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1 Introduction

A type of the logical algebra, a UP-algebra was introduced by Iampan [§], and it is known that
the class of KU-algebras is a proper subclass of the class of UP-algebras. It has been studied
and examined by many researchers, for example, Romano [, 6, I8] studied UP-ideals, proper
UP-filters, and some their decompositions in UP-algebras. Senapati et al. [20, 21 studies applied
cubic set and interval-valued intuitionistic fuzzy structure in UP-algebras. Ansari et al. [T, 2|
introduced the concept of graphs associated with commutative UP-algebras and the concept of
roughness in UP-algebras. Gomisong and Isla [7] established some structural properties of f-
UP-semigroups. Satirad and Iampan [[9] introduced the concept of topological UP-algebras and
several types of subsets of topological UP-algebras. Hyperstructures have many applications to
several sectors of both pure and applied sciences. The concept of hyperstructures (called also
multialgebras) was introduced by Marty [12] in 1934. Now, the theory of algebraic hyperstructures
had become a well-established branch in algebraic theory, and had been widely applied in many
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branches of mathematics and applied sciences [8, B, 26, 27, 28]. In 2000, Jun et al. [I1] introduced
the concepts of hyper BCK-algebras, hyper BCK-ideals and weak hyper BCK-ideals, and studied
the relationship between hyper BCK-ideals and weak hyper BCK-ideals. Borzooei et al. [d]
introduced hyper K-algebras. In 2001, 2006, Zahedi et al. [23, P5] introduced and studied (weak)
hyper K-ideals, commutative hyper K-ideals and defined simple hyper K-algebras of order 3 and
quasi-commutative hyper K-algebras. In 2006, Jun et al. [I0] studied hyper BCC-algebras, and
introduced the concept of hyper BCC-ideals and also analyzed the relationship between hyper
BCC-ideals and hyper BCK-ideals. Borzooei et al. [3] introduced the concepts of hyper BCC-
algebras and hyper BCC-ideals, and studied their relationship, and then they pointed out the open
problem about the relationship between hyper BCC-ideals of type 2 and weak hyper BCK-ideals.
Xin [74] introduced the concept of a hyper BCI-algebra which is a generalization of a BCI-algebra,
and investigated some related properties. Moreover, he introduced a hyper BCI-ideal, weak hyper
BCl-ideal, strong hyper BCI-ideal and reflexive hyper BCl-ideal in hyper BCl-algebras, and gave
some relations among these hyper BCI-ideals. In 2014, Radfar et al. [14] introduced the concept of
hyper BE-algebras and defined some types of hyper-filters in hyper BE-algebras. In 2017, Mostafa
et al. [[3] introduced the concept of hyper KU-algebras and some types of hyper KU-algebras
are studied. Also, a homomorphism of hyper KU-algebras is obtained. In 2019, Romano [I7]
introduced the concept of hyper UP-algebras and UP-hyperideals.

The goal of this paper is to generalize the concept of UP-algebras by considering the concept of
binary hyperoperations, define UP-hypersubalgebras, UP-hyperideals of types 1 and 2, and s-UP-
hyperideals of types 1 and 2 in this structure and describe the relationship between them. We try
to show that these concepts are independent by some examples. Furthermore, the closed condition
and the R-condition of a nonempty subset are discussed.

2 Preliminaries

Before we begin our study, we will give the definition and useful properties of UP-algebras.

Definition 2.1. [R] An algebra A = (A,-,0) of type (2,0) is called a UP-algebra, where A is a
nonempty set, - is a binary operation on A, and 0 is a fized element of A (i.e., a nullary operation)
if it satisfies the following axioms:

(UP-1) (V.2 € A)(y-2) - (x-9) - (- 2)) = 0),
(UP-2) (Vx € A)(0-z =x),
(UP-3) (Vz € A)(z-0=0), and
(UP4) (Vr,yc A)(z-y=0y-z2=0=z=y).
In a UP-algebra A = (A4, -, 0), the following assertions are valid (see [8, 1)).

(Ve e A)(x -z =0),

(V,y,z € A)(z-y=0,y - 2=0=x-2=0),
(Vo,y,z€ A)(z-y=0= (2-2)-(2-y) =0),
Vx,y,z€ A)(x-y=0= (y-2) - (x-2)=0),
(Vo,y € A)(z - (y-z) = 0),

N N N /N /N /N
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Vz,ye A)((y-z) - 2=0x=y 1), (2.7)
(Va,y € A)(z - (y-y) = 0), (2.8)
(Va,z,y,z € A)((z- (y-2)) (z-((a-y) - (a-2))) =0), (2.9)
(Va,z,y,z € A)((((a-2) - (a-y))-2) - ((x-y)-2) =0), (2.10)
(Vz,y,2 € A)(((x-y)-2) - (y-2) =0), (2.11)
(Va,y,z€ A)(x-y=0=z-(z-y) =0), (2.12)
(Va,y,z€ A)(((x-y)-2)-(z-(y-2)) =0), and (2.13)
(Va,z,y,2 € A)(((z-y)-2) - (y-(a-2)) =0). (2.14)
From [R], the binary relation < on a UP-algebra A = (A,-,0) is defined as follows:
(Ve,y e A)(x <y x-y=0). (2.15)

In UP-algebras, 2 types of special subsets are defined as follows.
Definition 2.2. [8] A nonempty subset S of a UP-algebra A = (A, -,0) is called
(1) a UP-subalgebra of A if (Vx,y € S)(z-y € S).
(2) a UP-ideal of A if

(i) the constant 0 of A is in S, and
(i) (Vx,y,z€ A)(x-(y-2)eS,yeS=x-2€585).

