DS evidence theory. In terms of uncertainty
epresentation, interval numbers and belief intervals have the
ame form. Therefore, we can generalize the properties of interval
umbers to belief intervals, and use these properties to handle
he information contained in the belief intervals. According to
he characteristics of belief interval data, the C-OWA operator
s applied to quantify the belief interval data information of the
ingleton in our work. Then, calculating the preference degree
f the singleton based on the related properties of the interval
umber. Afterward, using the preference degree of the singleton
4

to modify the quantized data information of the belief interval,
so as to obtain the support degree of the singleton. The process
of measuring the support degree of the singleton is described as
follows.

The C-OWA operator is utilized to integrate the belief interval
data to get the quantized information about the belief interval.
The definition of the belief interval data quantization method
based on the C-OWA operator is depicted as follows:

Let [Bel(Ai), Pl(Ai)] be the belief interval of the focal element
Ai. Using the C-OWA operator to quantify the belief interval data
information of the focal element, the definition is described as
follows:

fs ([Bel(Ai), Pl(Ai)]) =

∫ 1

0

ds(x)
dx

(Pl(Ai) − x (Pl(Ai) − Bel(Ai))) dx

(18)

In this paper, the BUM function is taken as s(x) = xr , then

s ([Bel(Ai), Pl(Ai)]) =
Pl(Ai) + Bel(Ai) · r

r + 1
(19)

Hence, the quantization information of the belief interval data
for the focal element Ai is expressed as

βi =
Pl(Ai) + Bel(Ai) · r

r + 1
(20)

i represents the quantitative data information of the focal ele-
ent Ai. In order to calculate the quantitative data information of

he singleton more effectively, we take r = 2|Θ|.
Since the belief interval contains uncertainty information, it is

ecessary to evaluate the support degree for the belief interval
f the singleton to obtain more accurate quantitative data infor-
ation about the belief interval. The calculation method for the
upport degree of the singleton is given below.
In the given FOD Θ = {A1, A2, . . . , An}, suppose the belief

nterval of the focal element Ai is [Bel(Ai), Pl(Ai)], (i = 1, 2, . . . , n),
nd the belief interval of the focal element Aj is [Bel(Aj), Pl(Aj)],
j = 1, 2, . . . , n), the possibility degree p(Ai ≥ Aj) is calculated
y using Eq. (14). For the evidence containing n singletons, the
ossibility degree matrix P between the belief intervals of n
ingletons is constructed by utilizing the properties of interval
umbers, as shown below.

=

⎡⎢⎢⎣
0.5 p12 · · · p1n
p21 0.5 · · · p2n
...

... · · ·
...

pn1 pn2 · · · 0.5

⎤⎥⎥⎦ (21)

Based on the possibility degree matrix P , the preference de-
ree p of the singleton Ai is defined as follows.

(Ai) =
1

n − 1

n∑
j=1,j̸=i

pij i = 1, 2, . . . , n (22)

Using the preference degree to modify the quantized belief
interval data information, we can obtain the support degree of
the singleton Ai. The support degree of the singleton Ai is defined
as follows:

Sup(Ai) = p(Ai) × βi (23)

The support degree of the singleton can reflect the support
degree of other multi-subset focal elements to the singleton. The
higher the support degree of the singleton, the more belief values
should be allocated to that focal element. Based on this idea, we
develop a novel decision probability transformation method.
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Fig. 1. The implementation process of our proposed method.
[

[

4.2. A new decision probability transformation based on the support
degree of the singleton

In the DS evidence theory, the belief interval of the singleton
is composed of the belief function and plausibility function of
the proposition. Therefore, the belief interval of the singleton
can contain all the data information of the singleton. Based on
this idea, we define the new decision probability transformation
method as follows:

Assuming that B is the multi-subset focal elements in the FOD
Θ = {A1, A2, . . . , An}, the new decision probability transforma-
tion method is depicted as follows:

ITP(Ai) = m(Ai) +

∑
Ai⊂B∈2Θ

εAi · m(B) (24)

εAi =
Sup(Ai)∑

|B|
j=1,Ai⊂B∈2Θ Sup(Aj)

where Sup(Ai) is the support degree of the singleton Ai, |B| is the
cardinality of set B. The new decision probability transformation
method is denoted as ITP . The implementation process of our
proposed method is presented in Fig. 1.

