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Abstract

We introduce the concept of UP-hyperalgebras which
is a generalization of UP-algebras, and investigate some
related properties. Moreover, we introduce the con-
cepts of UP-hypersubalgebras, UP-hyperideals of types
1 and 2, and s-UP-hyperideals of types 1 and 2 in UP-
hyperalgebras and give some relations among these con-
cepts. We try to show that these concepts are indepen-
dent by some examples. Furthermore, the closed condi-
tion and the R-condition of a nonempty subset are dis-
cussed.
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A Title

1 Introduction

A type of the logical algebra, a UP-algebra was introduced by Iampan [8], and it is known that
the class of KU-algebras is a proper subclass of the class of UP-algebras. It has been studied
and examined by many researchers, for example, Romano [15, 16, 18] studied UP-ideals, proper
UP-filters, and some their decompositions in UP-algebras. Senapati et al. [20, 21] studies applied
cubic set and interval-valued intuitionistic fuzzy structure in UP-algebras. Ansari et al. [1, 2]
introduced the concept of graphs associated with commutative UP-algebras and the concept of
roughness in UP-algebras. Gomisong and Isla [7] established some structural properties of f -
UP-semigroups. Satirad and Iampan [19] introduced the concept of topological UP-algebras and
several types of subsets of topological UP-algebras. Hyperstructures have many applications to
several sectors of both pure and applied sciences. The concept of hyperstructures (called also
multialgebras) was introduced by Marty [12] in 1934. Now, the theory of algebraic hyperstructures
had become a well-established branch in algebraic theory, and had been widely applied in many
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branches of mathematics and applied sciences [5, 6, 26, 27, 28]. In 2000, Jun et al. [11] introduced
the concepts of hyper BCK-algebras, hyper BCK-ideals and weak hyper BCK-ideals, and studied
the relationship between hyper BCK-ideals and weak hyper BCK-ideals. Borzooei et al. [4]
introduced hyper K-algebras. In 2001, 2006, Zahedi et al. [23, 25] introduced and studied (weak)
hyper K-ideals, commutative hyper K-ideals and defined simple hyper K-algebras of order 3 and
quasi-commutative hyper K-algebras. In 2006, Jun et al. [10] studied hyper BCC-algebras, and
introduced the concept of hyper BCC-ideals and also analyzed the relationship between hyper
BCC-ideals and hyper BCK-ideals. Borzooei et al. [3] introduced the concepts of hyper BCC-
algebras and hyper BCC-ideals, and studied their relationship, and then they pointed out the open
problem about the relationship between hyper BCC-ideals of type 2 and weak hyper BCK-ideals.
Xin [24] introduced the concept of a hyper BCI-algebra which is a generalization of a BCI-algebra,
and investigated some related properties. Moreover, he introduced a hyper BCI-ideal, weak hyper
BCI-ideal, strong hyper BCI-ideal and reflexive hyper BCI-ideal in hyper BCI-algebras, and gave
some relations among these hyper BCI-ideals. In 2014, Radfar et al. [14] introduced the concept of
hyper BE-algebras and defined some types of hyper-filters in hyper BE-algebras. In 2017, Mostafa
et al. [13] introduced the concept of hyper KU-algebras and some types of hyper KU-algebras
are studied. Also, a homomorphism of hyper KU-algebras is obtained. In 2019, Romano [17]
introduced the concept of hyper UP-algebras and UP-hyperideals.

The goal of this paper is to generalize the concept of UP-algebras by considering the concept of
binary hyperoperations, define UP-hypersubalgebras, UP-hyperideals of types 1 and 2, and s-UP-
hyperideals of types 1 and 2 in this structure and describe the relationship between them. We try
to show that these concepts are independent by some examples. Furthermore, the closed condition
and the R-condition of a nonempty subset are discussed.

2 Preliminaries

Before we begin our study, we will give the definition and useful properties of UP-algebras.

Definition 2.1. [8] An algebra A = (A, ·, 0) of type (2, 0) is called a UP-algebra, where A is a
nonempty set, · is a binary operation on A, and 0 is a fixed element of A (i.e., a nullary operation)
if it satisfies the following axioms:

(UP-1) (∀x, y, z ∈ A)((y · z) · ((x · y) · (x · z)) = 0),

(UP-2) (∀x ∈ A)(0 · x = x),

(UP-3) (∀x ∈ A)(x · 0 = 0), and

(UP-4) (∀x, y ∈ A)(x · y = 0, y · x = 0 ⇒ x = y).

In a UP-algebra A = (A, ·, 0), the following assertions are valid (see [8, 9]).

(∀x ∈ A)(x · x = 0), (2.1)

(∀x, y, z ∈ A)(x · y = 0, y · z = 0 ⇒ x · z = 0), (2.2)

(∀x, y, z ∈ A)(x · y = 0 ⇒ (z · x) · (z · y) = 0), (2.3)

(∀x, y, z ∈ A)(x · y = 0 ⇒ (y · z) · (x · z) = 0), (2.4)

(∀x, y ∈ A)(x · (y · x) = 0), (2.5)

(2.6)



A note on UP-hyperalgebras 3

(∀x, y ∈ A)((y · x) · x = 0 ⇔ x = y · x), (2.7)

(∀x, y ∈ A)(x · (y · y) = 0), (2.8)

(∀a, x, y, z ∈ A)((x · (y · z)) · (x · ((a · y) · (a · z))) = 0), (2.9)

(∀a, x, y, z ∈ A)((((a · x) · (a · y)) · z) · ((x · y) · z) = 0), (2.10)

(∀x, y, z ∈ A)(((x · y) · z) · (y · z) = 0), (2.11)

(∀x, y, z ∈ A)(x · y = 0 ⇒ x · (z · y) = 0), (2.12)

(∀x, y, z ∈ A)(((x · y) · z) · (x · (y · z)) = 0), and (2.13)

(∀a, x, y, z ∈ A)(((x · y) · z) · (y · (a · z)) = 0). (2.14)

From [8], the binary relation ≤ on a UP-algebra A = (A, ·, 0) is defined as follows:

(∀x, y ∈ A)(x ≤ y ⇔ x · y = 0). (2.15)

In UP-algebras, 2 types of special subsets are defined as follows.

Definition 2.2. [8] A nonempty subset S of a UP-algebra A = (A, ·, 0) is called

(1) a UP-subalgebra of A if (∀x, y ∈ S)(x · y ∈ S).

