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Abstract The main purpose of this paper is using the elementary method to study the
asymptotic properties of the integer part of the k-th root positive integer, and
give two interesting asymptotic formulae.
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§1. Introduction And Results
For any positive integer n, let sk(n) denote the integer part of k-th root

of n. For example, sk(1) = 1, sk(2) = 1, sk(3) = 1, sk(4) = 1, · · ·,
sk(2k) = 2, sk(2k + 1) = 2, · · ·, sk(3k) = 3, · · ·. In problem 82 of [1], Pro-
fessor F.Smarandache asked us to study the properties of the sequence sk(n).
About this problem, some authors had studied it, and obtained some interest-
ing results. For instance, the authors [5] used the elementary method to study
the mean value properties of S(sk(n)), where Smarandache function S(n) is
defined as following:

S(n) = min{m : m ∈ N, n | m!}.

In this paper, we use elementary method to study the asymptotic properties
of this sequence in the following form:

∑
n≤x

ϕ(sk(n))
sk(n) and

∑
n≤x

1
ϕ(sk(n)) , where

x ≥ 1 be a real number, ϕ(n) be the Euler totient function, and give two
interesting asymptotic formulae. That is, we shall prove the following:

Theorem 1. For any real number x > 1 and any fixed positive integer
k > 1, we have the asymptotic formula

∑

n≤x

ϕ(sk(n))
sk(n)

=
6
π2

x + O
(
x1− 1

k
−ε

)
,

where ε is any real number.
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Theorem 2. For any real number x > 1 and any fixed positive integer
k > 1, we have the asymptotic formula

∑

n≤x

1
ϕ(sk(n))

=
kζ(2)ζ(3)

(k − 1)ζ(6)
x1− 1

k + A + O
(
x1− 2

k log x
)

,

where A = γ
∞∑

n=1

µ2(n)
nϕ(n) −

∞∑
n=1

µ2(n) log n
nϕ(n) .

§2. Proof of Theorems
In this section, we will complete the proof of Theorems. First we come to

prove Theorem 1. For any real number x > 1, let M be a fixed positive integer
with Mk ≤ x ≤ (M + 1)k, from the definition of sk(n) we have

∑

n≤x

ϕ(sk(n))
sk(n)

=
M∑

t=1

∑

(t−1)k≤n<tk

ϕ(sk(n))
sk(n)

+
∑

Mk≤n<x

ϕ(sk(n))
sk(n)

=
M−1∑

t=1

∑

tk≤n<(t+1)k

ϕ(sk(n))
sk(n)

+
∑

Mk≤n≤x

ϕ(M)
M

=
M−1∑

t=1

[(t + 1)k − tk]
ϕ(t)

t
+ O


 ∑

Mk≤n<(M+1)k

ϕ(M)
M




= k
M∑

t=1

tk−1 ϕ(t)
t

+ O
(
Mk−1−ε

)
, (1)

where we have used the estimate ϕ(n)
n ¿ n−ε.

Note that(see reference [3])

∑

n≤x

ϕ(n)
n

=
6
π2

x + O
(
(log x)

2
3 (log log x)

4
3

)
. (2)

Let B(y) =
∑
t≤y

ϕ(t)
t , then by Abel’s identity (see Theorem 4.2 of [2]) and

(2), we can easily deduce that

M∑

t=1

tk−1 ϕ(t)
t

= Mk−1B(M)−B(1)− (k − 1)
∫ M

1
yk−2B(y)dy

= Mk−1
(

6
π2

M + O
(
(log M)

2
3 (log log M)

4
3

))

− (k − 1)
∫ M

1
(yk−2

(
6
π2

y + O
(
(log y)

2
3 (log log y)

4
3

))
dy

=
6

kπ2
Mk + O

(
(log M)

2
3 (log log M)

4
3

)
. (3)
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Applying (1) and (3) we can obtain the asymptotic formula

∑

n≤x

ϕ(sk(n))
sk(n)

=
6
π2

Mk + O
(
Mk−1−ε

)
. (4)

On the other hand, note that the estimate

0 ≤ x−Mk < (M + 1)k −Mk ¿ x
k−1

k (5)

Now combining (4) and (5) we can immediately obtain the asymptotic for-
mula ∑

n≤x

ϕ(sk(n))
sk(n)

=
6
π2

x + O
(
x1− 1

k
−ε

)
.

This proves Theorem 1.
Similarly, note that(see reference [4])

∑

n≤x

1
ϕ(n)

=
ζ(2)ζ(3)

ζ(6)
log x + A + O

(
log x

x

)
,

where A = γ
∞∑

n=1

µ2(n)
nϕ(n)−

∞∑
n=1

µ2(n) log n
nϕ(n) . We can use the same method to obtain

the result of Theorem 2.
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