ITP can realize the transition from BPA to decision proba-
bility, which is convenient for decision making in an uncertain
environment, and can obtain reasonable decision probability.

Daniel defines the decision probability transformation func-
tion PT (∗) in Ref. [44]. According to Daniel’s definition, the ra-
tionality of the new decision probability transformation method
is verified.

Theorem 1. PT (∗) needs to satisfy the consistency of the upper and
lower boundaries, namely Bel(Ai) ≤ PT (Ai) ≤ Pl(Ai)

roof. ITP(Ai) = m(Ai) +
∑

Ai⊂B∈2Θ εAi · m(B)
Because Sup(Ai) ≥ 0
Then εAi ≥ 0
Therefore ITP(Ai) ≥ m(Ai) = Bel(Ai)
Due to εAi ≤ 1
Thus
ITP(Ai) = m(Ai)+

∑
Ai⊂B∈2Θ εAi ·m(B) ≤ m(Ai)+

∑
Ai⊂B∈2Θ m(B)

= Pl(Ai)
Hence Bel(Ai) ≤ ITP(Ai) ≤ Pl(Ai)
5

Theorem 2. For the permutation function R : Θ → Θ∗ in the
FOD Θ , PT (∗) requires to be satisfied PT ∗(R(Ai)) = PT (Ai). That
is, the decision probability of the focal element after the action of
permutation function remains unchanged.

Proof. Because R is the permutation function of Θ → Θ∗

Therefore, we can obtain R(Ai) = Ai
Thus, the BPA for R(Ai) is m∗(R(Ai)) = m(Ai)
Hence

ITP∗(R(Ai)) = m∗(R(Ai)) +

∑
Ai⊂B∈2Θ

εAi · m(B)

= m(Ai) +

∑
Ai⊂B∈2Θ

εAi · m(B) = ITP(Ai)

As can be seen from the above proof that the new decision
probability transformation method meets the definition of deci-
sion probability transformation function given by Daniel, and is a
reasonable decision probability transformation method. We give
an example to illustrate the calculation process of the ITP .

Example 1. Let m be a BPA defined on the FOD Θ = {x1, x2}, and
the BPA is described below:

m(x1) = 0.2 m(x2) = 0.1 m({x1, x2}) = 0.7

Applying the ITP to calculate the probability distribution of
each singleton.

The belief interval of the singleton x1 is [Bel(x1), Pl(x1)] =

0.2, 0.9]
The belief interval of the singleton x2 is [Bel(x2), Pl(x2)] =

0.1, 0.8]
According to Eq. (20), we can get the quantitative data infor-

mation of each singleton as follows:

β1 = 0.34 β2 = 0.24

Compute the preference degree of each singleton by using
Eqs. (14) and (22), the results are as follows:

p(x1) = 0.5714 p(x2) = 0.4286

According to Eq. (23), the support degree of each singleton is
achieved, which is shown as follows:

Sup(x ) = 0.1943 Sup(x ) = 0.1029
1 2
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Using Eq. (24) to compute the decision probability of each
singleton.

ITP(x1) = 0.2 +
Sup(x1)

Sup(x1) + Sup(x2)
× m({x1, x2}) = 0.6576

ITP(x2) = 0.1 +
Sup(x2)

Sup(x1) + Sup(x2)
× m({x1, x2}) = 0.3424

In Example 1, since the belief value of the focal element x1 is
greater than that of the focal element x2, the support degree of the
focal element x1 for multi-subset focal elements {x1, x2} is greater
than that of the focal element x2. Focal element {x1, x2} should
assign more belief values to the focal element x1. According to
the calculation results, we find that the results obtained by the
ITP approach accord with intuitive judgment.