(2) a UP-ideal of A if

(i) the constant 0 of A is in S, and

(ii) (∀x, y, z ∈ A)(x · (y · z) ∈ S, y ∈ S ⇒ x · z ∈ S).

Iampan [8] proved that the concept of UP-subalgebras is a generalization of UP-ideals.

3 UP-Hyperalgebras and UP-Hypersubalgebras

In this section, we introduce the concepts of UP-hyperalgebras and their UP-hypersubalgebras,
and investigate some properties.

Definition 3.1. [5] Let H be a nonempty set and P∗(H) be the family of all nonempty subsets of
H. Functions ◦iH : H × H → P∗(H), where i ∈ {1, 2, . . . , n} and n a positive number are called
binary hyperoperations on H. For all x, y ∈ H, ◦iH (x, y) is called the hyperproduct of x and y.
An algebraic system (H, ◦1H , ◦2H , . . . , ◦nH ) is called an n-algebraic hyperstructure and structure
(H, ◦H) endowed with only one binary hyperoperation is called a hypergroupoid. For any two
nonempty subsets A and B of hypergroupoid H and x ∈ H, we define their hyperproduct by

A ◦H B =
∪

a∈A,b∈B
a ◦H b, A ◦H x = A ◦H {x} and x ◦H B = {x} ◦H B.

Definition 3.2. A hyperstructure H = (H, ◦, 0) is called a UP-hyperalgebra, where H is a nonempty
set, ◦ is a binary hyperoperation on H, and 0 is a fixed element of H (i.e., a nullary operation) if
it satisfies the following axioms:

(UPh-1) (∀x, y, z ∈ H)(y ◦ z ≪ (x ◦ y) ◦ (x ◦ z)),

(UPh-2) (∀x ∈ H)(x ∈ 0 ◦ x),

(UPh-3) (∀x ∈ H)(x ≪ 0), and
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(UPh-4) (∀x, y ∈ H)(x ≪ y, y ≪ x ⇒ x = y),

where x ≪ y is defined by 0 ∈ x ◦ y for all x, y ∈ H and for every A,B ⊆ H,A ≪ B is defined by
for each a ∈ A, there exists b ∈ B such that a ≪ b. We shall use A ≪ x and x ≪ A instead of
A ≪ {x}, or {x} ≪ A, respectively.

Example 3.3. Let H = {0, 1, 2} be a set with a binary hyperoperation ◦ defined by the following
Cayley tables:

◦ 0 1 2

0 {0, 2} {1} {1, 2}
1 {0, 1} {1, 2} {0, 1}
2 {0, 2} {2} {0, 1, 2}

Then (H, ◦, 0) is a UP-hyperalgebra.

Theorem 3.4. Let X be a nonempty totally ordered set containing the minimum element 0. Define
a binary hyperoperation ◦X on X by

(∀x, y ∈ X)

(
x ◦X y =

{
{0, y} if x ≥ y,
{y} otherwise

)
.

Then (X, ◦X , 0) is a UP-hyperalgebra.

Proof. UPh-2: For all x ∈ X, 0 ◦X x is {0, x} or {x} and so x ∈ 0 ◦X x.
UPh-3: For all x ∈ X,x ◦X 0 = {0} and so x ≪ 0.
UPh-1: Let x, y, z ∈ X. If 0 ∈ (x ◦X y) ◦X (x ◦X z), then it follows from 3.2 that y ◦X z ≪

(x ◦X y) ◦X (x ◦X z). If 0 ̸∈ (x ◦X y) ◦X (x ◦X z), then 0 ̸∈ x ◦X z. Thus x ◦X z = {z} where z ̸= 0,
so (x ◦X y) ◦X (x ◦X z) = {z}. By the definition of ◦X , we have y ∈ x ◦X y and z ∈ x ◦X z. Thus
y ◦X z ⊆ (x ◦X y) ◦X (x ◦X z) = {z}, so y ◦X z = {z}. Since z ◦X z = {0, z}, we have z ≪ z and so
y ◦X z ≪ (x ◦X y) ◦X (x ◦X z).

UPh-4: Let x, y ∈ X be such that x ̸= y. Then we may assume that x < y. Then x◦X y = {y}.
Since 0 is the minimum element of X, we have y ̸= 0. Thus 0 ̸∈ x ◦X y, that is, x ̸≪ y.

Therefore, (X, ◦X , 0) is a UP-hyperalgebra.

Example 3.5. By Theorem 3.4, we have (N0, ◦N0 , 0) is a UP-hyperalgebra.

Theorems 3.6, 3.8, and 3.10 can be prove in the similar way as Theorem 3.4.

Theorem 3.6. Let X be a nonempty totally ordered set containing the minimum element 0. Define
a binary hyperoperation ⋄X on X by

(∀x, y ∈ X)

(
x ⋄X y =

{
X if x ≥ y,
{y} otherwise

)
.

Then (X, ⋄X , 0) is a UP-hyperalgebra.

Example 3.7. By Theorem 3.6, we have (R≥0, ⋄R≥0
, 0) is a UP-hyperalgebra, where R≥0 is the

set of all nonnegative real numbers.

Theorem 3.8. Let X be a nonempty totally ordered set containing the maximum element 1. Define
a binary hyperoperation ◦X on X by

(∀x, y ∈ X)

(
x ◦X y =

{
{1, y} if x ≤ y,
{y} otherwise

)
.

Then (X, ◦X , 1) is a UP-hyperalgebra.
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Example 3.9. By Theorem 3.8, we have (Z≤0, ◦Z≤0 , 0) is a UP-hyperalgebra, where Z≤0 is the
set of all negative integers with zero.

Theorem 3.10. Let X be a nonempty totally ordered set containing the maximum element 1.
Define a binary hyperoperation ⋄X on X by

(∀x, y ∈ X)

(
x ⋄X y =

{
X if x ≤ y,
{y} otherwise

)
.

Then (X, ⋄X , 1) is a UP-hyperalgebra.

Example 3.11. By Theorem 3.10, we have (R≤0, ⋄R≤0 , 0) is a UP-hyperalgebra, where R≤0 is the
set of all negative real numbers with zero.

Using the axioms of a UP-algebra, we have the following theorem.