4.3. Advantages of ITP

Applying the Pignistic probability transformation method to
calculate the probability distribution of each focal element in
Example 1. We can obtain the result as follows:

Bet(x1) = 0.55 Bet(x2) = 0.45

By comparison, it can be seen that our proposed method is
more reasonable to allocate the belief value of multi-subset focal
elements. ITP takes into account the belief function and plausibil-
ity function of the singleton, which can accurately redistribute the
BPA of multi-subset focal elements to the singleton, and the de-
cision result is more reasonable, low computational complexity,
and convenient decision-making in an uncertain environment.
Moreover, ITP overcomes the shortcomings of the traditional
methods and can achieve reasonable decision results in different
situations. In Section 6, we further illustrate the rational and
effectiveness of the ITP through several examples.

5. Evaluation criteria for decision probability transformation
method

In the process of decision probability transformation, we hope
to contain more information content in the decision probability
distribution after transformation, to facilitate making the correct
decision. For measuring the information content in the trans-
formed decision probability, we introduce the concepts of prob-
abilistic information content (PIC) criterion in this paper. PIC
criterion is utilized to quantify the information content of the
transformed decision probability. Afterward, the PIC criterion is
employed to evaluate the performance of each transformation
method in our analysis. The larger the PIC value is, the more
information content is included in the transformed decision prob-
ability, and the more accurate decision is made. Accordingly,
the performance of the transformation method is stronger. To
compare the performance of various transformation methods, we
adopt the PIC criterion as an index to evaluate the performance
of the transformation method. In Section 6, we give a detailed
discussion. We first review the content for Shannon entropy.

5.1. Shannon Entropy

Entropy is a measure of uncertainty. For the first time, Shan-
non [60] introduced the concepts of entropy into the field of
information theory, and defined the expression form for entropy
in discrete finite sets.

Assuming that a probability distribution on random variable
X = {x1, x2, . . . , xn} is P = {p(x1), p(x2), . . . , p(xn)}, then the
Shannon entropy of the random variable X is defined as follows:

H(X) = −

n∑
p(xi)logb(p(xi)) (25)
i=1

6

In this paper, we take b = 2. Information entropy can measure
the uncertainty for the random variable X . When the random
variable X is uniformly distributed, i.e. p = 1/n, at this time,
the random variable X has the maximum entropy. The maximum
entropy is described as follows:

Hmax(X) = −

n∑
i=1

1
n
log2

(
1
n

)
= log2(n) (26)

The greater the information entropy is, the higher the degree
of uncertainty for the random variable X is, at this time, it is not
conducive to making a decision.

5.2. Probabilistic information content

In Ref. [61], Sudano proposed to use the probabilistic informa-
tion content (PIC) criterion to evaluate the performance of various
decision probability transformation methods. PIC criterion is an
important evaluation index in the decision-making system. In the
discrete probability distribution, the PIC criterion is defined as
follows.

Suppose a probability distribution on random variable X =

x1, x2, . . . , xn} is P = {p(x1), p(x2), . . . , p(xn)}, then the PIC cri-
terion for the random variable X is defined as follows [61]:

PIC(X) = 1 +
1

Hmax(X)

(
n∑

i=1

p(xi)log2(p(xi))

)
(27)

The PIC criterion is the normalized Shannon entropy dual,
which can effectively quantify the probabilistic information con-
tent for the random variable X . The value range of the PIC cri-
terion is [0,1]. A PIC value of one indicates that the information
content in the probability distribution is completely determined,
and there is no interference of uncertain information when mak-
ing decisions. A PIC value of zero means no information can
be utilized to make the right decision. In our work, we eval-
uate the performance of the decision probability transforma-
tion method by calculating the PIC criterion of the transformed
decision probability.

6. Experiments and comparisons

In this chapter, the following examples are from [53], which
are given to verify the rationality and accuracy of the ITP and
compared it to the existing probability transformation methods.
The PIC criterion is used to evaluate the performances of various
probability transformation methods.

Example 2. Suppose there is a FOD Θ = {a, b} in the Shafer’s
model. m is a BPA defined on Θ , and the BPA is depicted as
follows:

m(a) = 0.3 m(b) = 0.1 m({a, b}) = 0.6

Sudano’s probability transformation, Pignistic probability
transformation, Cuzzolin’s probability transformation, DSmP
method, and ITP are employed to calculate the decision prob-
ability of the evidence m, respectively. The PIC values of each
probability transformation method are calculated separately to
evaluate the performance of different probability transformation
methods. The results of the decision probability are presented in
Table 1, and the evaluation results of each method are shown in
Fig. 2.

Since the parameter ε in the DSmP method is difficult to
determine, we take ε = 0.5 in this article. As shown in Table 1,
among all decision probability transformation methods, the deci-
sion probability obtained by focal element a is the largest, which



Z. Deng and J. Wang Knowledge-Based Systems 208 (2020) 106427
Table 1
Comparison results in example 2.

a b PIC(∗)

PrNPl 0.5625 0.4375 0.0113
BetP 0.6 0.4 0.0291
CuzzP 0.6 0.4 0.0291
PraPl 0.6375 0.3625 0.0553
PrPl 0.6375 0.3625 0.0553
DSmP 0.6429 0.3571 0.0598
PrBel 0.75 0.25 0.1887
ITP 0.7754 0.2246 0.2315

Table 2
Comparison results in example 3.

a b c PIC(∗)

PrNPl 0.1112 0.4444 0.4444 0.1216
BetP 0.2 0.4 0.4 0.0398
PrPl 0.2 0.4 0.4 0.0398
PrBel 0.2 NaNa NaN NaN
CuzzP 0.2 0.4 0.4 0.0398
DSmP 0.2 0.4 0.4 0.0398
ITP 0.2 0.4 0.4 0.0398
PraPl 0.2890 0.3555 0.3555 0.0041

aRepresents not a number. Replace with 0 when drawing.

Fig. 2. The PIC values for each decision probability transformation method in
Example 2.

is consistent with the intuitive analysis. This shows that our
proposed method is reasonable. We note that the decision proba-
bility of the focal element a obtained by our proposed method is
greater than that of other methods. Moreover, Fig. 2 shows that
the PIC value obtained with ITP is greater than other probabil-
ity transformation methods. This indicates that the transformed
probability distribution generated by our proposed method can
accurately reflect the information of the BPA, and effectively
carry out the decision probability transformation. In this example,
although the PrBel method can get relatively ideal results, there
are some limitations of the PrBelmethod, which will be illustrated
in the following examples.

Example 3. Let us consider the FOD Θ = {a, b, c} with Shafer’s
model, a BPA defined on Θ is described as m(a) = 0.2 m({b, c}) =

0.8. Several decision probability transformation methods men-
tioned in this article are used to compute the decision probability
of the evidence m, the results are described in Table 2, and the PIC
values of different methods are presented in Fig. 3.
7

Fig. 3. The PIC values for each decision probability transformation method in
Example 3.

In this example, the multi-subset focal elements do not con-
tain the information of the singleton a, hence the belief value
of the focal element a is unchanged when assigning the BPA
of multi-subset focal elements {b, c}. Since the belief values of
focal elements b and c are vacuous, the BPA of multi-subset focal
elements {b, c} cannot be reasonably allocated according to the
existing information. The most conservative allocation is equal
distribution. As can be seen from Table 2, in the results obtained
by the PrNPl transformation method, the decision probability of
the focal element a decreases (0.1112 < 0.2), which is un-
reasonable. The decision probability of the singleton should be
greater than or equal to the belief value of that singleton. In the
process of decision probability transformation, the decrease of
belief value for the singleton signifies that there has informa-
tion loss in the process of transformation, which is abnormal.
In Fig. 3, although the PrNPl method has the largest PIC value,
its probability transformation results are not satisfactory. PrBel
method cannot effectively distribute the BPA of multi-subset
focal elements {b, c}, because the decision probabilities of focal
elements b and c are mathematically undefined. We can note
that when the belief value of the singleton is vacuous, the PrBel
method cannot reasonably allocate the BPA of multi-subset focal
elements containing this singleton. Because of this limitation,
the PrBel method cannot be extended to practical applications.
It is interesting to note that the decision probability of the focal
element a is increased in the results of the PraPl method, which is
also obviously contradictory to the intuitive analysis. Such results
are invalid. Because in multi-subset focal elements, there is no
information about the focal element a. One sees that ITP coincides
with other traditional methods and achieves reasonable results in
this special case. This is an excellent illustration of the correctness
of our theoretical work.