Theorem 3.12. Let H = (H, ·, 0) be a UP-algebra. Define a binary hyperoperation ◦ on H by

(∀x, y ∈ H) (x ◦ y = {x · y}) .

Then (H, ◦, 0) is a UP-hyperalgebra.

By Theorem 3.12, we have the following corollary.

Corollary 3.13. Every UP-algebra induces a UP-hyperalgebra.

From now on, unless another thing is stated, we take H = (H, ◦, 0) as a UP-hyperalgebra.

Proposition 3.14. In a UP-hyperalgebra H, the following properties hold: for all x, y, z ∈ H and
for all nonempty subsets A,B,C, and D of H,

(1) 0 ≪ 0,

(2) y ≪ (x ◦ 0) ◦ (x ◦ y),

(3) 0 ≪ (x ◦ y) ◦ (x ◦ 0),

(4) x ≪ y, x ̸= y ⇒ y ̸≪ x,

(5) x ≪ y ⇒ z ◦ x ≪ z ◦ y,

(6) 0 ◦ x ≪ A ⇒ x ≪ A,

(7) A ⊆ 0 ◦A,

(8) A ≪ 0,

(9) 0 ≪ A ⇒ 0 ∈ A,

(10) 0 ∈ B ⇒ A ≪ B,

(11) A ⊆ B,C ⊆ D ⇒ A ◦ C ⊆ B ◦D,

(12) 0 ∈ A ⇒ B ⊆ A ◦B,
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(13) A ⊆ B ≪ C ⇒ A ≪ C, and

(14) (∀a ∈ A,∀b ∈ B)(A ◦B ≪ C ⇒ a ◦ b ≪ C).

Proof. (1) It is straightforward by 3.2.

(2) By 3.2, we have 0◦y ≪ (x◦0)◦ (x◦y). By 3.2, we have y ∈ 0◦y. Thus y ≪ (x◦0)◦ (x◦y).

(3) By 3.2, we have y ◦0 ≪ (x◦y)◦ (x◦0). By 3.2, we have 0 ∈ y ◦0. Thus 0 ≪ (x◦y)◦ (x◦0).

(4) It is straightforward by 3.2.

(5) Assume that x ≪ y. By 3.2, we have 0 ∈ x ◦ y ≪ (z ◦ x) ◦ (z ◦ y). Then 0 ≪ a for some
a ∈ (z ◦ x) ◦ (z ◦ y). By 3.2 and 3.2, we have a = 0. Thus z ◦ x ≪ z ◦ y.

(6) It is straightforward by 3.2 and the definition of ≪.

(7) By 3.2, we have a ∈ 0 ◦ a ⊆
∪
a∈A

0 ◦ a = 0 ◦A for all a ∈ A. Thus A ⊆ 0 ◦A.

(8) By 3.2, we have A ≪ 0.

(9) Assume that 0 ≪ A. Then 0 ≪ a for some a ∈ A. By 3.2 and 3.2, we have a = 0 and so
0 ∈ A.

(10) Assume that 0 ∈ B. Then, by 3.2, we have A ≪ B.

(11) Assume that A ⊆ B and C ⊆ D. Then A ◦ C =
∪

a∈A⊆B
c∈C⊆D

a ◦ c ⊆
∪
b∈B
d∈D

b ◦ d = B ◦D.

(12) It follows from (7) and (11).

(13) It is straightforward by the definition of ≪.

(14) It follows from (13).

Definition 3.15. A subset S of H is called a UP-hypersubalgebra of H if the constant 0 of H is
in S, and (S, ◦, 0) itself forms a UP-hyperalgebra. Clearly, H is a UP-hypersubalgebra of H.

The following example shows that the singleton {0} is not a UP-hypersubalgebra of a UP-
hyperalgebra in general.

Example 3.16. From Example 3.3, we have (H, ◦, 0) is a UP-hyperalgebra. Since 0 ◦ 0 =
{0, 2} /∈ P∗({0}), we have ◦ is not a binary hyperoperation on {0}. Hence, ({0}, ◦, 0) is not a
UP-hypersubalgebra of H.

Example 3.17. From Example 3.7, we have (R≥0, ⋄R≥0
, 0) is a UP-hyperalgebra. Since 1⋄R≥0

1 =
R≥0 /∈ P∗(N0), we have ⋄R≥0

is not a binary hyperoperation on N0. Hence, (N0, ⋄R≥0
, 0) is not a

UP-hypersubalgebra of R≥0. But by Theorem 3.6, we have (N0, ⋄N0 , 0) is a UP-hyperalgebra.

Proposition 3.18. Let S be a nonempty subset of H. If x ≪ y and x ◦ y ⊆ S for some x, y ∈ S,
then 0 ∈ S.

Proof. Assume that x ≪ y and x ◦ y ⊆ S for some x, y ∈ S. Then 0 ∈ x ◦ y ⊆ S.

Theorem 3.19. Let S be a nonempty subset of H. Then the following statements hold:

(1) if S is a UP-hypersubalgebra of H, then S ◦ S = S,
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(2) if S is a UP-hypersubalgebra of H, then S ◦ S is also a UP-hypersubalgebra of H,

(3) if S ◦ S ⊆ S and 0 ∈ S, then S is a UP-hypersubalgebra of H, and

(4) if S ◦ S ⊆ S and x ≪ y for some x, y ∈ S, then S is a UP-hypersubalgebra of H.

Proof. (1) It is straightforward by the binary hyperoperation on S and 3.2.

(2) It follows from (1).

(3) Obviously from the definition of UP-hyperalgebras.

(4) Assume that S ◦ S ⊆ S and x ≪ y for some x, y ∈ S. By Proposition 3.18, we have 0 ∈ S.
It follows from (3) that S is a UP-hypersubalgebra of H.

Theorem 3.20. Let S be a nonempty family of UP-hypersubalgebras of H. Then
∩

S∈S S is a
UP-hypersubalgebra of H.

Proof. Clearly, 0 ∈ S for all S ∈ S . Then 0 ∈
∩

S∈S S. Let x, y ∈
∩

S∈S S. Then x, y ∈ S for all
S ∈ S . Since S is a UP-hypersubalgebra of H, it follows from Theorem 3.19 (1) that x◦y ⊆ S for
all S ∈ S and so x◦y ⊆

∩
S∈S S. By Theorem 3.19 (3), we have

∩
S∈S S is a UP-hypersubalgebra

of H.

Remark 3.21. The union of two UP-hypersubalgebras of a UP-hyperalgebra need not be a UP-
hypersubalgebra. We show the remark with Example 3.22.

Example 3.22. Let H = {0, 1, 2, 3} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2 3

0 {0} {1} {2} {2, 3}
1 {0, 1} {0, 1} {2, 3} {1, 2, 3}
2 {0, 2} {0, 1, 3} {0, 2} {1, 2, 3}
3 {0, 3} {1, 2} {0, 1, 3} {2, 3}

Then (H, ◦, 0) is a UP-hyperalgebra and {0, 1} and {0, 2} are UP-hypersubalgebras of H. Since
1, 2 ∈ {0, 1, 2} = {0, 1} ∪ {0, 2} but 2 ◦ 1 = {0, 1, 3} /∈ P∗({0, 1, 2}), we have ◦ is not a binary
hyperoperation on {0, 1, 2}. Hence, ({0, 1, 2}, ◦, 0) is not a UP-hypersubalgebra of H.

Remark 3.23. Every UP-subalgebra of a UP-algebra H is a UP-hypersubalgebra of the UP-
hyperalgebra H, which is defined in Theorem 3.12.

Proof. Let S be a UP-subalgebra of a UP-algebra H = (H, ·, 0). Then 0 ∈ S. Let x, y ∈ S. Since
S is a UP-subalgebra of H, we have x · y ∈ S. Thus x ◦ y = {x · y} ⊆ S, so S ◦S ⊆ S. By Theorem
3.19 (3), we have S is a UP-hypersubalgebra of the UP-hyperalgebra (H, ◦, 0) in Theorem 3.12.

Remark 3.24. The hyperproduct of two UP-hypersubalgebras of a UP-hyperalgebra need not be a
UP-hypersubalgebra. We show the remark with Example 3.25.
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Example 3.25. Let H = {0, 1, 2, 3, 4, 5, 6} be a UP-algebra with a fixed element 0 and a binary
operation · defined by the following Cayley table:

· 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 0 0 2 3 2 3 6
2 0 1 0 3 1 5 3
3 0 1 2 0 4 1 2
4 0 0 0 3 0 3 3
5 0 0 2 0 2 0 2
6 0 1 0 0 1 1 0

Then {0, 2} and {0, 4} are UP-subalgebras of H. By Remark 3.23, we have {0, 2} and {0, 4} are
UP-hypersubalgebras of the UP-hyperalgebra H, which is defined in Theorem 3.12. Since 1, 4 ∈
{0, 1, 4} = {0, 2} ◦ {0, 4} but 1 ◦ 4 = {2} /∈ P∗({0, 1, 4}), we have ◦ is not a binary hyperoperation
on {0, 1, 4}. Hence, ({0, 1, 4}, ◦, 0) is not a UP-hypersubalgebra of H.

For the study of hyper BCC-algebras, hyper BCI-algebras, and hyper BCK-algebras, some
subsets have been defined. The results of the study can be summarized as follows.

In a hyper BCC-algebra (H, ◦, 0) [3], the set S(H) := {x ∈ H | x ◦ x = {0}} is a hyper
BCC-algebra.

In a hyper BCI-algebra (H, ◦, 0) [24], the set S(H) := {x ∈ H | 0 ◦ x = {0}} is a hyper BCI-
algebra if S(H) is nonempty, the set SK := {x ∈ H | x ◦ (x ◦ 0) = {0}} is a hyper BCI-algebra and
also a hyper BCK-algebra if SK is nonempty, and the set SI := {x ∈ H | x ◦ x = {0}} is a hyper
BCI-algebra if SI is nonempty.

For a UP-hyperalgebra (H, ◦, 0), we define the subsets as follows in the previous study:

SH = {x ∈ H | x ≪ x},
SZ = {x ∈ H | x ◦ x = {0}},
SLI = {x ∈ H | 0 ◦ x = {x}},
SRZ = {x ∈ H | x ◦ 0 = {0}},
SK = {x ∈ H | x ◦ (x ◦ 0) = {0}}.

The following example shows that there is an SH for some UP-hyperalgebras which is neither
an empty subset nor a UP-hypersubalgebra.

Example 3.26. From Example 3.3, we have (H, ◦, 0) is a UP-hyperalgebra. We see that SH =
{0, 2}. Since 2 ◦ 2 = {0, 1, 2} /∈ P∗({0, 2}) = P∗(SH), we have ◦ is not a binary hyperoperation on
SH . Hence, (SH , ◦, 0) is not a UP-hypersubalgebra of H.

The following example shows that there is an SZ for some UP-hyperalgebras which is neither
an empty subset nor a UP-hypersubalgebra.

Example 3.27. Let H = {0, 1, 2} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2

0 {0, 1} {1} {1, 2}
1 {0, 1} {0} {0, 1}
2 {0, 1} {2} {0}
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Then (H, ◦, 0) is a UP-hyperalgebra. We see that SZ = {1, 2} but 0 /∈ SZ . Hence, (SZ , ◦, 0) is not
a UP-hypersubalgebra of H.

The following example shows that there is an SLI for some UP-hyperalgebras which is neither
an empty subset nor a UP-hypersubalgebra.

Example 3.28. Let H = {0, 1, 2} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2

0 {0, 1} {1} {1, 2}
1 {0, 1} {0, 1, 2} {2}
2 {0, 1} {0, 2} {1, 2}

Then (H, ◦, 0) is a UP-hyperalgebra. We see that SLI = {1} but 0 /∈ SLI . Hence, (SLI , ◦, 0) is not
a UP-hypersubalgebra of H.

The following example shows that there is an SRZ for some UP-hyperalgebras which is neither
an empty subset nor a UP-hypersubalgebra.

Example 3.29. Let H = {0, 1, 2} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2

0 {0, 1} {1} {1, 2}
1 {0} {1, 2} {0, 1}
2 {0} {2} {0, 1, 2}

Then (H, ◦, 0) is a UP-hyperalgebra. We see that SRZ = {1, 2} but 0 /∈ SRZ . Hence, (SRZ , ◦, 0) is
not a UP-hypersubalgebra of H.

The following example shows that there is an SK for some UP-hyperalgebras which is neither
an empty subset nor a UP-hypersubalgebra.