Example 4. In the given FOD Θ = {a, b}, one of the BPA definition
in Θ is described below:

m(a) = 0.4 m({a, b}) = 0.6

Sudano’s probability transformation, Pignistic probability
transformation, Cuzzolin’s probability transformation, DSmP
method, and ITP are utilized to calculate the decision probability
of the evidence m, respectively. The results of decision probability
and their corresponding PIC values are displayed in Table 3 and
Fig. 4.
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Table 3
Comparison results in example 4.

a b PIC(∗)

PrNPl 0.6250 0.3750 0.0456
BetP 0.7 0.3 0.1187
CuzzP 0.7 0.3 0.1187
PrPl 0.7750 0.2250 0.2308
PraPl 0.7750 0.2250 0.2308
DSmP 0.7857 0.2143 0.2504
ITP 0.9735 0.0265 0.8235
PrBel 1 NaN NaN

Table 4
Comparison results in example 5.

a b c PIC(∗)

PrNPl 0.3043 0.3913 0.3044 0.0067
PrPl 0.3093 0.4377 0.2530 0.0240
BetP 0.3333 0.3833 0.2834 0.0068
CuzzP 0.3455 0.3681 0.2864 0.0050
DSmP 0.3591 0.3659 0.2750 0.0073
PraPl 0.3739 0.3522 0.2739 0.0077
ITP 0.4140 0.3885 0.1975 0.0418
PrBel 0.7 NaN NaN NaN

Fig. 4. The PIC values for each decision probability transformation method in
Example 4.

As shown in Table 3, PrBel method allocated all BPA of multi-
subset focal elements {a, b} to the focal element a, which is
obviously inconsistent with intuitive judgment. Since the multi-
subset focal elements {a, b} support the focal element b to some
extent, some belief values should be allocated to the focal ele-
ment b. The results allocated by the PrBel method are too opti-
mistic to be conducive for decision-making. Our proposed method
and other traditional methods can get reasonable results. We note
that the decision probability of the singleton a obtained by ITP
is greater than other traditional methods. Moreover, ITP gives
here the best results in terms of the PIC values with compare
to all other methods, which is shown in Fig. 4. This indicates
that our proposed method can extract more information from
the pre-transformation BPA, and make the decision probability
transformation accurately.

Example 5. Suppose there is an evidence m in the FOD Θ =

{a, b, c}, whose BPA is described as follows:

m(a) = 0.1 m({a, b}) = 0.2 m({b, c}) = 0.3 m({a, b, c}) = 0.4
8

Fig. 5. The PIC values for each decision probability transformation method in
Example 5.

Sudano’s probability transformation, Pignistic probability
transformation, Cuzzolin’s probability transformation, DSmP
method, and ITP are used to calculate the decision probability of
the evidence m, respectively. The results of the decision probabil-
ity are given in Table 4, and the values of the corresponding PIC
are presented in Fig. 5.

In the DS evidence theory, multi-subset focal elements are a
manifestation of the support for the singleton. As can be seen
from the BPA of the evidence m, the belief value of the focal
element b is vacuous, while the belief value of the singleton a is
not vacuous, therefore, the support degree of multi-subset focal
elements on singleton a should be greater than that on singleton
b. Hence, the transformed decision probability should be that the
singleton a is greater than the singleton b. As shown in Table 4,
both the PraPl method and the ITP method can obtain reasonable
transformation results. However, the decision probability of the
singleton a obtained by the ITP method is greater than that of
the PraPl method. It is shown that the probability transformation
results of the ITP method are more accurate. PrBel method cannot
achieve the decision probability of focal elements b and c through
he existing information, and the multi-subset focal elements
ontaining the singleton a distribute all the BPA to the singleton
, which is not fair nor intuitive. The decision probability of the
ingleton b obtained by other methods is the largest, which is
ifferent from the intuitive judgment. Fig. 5 shows that the ITP
ethod has the largest PIC value, which indicates that the ITP
ethod has the optimal probability transformation performance.
ompared with other methods, the decision probability of getting
ocal element a in our proposed method is the largest, which is
ore conducive to making the correct decision. When making
decision probability transformation, our proposed method is
ore accurate and reasonable.
By analyzing the above examples, we note that the ITP method

an be applied to any model, and the resulting decision probabil-
ty is more reasonable and accurate than the traditional method.
n some special evidence models, ITP method can overcome
he shortcomings of the traditional methods. Furthermore, ITP
ethod can precisely redistribute the BPA of multi-subset focal
lements based on the belief value of the singleton. Ergo, ITP
ethod is more efficient and applicable in decision probability

ransformation.
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Table 5
The BPAs of each sensor data.

T1 T2 T3 {T1, T2} {T1, T3} {T2, T3} Θ

m1 0.38 0.15 0.15 0.15 0.07 0.07 0.03
m2 0.30 0.40 0 0.30 0 0 0
m3 0.28 0.42 0 0.30 0 0 0
t

7. Practical application

The transformation for the basic probability assignment to the
ecision probability distribution is a very common apply in many
ields, such as pattern recognition [62,63], multi-criteria decision-
aking [64,65], etc. In these practical applications, probability

ransformation is helpful for people to make reasonable decisions.
n this section, we present a new conflicting evidence fusion
ethod based on the ITP approach, and apply it to the practical
roblem of target recognition to further validate the effectiveness
nd rationality of our proposed method.

.1. A new method for fusing the conflict evidence

According to the ITP method, we present a novel fusion
ethod for the conflict evidence. The main steps of the proposed
ethod are described below.

Step 1: Apply the evidence theory to model the data for each
sensor to obtain the BPA of each sensor.

Step 2: Use the ITP method to calculate the transformation prob-
ability of each evidence.

Step 3: Suppose there are k pieces of evidence on the frame
of discernment F = {F1, F2, . . . , Fn}. Using Eq. (28) to
calculate the inconsistency between the transformation
probabilities of each evidence, denoted as Dis(mi,mj)(i ̸=

j), which is described below.

Dis(mi,mj) =

√1 −

[∑n
s=1 ITPmi (Fs) · ITPmj (Fs)

∥ITPmi∥ · ∥ITPmj∥

]2

i, j = 1, 2, . . . , k (28)

Step 4: According to the inconsistency information, the similar-
ity between each evidence is calculated by employing
equation (29), denoted as Sim(mi,mj) (i ̸= j), which is
depicted as follows.

Sim(mi,mj) = 1 − Dis(mi,mj) i, j = 1, 2, . . . , k (29)

Step 5: According to the similarity between each evidence, the
credibility C(mi) of each evidence is computed by:

C(mi) =

k∑
j=1,j̸=i

Sim(mi,mj) i = 1, 2, . . . , k (30)

Step 6: On the basis of the credibility of the evidence, the weight
of the evidence is defined as follows.

ω(mi) =
C(mi)∑k
i=1 C(mi)

(31)

Step 7: On account of the weight of each evidence, the original
evidence is modified to obtain the weighted average
evidence AVE(m), which is described as follows.

AVE(m) =

k∑
i=1

ω(mi) × mi (32)

Step 8: The weighted average evidence is fused k − 1 times
by using Dempster’s combination rule to generate the
ultimate results.
9

Table 6
The decision probability distribution of each evidence.

T1 T2 T3
m1 0.6004 0.2157 0.1839
m2 0.3833 0.6167 0
m3 0.3403 0.6597 0

7.2. Target recognition problem

Assuming that there is a multi-sensor target recognition prob-
lem [66], the actual target type needs to be identified from three
known targets. The frame of discernment composed of the three
kinds of targets is T = {T1, T2, T3}. Three different types of sensors
are employed to detect the target. Each sensor provides data
information about the target type on the same FOD. The output
readings of each sensor are modeled as BPAs, which are presented
in Table 5.