Example 3.30. From Example 3.29, we see that SK = {1, 2} but 0 /∈ SK . Hence, (SK , ◦, 0) is
not a UP-hypersubalgebra of H.

4 UP-Hyperideals and s-UP-Hyperideals

In this section, we introduce the concepts of UP-hyperideals of types 1 and 2 and s-UP-hyperideals
of types 1 and 2 in UP-hyperalgebras, and give some relations among these concepts.

Definition 4.1. A subset I of H is called

(1) a UP-hyperideal of type 1 of H if

(i) the constant 0 of H is in I, and

(ii) (∀x, y, z ∈ H)(x ◦ (y ◦ z) ⊆ I, y ∈ I ⇒ x ◦ z ⊆ I).

(2) a UP-hyperideal of type 2 of H if

(i) the constant 0 of H is in I, and
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(ii) (∀x, y, z ∈ H)(x ◦ (y ◦ z) ⊆ I, y ∈ I ⇒ (x ◦ z) ∩ I ̸= ∅).

(3) a strong UP-hyperideal of type 1 of H (we shortly call an s-UP-hyperideal of type 1) if

(i) the constant 0 of H is in I, and

(ii) (∀x, y, z ∈ H)((x ◦ (y ◦ z)) ∩ I ̸= ∅, y ∈ I ⇒ x ◦ z ⊆ I).

(4) a strong UP-hyperideal of type 2 of H (we shortly call an s-UP-hyperideal of type 2) if

(i) the constant 0 of H is in I, and

(ii) (∀x, y, z ∈ H)((x ◦ (y ◦ z)) ∩ I ̸= ∅, y ∈ I ⇒ (x ◦ z) ∩ I ̸= ∅).

The following theorem follows directly from Definition 4.1.

Theorem 4.2. (1) Every s-UP-hyperideal of type 1 of H is a UP-hyperideal of type 1.

(2) Every s-UP-hyperideal of type 1 of H is an s-UP-hyperideal of type 2.

(3) Every UP-hyperideal of type 1 of H is a UP-hyperideal of type 2.

(4) Every s-UP-hyperideal of type 2 of H is a UP-hyperideal of type 2.

The following example shows that the converse of Theorem 4.2 (1) is not true in general.

Example 4.3. Let H = {0, 1, 2} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2

0 {0} {1} {2}
1 {0, 2} {0} {0}
2 {0, 2} {1, 2} {0, 2}

Then (H, ◦, 0) is a UP-hyperalgebra and I := {0, 2} is a UP-hyperideal of type 1 of H. Since
(2 ◦ (0 ◦ 1)) ∩ I = {1, 2} ∩ {0, 2} ≠ ∅ and 0 ∈ I, but 2 ◦ 1 = {1, 2} * {0, 2} = I, we have I is not
an s-UP-hyperideal of type 1 of H.

The following example shows that the converse of Theorem 4.2 (2) is not true in general.

Example 4.4. Let H = {0, 1, 2} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2

0 {0, 1} {1} {2}
1 {0, 1} {0, 2} {1, 2}
2 {0, 1} {0, 1} {0, 1, 2}

Then (H, ◦, 0) is a UP-hyperalgebra and I := {0} is an s-UP-hyperideal of type 2 of H. Since
(2 ◦ (0 ◦ 1)) ∩ I = {0, 1} ∩ {0} ̸= ∅ and 0 ∈ I, but 2 ◦ 1 = {0, 1} * {0} = I, we have I is not an
s-UP-hyperideal of type 1 of H.

The following example shows that the converse of Theorem 4.2 (3) is not true in general.
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Example 4.5. Let H = {0, 1, 2} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2

0 {0, 1} {1} {1, 2}
1 {0, 1} {1, 2} {0, 1}
2 {0, 1} {2} {0, 1, 2}

Then (H, ◦, 0) is a UP-hyperalgebra and I := {0, 1} is a UP-hyperideal of type 2 of H. Since
0 ◦ (1 ◦ 2) = {0, 1} ⊆ {0, 1} = I and 1 ∈ I, but 0 ◦ 2 = {1, 2} * {0, 1} = I, we have I is not a
UP-hyperideal of type 1 of H.

The following example shows that the converse of Theorem 4.2 (4) is not true in general.

Example 4.6. From Example 4.3, it follows from Theorem 4.2 (3) that I = {0, 2} is a UP-
hyperideal of type 2 of H. Since (0 ◦ (2 ◦ 1)) ∩ I = {1, 2} ∩ {0, 2} ̸= ∅ and 2 ∈ I, but (0 ◦ 1) ∩ I =
{1} ∩ {0, 2} = ∅, we have I is not an s-UP-hyperideal of type 2 of H.

By Theorem 4.2 and Examples 4.3, 4.4, 4.5, and 4.6, we have that the concept of UP-hyperideals
of type 1 is a generalization of s-UP-hyperideals of type 1, s-UP-hyperideals of type 2 is a gen-
eralization of s-UP-hyperideals of type 1, hyper UP-ideals of type 2 is a generalization of hyper
UP-ideals of type 1, and hyper UP-ideals of type 2 is a generalization of s-hyper UP-ideals of type
2. Then, we get the diagram of generalization of UP-hyperideals in UP-hyperalgebras as shown in
Figure 1.

Figure 1: UP-hyperideals and s-UP-hyperideals

Example 4.7. From Examples 4.3 and 4.6, we have {0, 2} is a UP-hyperideal of type 1 of H but
it is not an s-UP-hyperideal of type 2 of H.

Example 4.8. Let H = {0, 1, 2, 3} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2 3

0 {0} {1, 2} {2, 3} {1, 2, 3}
1 {0, 1} {2, 3} {0, 1} {1, 3}
2 {0, 2, 3} {1, 2} {0, 2} {2}
3 H {0, 2, 3} {0, 1, 3} {0, 2}

Then (H, ◦, 0) is a UP-hyperalgebra, and {0, 2, 3} is an s-UP-hyperideal of type 2 of H but it
is not a UP-hyperideal of type 1. Indeed, 0 ◦ (2 ◦ 3) = {2, 3} ⊆ {0, 2, 3} and 2 ∈ {0, 2, 3} but
0 ◦ 3 = {1, 2, 3} * {0, 2, 3}.
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By Examples 4.7 and 4.8, we have that a UP-hyperideal of type 1 and an s-hyper UP-ideal of
type 2 are not sufficient conditions for each other in general. Then, we get the diagram as shown
in Figure 2.

Figure 2: UP-hyperideals of type 1 and s-UP-hyperideals of type 2

Theorem 4.9. {0} is a UP-hyperideal of type 1 of H and also a UP-hyperideal of type 2.

Proof. Clearly, 0 ∈ {0}. Let x, y, z ∈ H be such that x ◦ (y ◦ z) ⊆ {0} and y ∈ {0}. Then
x ◦ (0 ◦ z) ⊆ {0}. By 3.2, we have z ∈ 0 ◦ z. Thus x ◦ z ⊆ x ◦ (0 ◦ z) ⊆ {0}. Hence, {0} is a
UP-hyperideal of type 1 of H.

The following example shows that {0} of a UP-hyperalgebra need not be an s-UP-hyperideal
of types 1 and 2.

Example 4.10. Let H = {0, 1, 2, 3} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2 3

0 {0} {1} {2} {2, 3}
1 {0, 1} {0, 1} {0, 1} {1, 2, 3}
2 {0, 2} {2, 3} {0, 2} {1, 2, 3}
3 {0, 3} {1, 2} {0, 1, 3} {2, 3}

Then (H, ◦, 0) is a UP-hyperalgebra. Since (2◦(0◦3))∩{0} = (2◦{2, 3})∩{0} = H∩{0} = {0} ̸= ∅
and 0 ∈ {0} but (2 ◦ 3)∩ {0} = {1, 2, 3} ∩ {0} = ∅. Hence, {0} is not an s-UP-hyperideal of type 2
of H and also not an s-UP-hyperideal of type 1.

Remark 4.11. From Theorem 4.9 and Example 3.16, we have a UP-hyperideal of type 1 of H is not
a UP-hypersubalgebra in general. Also, a UP-hyperideal of type 2 of H is not a UP-hypersubalgebra
in general.

Theorem 4.12. If H is a UP-hyperalgebra satisfying the following condition:

(∀x ∈ H)(0 ◦ x = {x}), (4.1)

then {0} is an s-UP-hyperideal of type 2 of H.

Proof. Assume that H is a UP-hyperalgebra satisfying the condition (4.1). Clearly, 0 ∈ {0}. Let
x, y, z ∈ H be such that (x ◦ (y ◦ z))∩ {0} ̸= ∅ and y ∈ {0}. Then 0 ∈ x ◦ (0 ◦ z) = x ◦ {z} = x ◦ z,
so (x ◦ z) ∩ {0} ̸= ∅. Hence, {0} is an s-UP-hyperideal of type 2 of H.

Remark 4.13. If H is a UP-hyperalgebra with its binary hyperoperation maps to a singleton set,
then {0} is an s-UP-hyperideal of type 1 of H.
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Proof. Assume that H is a UP-hyperalgebra with its binary hyperoperation maps to a singleton
set. Clearly, 0 ∈ {0}. Let x, y, z ∈ H be such that (x ◦ (y ◦ z)) ∩ {0} ≠ ∅ and y ∈ {0}. By
assumption and 3.2, we have {0} = x ◦ (0 ◦ z) = x ◦ {z} = x ◦ z, that is, x ◦ z ⊆ {0}. Hence, {0} is
an s-UP-hyperideal of type 1 of H.

The following example shows that the condition: its binary hyperoperation maps to a singleton
set that is necessary.

Example 4.14. Let H = {0, 1, 2} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2

0 {0} {1} {2}
1 {0} {0, 1, 2} {0, 2}
2 {0} {1} {0, 2}

Then (H, ◦, 0) is a UP-hyperalgebra but {0} is not an s-UP-hyperideal of type 1 of H. Indeed,
(2 ◦ (0 ◦ 2)) ∩ {0} = {0, 2} ∩ {0} ̸= ∅ and 0 ∈ {0}, but 2 ◦ 2 = {0, 2} * {0}.

Example 4.15. From Example 4.14 and by Theorem 4.12, we have H is a UP-hyperalgebra
satisfying the condition (4.1) and {0} is an s-UP-hyperideal of type 2 of H but not an s-UP-
hyperideal of type 1.

Remark 4.16. If H is a UP-hyperalgebra with its binary hyperoperation maps to a singleton set,
then UP-hyperideals of type 1, UP-hyperideals of type 2, s-UP-hyperideals of type 1, and s-UP-
hyperideals of type 2 of H coincide.

Proof. Since x◦(y◦z) is a singleton set for all x, y, z ∈ H, it is straightforward by the definition.

Theorem 4.17. Let I be a nonempty family of UP-hyperideals of type 1 of H. Then
∩

I∈I I is
a UP-hyperideal of type 1 of H.

Proof. Clearly, 0 ∈ I for all I ∈ I . Then 0 ∈
∩

I∈I I. Let x, y, z ∈ H be such that x ◦ (y ◦ z) ⊆∩
I∈I I and y ∈

∩
I∈I I. Then x ◦ (y ◦ z) ⊆ I and y ∈ I for all I ∈ I . Since I is a UP-hyperideal

of type 1 of H, we have x ◦ y ⊆ I for all I ∈ I and so x ◦ y ⊆
∩

I∈I I. Hence,
∩

I∈I I is a
UP-hyperideal of type 1 of H.

Remark 4.18. The intersection of two UP-hyperideals of type 2 of a UP-hyperalgebra need not be
a UP-hyperideal of type 2. We show the remark with Example 4.19.

Example 4.19. Let H = {0, 1, 2, 3} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2 3

0 {0} {1} {2, 3} {2, 3}
1 {0, 1} {0, 1} {0, 1} {1, 2, 3}
2 {0, 2} {2, 3} {0, 2} {1, 2, 3}
3 {0, 3} {1, 2} {0, 1, 3} {2, 3}

Then (H, ◦, 0) is a UP-hyperalgebra and {0, 1, 2} and {0, 1, 3} are UP-hyperideals of type 2. Then
{0, 1, 2} ∩ {0, 1, 3} = {0, 1}. Since 0 ◦ (1 ◦ 2) = {0, 1} ⊆ {0, 1} and 1 ∈ {0, 1} but 0 ◦ 2 = {2, 3} *
{0, 1}. Hence, {0, 1} is not a UP-hyperideal of type 2 of H.
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Remark 4.20. The union of two UP-hyperideals of type 1 (resp., UP-hyperideals of type 2) of a
UP-hyperalgebra need not be a hyper UP-ideal of type 1 (resp., hyper UP-ideal of type 2). We show
the remark with Example 4.21.