In Table 5, evidence m1 has the highest support degree for the
target T1, while m2 and m3 have the maximum belief value for the
arget T2. Hence, we know that there is a high conflict betweenm1
and other two bodies of evidence, which will generate a negative
impact on the fusion process. Therefore, Dempster’s combination
rule cannot be directly utilized to fuse these evidence. According
to the intuitive judgment, the result should have the greatest
support degree for the target T2.

Using the ITP method to calculate the transformation prob-
ability of each evidence, and the results are shown in Table 6.

The new conflict evidence fusion method is applied to solve
the problem of target recognition, and the results are displayed
in Table 7.

From Table 7, it can be seen that the DS approach [16], Mar-
tin’s method [67], and Jiang’s method [68] almost get the same
decision result. They all have the maximum belief support for the
target T1, which contradicts the intuitive judgment. By contrast,
our proposed approach has the greatest support degree for the
target T2, which indicates that the results generated by our pro-
posed method are more rational. This simple example shows that
our proposed method is more reasonable and effective than other
methods.

7.3. Managerial implications

How to transform the BPA into a decision probability accu-
rately is an issue to be solved. The main intention of this paper is
to provide an efficient approach to realize the transformation of
BPA to decision probability to assist decision-makers in making
decisions. In the DS evidence theory, BPA can effectively express
and process uncertain information. However, it is difficult to
make decisions directly through the BPA. Therefore, we need
to transform the BPA into a decision probability. Some existing
methods cannot make full use of the known information, and
there is information loss in the transformation process. Moreover,
we found that in some special evidence models, the existing
methods will get unreasonable results. ITP method can overcome
these problems. By using ITP method to transform the BPA, we
can obtain precise decision probability. Furthermore, ITP method
makes full use of the known information of the focal elements



Z. Deng and J. Wang Knowledge-Based Systems 208 (2020) 106427

a
I

8

m
p
p
t
m
I
f
t

Table 7
Combination results for different fusion methods.

T1 T2 T3 {T1, T2} {T1, T3} {T2, T3} Θ Target

DS 0.502 0.458 0 0.040 0 0 0 T1
Martin 0.491 0.462 0 0.047 0 0 0 T1
Jiang 0.452 0.438 0.005 0.092 0.002 0.002 0.009 T1
Our results 0.416 0.538 0.001 0.045 0 0 0 T2
and considers the preference relation between the focal elements,
which can improve the accuracy of decision probability transfor-
mation. In different evidence models, ITP method can generate
ccurate decision results. In practical decision-making problems,
TP method is more reasonable and effective.

. Conclusion

When using BPA to describe the uncertain information of
ulti-elements proposition, we cannot give the accurate decision
robability. How to transfer the BPA into a decision probability
recisely is a problem that must be solved. In decision applica-
ions, it is necessary to use a better decision probability transfor-
ation method to assign the BPA of multi-elements proposition.

n view of the deficiencies of existing decision probability trans-
ormation methods, we developed a new decision probability
ransformation method based on the belief interval, called ITP .
ITP method considers the transformation of BPA from the per-
spective of the belief interval. First, applying the C-OWA operator
to quantify the data information about the belief interval of the
singleton. Then, we propose a method to compute the support
degree of the singleton based on quantitative data information.
Ultimately, according to the support degree of the singleton, the
BPA of multi-subset focal elements is allocated reasonably. We
also introduce the concepts of probabilistic information content
in our work, which is utilized to evaluate the performance of
the decision probability transformation method. Furthermore, ITP
method coincides with the BetP method when all belief values of
singletons included in ignorance are zero. We have clearly shown
through numerical examples that the ITP method can accurately
and reasonably transform the BPA into a decision probability, and
has the larger PIC values than other traditional methods. In future
work, we will further research the rationality of the ITP method,
and extend the method to practical engineering applications.
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