Example 4.21. From Example 4.10, we have {0, 2} and {0, 3} are UP-hyperideals of type 1 of H
and also UP-hyperideals of type 2. Then {0, 2} ∪ {0, 3} = {0, 2, 3}. Since 0 ◦ (2 ◦ 1) = {2, 3} ⊆
{0, 2, 3} and 2 ∈ {0, 2, 3} but (0 ◦ 1) ∩ {0, 2, 3} = {1} ∩ {0, 2, 3} = ∅, we have {0, 2, 3} is not a
UP-hyperideal of type 2 of H and also not a UP-hyperideal of type 1.

Remark 4.22. The hyperproduct of two UP-hyperideals of type 1 (resp., UP-hyperideals of type
2) of a UP-hyperalgebra need not be a hyper UP-ideal of type 1 (resp., hyper UP-ideal of type 2).
We show the remark with Example 4.23.

Example 4.23. From Example 4.21, we have {0, 3} is a UP-hyperideal of type 1 of H and also a
UP-hyperideal of type 2. Then {0, 3}◦{0, 3} = {0, 2, 3}. It follows from Example 4.21 that {0, 2, 3}
is not a UP-hyperideal of type 2 of H and also not a UP-hyperideal of type 1.

Theorem 4.24. Let I be a nonempty family of s-UP-hyperideals of type 1 of H. Then
∩

I∈I I
is an s-UP-hyperideal of type 1 of H.

Proof. Clearly, 0 ∈ I for all I ∈ I . Then 0 ∈
∩

I∈I I. Let x, y, z ∈ H be such that (x ◦ (y ◦ z)) ∩∩
I∈I I ̸= ∅ and y ∈

∩
I∈I I. Then (x ◦ (y ◦ z)) ∩ I ̸= ∅ and y ∈ I for all I ∈ I . Since I is an

s-UP-hyperideal of type 1 of H, we have x ◦ y ⊆ I for all I ∈ I and so x ◦ y ⊆
∩

I∈I I. Hence,∩
I∈I I is an s-UP-hyperideal of type 1 of H.

Remark 4.25. The intersection of two s-UP-hyperideals of type 2 of a UP-hyperalgebra need not
be an s-UP-hyperideal of type 2. We show the remark with Example 4.26.

Example 4.26. From Example 4.19, we have {0, 1, 2} and {0, 1, 3} are s-UP-hyperideals of type
2 of H. Then {0, 1, 2} ∩ {0, 1, 3} = {0, 1}. Since (0 ◦ (1 ◦ 3)) ∩ {0, 1} = {1, 2, 3} ∩ {0, 1} ̸= ∅ and
1 ∈ {0, 1} but (0 ◦ 3)∩{0, 1} = {2, 3}∩{0, 1} = ∅, we have {0, 1} is not an s-UP-hyperideal of type
2 of H.

Remark 4.27. The union of two s-UP-hyperideals of type 1 of a UP-hyperalgebra need not be an
s-UP-hyperideal of type 1. We show the remark with Example 4.28.

Example 4.28. Let H = {0, 1, 2, 3} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2 3

0 {0} {1} {2} {3}
1 {0} {0} {2} {2}
2 {0} {1} {0} {1}
3 {0} {0} {0} {0}

Then (H, ◦, 0) is a UP-hyperalgebra and {0, 1} and {0, 2} are s-UP-hyperideals of type 1 and also
s-UP-hyperideals of type 2. Then {0, 1} ∩ {0, 2} = {0, 1, 2}. Since (0 ◦ (1 ◦ 3)) ∩ {0, 1, 2} =
{2} ∩ {0, 1, 2} ̸= ∅ and 1 ∈ {0, 1, 2} but (0 ◦ 3) ∩ {0, 1, 2} = {3} ∩ {0, 1, 2} = ∅. Hence, {0, 1, 2} is
not an s-UP-hyperideal of type 2 of H and also not an s-UP-hyperideal of type 1.

Remark 4.29. The hyperproduct of two s-UP-hyperideals of type 2 of a UP-hyperalgebra need not
be an s-UP-hyperideal of type 2. We show the remark with Example 4.30.
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Example 4.30. Let H = {0, 1, 2, 3} be a set with a binary hyperoperation ◦ defined by the following
Cayley table:

◦ 0 1 2 3

0 {0, 1} {1} {2} {3}
1 {0} {0} {1, 2} {2}
2 {0} {1, 3} {0} {1}
3 {0} {0} {0} {0}

Then (H, ◦, 0) is a UP-hyperalgebra and {0} is an s-UP-hyperideal of type 2. Then {0} ◦ {0} =
{0, 1}. Since (0 ◦ (1 ◦ 2)) ∩ {0, 1} = {1, 2} ∩ {0, 1} ̸= ∅ and 1 ∈ {0, 1} but (0 ◦ 2) ∩ {0, 1} =
{2} ∩ {0, 1} = ∅. Hence, {0, 1} is not an s-UP-hyperideal of type 2 of H.

Open Problem. Is the hyperproduct of two s-UP-hyperideals of type 1 of a UP-hyperalgebra an
s-hyper UP-ideal of type 1?

By the definition of ◦ in Theorem 3.12 and Theorem 4.2, we have the following proposition.

Proposition 4.31. Every UP-ideal of a UP-algebra H is a UP-hyperideal of type 1 (resp. s-UP-
hyperideal of type 2, UP-hyperideal of type 1, UP-hyperideal of type 2) of the UP-hyperalgebra H,
which is defined in Theorem 3.12.

Example 4.32. Let H = {0, 1, 2, 3} be a set with a binary operation · defined by the following
Cayley table:

· 0 1 2 3

0 0 1 2 3

1 0 0 2 2

2 0 1 0 2

3 0 1 0 0

Then (H, ·, 0) is a UP-algebra and S := {0, 2} is a UP-subalgebra of H but it is not a UP-ideal
of H. Indeed, 0 · (2 · 3) = 2 ∈ S and 2 ∈ S, but 0 · 3 = 3 /∈ S. By Remark 3.23, we have
S is a UP-hypersubalgebra of the UP-hyperalgebra H, which is defined in Theorem 3.12. Since
0 ◦ (2 ◦ 3) = 0 ◦ {2} = {2} ⊆ {0, 2} = S and 2 ∈ S, but 0 ◦ 3 = {3} * {0, 2} = S. Hence, S is not
a UP-hyperideal of type 2 of H and also is not a UP-hyperideal of type 1.

Remark 4.33. From Example 4.32, we have a UP-hypersubalgebra of H is not a UP-hyperideal
of type 2 in general. Also, a UP-hypersubalgebra of H is not a UP-hyperideal of type 1 in general.

By Remarks 4.11 and 4.33, Theorem 4.2 (3), and Example 4.5, we have that a UP-hyperideal
of type 1 is not a UP-hypersubalgebra, a hyper UP-ideal of type 2 is not a UP-hypersubalgebra,
a UP-hypersubalgebra is not a hyper UP-ideal of type 2, a UP-hypersubalgebra is not a hyper
UP-ideal of type 1 in general, but the concept of hyper UP-ideals of type 2 is a generalization of
hyper UP-ideals of type 1. Then, we get the diagram as shown in Figure 3.

Definition 4.34. A nonempty subset I of H satisfies the closed condition if

(∀x, y ∈ H)(x ≪ y, y ∈ I ⇒ x ∈ I).

Example 4.35. From Example 4.10, we have {1}, {3}, {1, 3}, {1, 2, 3}, and H are all subsets of
H satisfying the closed condition.
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Figure 3: UP-hypersubalgebras and UP-hyperideals of types 1 and 2

Theorem 4.36. Let C be a nonempty family of nonempty subsets of H satisfy the closed condition.
Then

∪
C∈C C and

∩
C∈C C satisfy the closed condition if

∩
C∈C C is nonempty.

Proof. Let x, y ∈ H be such that x ≪ y and y ∈
∪

C∈C C. Then y ∈ C for some C ∈ C . Since
C satisfies the closed condition, we have x ∈ C ⊆

∪
C∈C C. Hence,

∪
C∈C C satisfies the closed

condition. Assume that
∩

C∈C C is nonempty. Let x, y ∈ H be such that x ≪ y and y ∈
∩

C∈C C.
Then y ∈ C for all C ∈ C . Since C satisfies the closed condition for all C ∈ C , we have x ∈ C for
all C ∈ C . Thus x ∈

∩
C∈C C. Hence,

∩
C∈C C satisfies the closed condition.

Lemma 4.37. If a nonempty subset I of H satisfies the closed condition, then for any A ⊆ H,A ≪
I implies A ⊆ I.

Proof. Let A ⊆ H be such that A ≪ I and let x ∈ A. Then x ≪ y for some y ∈ I. By the closed
condition of I, we have x ∈ I. Hence, A ⊆ I.

Theorem 4.38. If a nonempty subset I of H containing 0 satisfies the closed condition, then
I = H. Moreover, H is the only closed UP-hypersubalgebra (resp., closed UP-hyperideal of types 1
and 2, closed s-UP-hyperideal of types 1 and 2) of H.

Proof. It is straightforward by Proposition 3.14 (10) and Lemma 4.37.

The following proposition follows from Proposition 3.14 (11) and the definition of a UP-
hyperideal of types 1 and 2.

Proposition 4.39. Let A and B be subsets of H. Then the following statements hold:

(1) if I is a UP-hyperideal of type 1 of H and if A ◦ (x ◦B) ⊆ I for x ∈ I, then A ◦B ⊆ I, and

(2) if I is a UP-hyperideal of type 2 of H and if A ◦ (x ◦B) ⊆ I for x ∈ I, then (A ◦B)∩ I ̸= ∅.

Definition 4.40. A nonempty subset I of H satisfies the R-condition if 0 ◦ I = I.

Example 4.41. From Example 4.10, we have {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}, {2, 3},
and H are all subsets of H satisfying the R-condition.

Theorem 4.42. If I is a UP-hyperideal of type 1 (and also an s-UP-hyperideal of type 1) of H
satisfying the R-condition, then

(∀a ∈ I, ∀x ∈ H)(a ◦ x ⊆ I ⇒ x ∈ I).

Moreover,
(∀a ∈ I, ∀A ⊆ H)(a ◦A ⊆ I ⇒ A ⊆ I).
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Proof. Let a ∈ I and x ∈ H be such that a ◦x ⊆ I. By Proposition 3.14 (11) and the R-condition,
we have 0 ◦ (a ◦ x) ⊆ 0 ◦ I = I. Since I is a UP-hyperideal of type 1 of H and by 3.2, we have
x ∈ 0 ◦ x ⊆ I.

Theorem 4.43. If I is an s-UP-hyperideal of type 1 of H satisfying the R-condition, then

(∀a ∈ I, ∀x ∈ H)((a ◦ x) ∩ I ̸= ∅ ⇒ x ∈ I).

Moreover,
(∀A ⊆ H)((∀x ∈ A,∃a ∈ I)((a ◦ x) ∩ I ̸= ∅) ⇒ A ⊆ I).

Proof. Let a ∈ I and x ∈ H be such that (a◦x)∩I ̸= ∅. Then we choose an element b ∈ (a◦x)∩I.
By Proposition 3.14 (7) and the R-condition, we have b ∈ 0 ◦ (a ◦ x) and b ∈ 0 ◦ I = I. Thus
(0◦(a◦x))∩I ̸= ∅. Since I is an s-UP-hyperideal of type 1 ofH and by 3.2, we have x ∈ 0◦x ⊆ I.

5 Conclusions and Future Work

In this paper, we have introduced the concept of UP-hyperalgebras which is a generalization of UP-
algebras, and investigated some related properties. Moreover, the concepts of UP-hypersubalgebras,
UP-hyperideals of types 1 and 2, and s-UP-hyperideals of types 1 and 2 in UP-hyperalgebras are
introduced and some relations among these concepts are presented.

In our future study of UP-hyperalgebras, may be the following topics should be considered:

(1) To get more results in UP-hyperalgebras and application.

(2) To study the fuzzy set theory of UP-hypersubalgebras, UP-hyperideals of types 1 and 2, and
s-UP-hyperideal of types 1 and 2.

(3) To define Smarandache structure of UP-hyperalgebras.

(4) To get more connection between UP-hyperalgebras and Smarandache UP-hyperalgebras.
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