Tampan [8] proved that the concept of UP-subalgebras is a generalization of UP-ideals.

3 UP-Hyperalgebras and UP-Hypersubalgebras

In this section, we introduce the concepts of UP-hyperalgebras and their UP-hypersubalgebras,
and investigate some properties.

Definition 3.1. [5] Let H be a nonempty set and P*(H) be the family of all nonempty subsets of
H. Functions o;,: H x H — P*(H), where i € {1,2,...,n} and n a positive number are called
binary hyperoperations on H. For all x,y € H, o, (x,y) is called the hyperproduct of x and y.
An algebraic system (H,o1,,02,,...,0n,) is called an n-algebraic hyperstructure and structure
(H,op) endowed with only one binary hyperoperation is called a hypergroupoid. For any two
nonempty subsets A and B of hypergroupoid H and x € H, we define their hyperproduct by

Aoy B = U aogb,Aogax= Aoy {z} and xog B = {x} oy B.
acAbeB

Definition 3.2. A hyperstructure H = (H, 0, 0) is called a UP-hyperalgebra, where H is a nonempty
set, o is a binary hyperoperation on H, and 0 is a fixed element of H (i.e., a nullary operation) if
it satisfies the following axioms:

(UPh-1) (Vz,y,z € H)(yoz < (zoy)o(roz)),
(UPh-2) (Vz e H)(x € 0ox),
(UPh-3) (Vz € H)(z < 0), and
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(UPh-4) (Vz,ye H)z <y, y <z =2x=y),

where x < y is defined by 0 € x oy for all x,y € H and for every A, B C H, A < B is defined by
for each a € A, there exists b € B such that a < b. We shall use A < x and x < A instead of
A < {z}, or {z} < A, respectively.

Example 3.3. Let H = {0,1,2} be a set with a binary hyperoperation o defined by the following
Cayley tables:

ol 0 1 2

0|{0,2} {1} {1,2}

1]{0,1} {1,2} {0,1}

2140,2} {2} {0,1,2}
Then (H,o0,0) is a UP-hyperalgebra.

Theorem 3.4. Let X be a nonempty totally ordered set containing the minimum element 0. Define
a binary hyperoperation ox on X by

_J {0y} ifezy,
(Vz,y € X) <:c SXd= { {y}  otherwise ) '

Then (X, 0x,0) is a UP-hyperalgebra.
Proof. UPh-2: For all x € X,00x z is {0,z} or {z} and so x € 0 ox x.

UPh-3: For all z € X,z 0x 0 = {0} and so z < 0.

UPh-1: Let z,y,z € X. If 0 € (xox y) ox (z ox z), then it follows from B3 that y ox z <
(xoxy)ox (xoxz). O (roxy)ox (rox z), then 0 € zox z. Thus zox z = {z} where z # 0,
so (rox y)ox (xox z) = {z}. By the definition of ox, we have y € x ox y and z € z ox z. Thus
yox zC(xoxy)ox (xox z) ={z},s0oyox z ={z}. Since zox z = {0, z}, we have z < z and so
yox z L (xox y)ox (xox z).

UPh-4: Let 2,y € X be such that x # y. Then we may assume that < y. Then zoxy = {y}.

Since 0 is the minimum element of X, we have y # 0. Thus 0 € z ox y, that is, z & y.
Therefore, (X, 0x,0) is a UP-hyperalgebra. O

Example 3.5. By Theorem [B4, we have (No,oNn,,0) is a UP-hyperalgebra.
Theorems B8, B, and B0 can be prove in the similar way as Theorem B4.

Theorem 3.6. Let X be a nonempty totally ordered set containing the minimum element 0. Define
a binary hyperoperation ox on X by

_J X dr=y,
(Vz,y € X) (x CX Y= { {y} otherwise > '

Then (X,ox,0) is a UP-hyperalgebra.

Example 3.7. By Theorem Ed, we have (R2070R2070) is a UP-hyperalgebra, where R>q is the
set of all nonnegative real numbers.

Theorem 3.8. Let X be a nonempty totally ordered set containing the mazimum element 1. Define
a binary hyperoperation o™X on X by

_ Ly ife <y,
(Vz,y € X) <:C oty = { {y}  otherwise ) '

Then (X,0%,1) is a UP-hyperalgebra.
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Example 3.9. By Theorem X8, we have (ZSQ7OZSO7O) is a UP-hyperalgebra, where Z<q is the
set of all negative integers with zero.

Theorem 3.10. Let X be a nonempty totally ordered set containing the mazrimum element 1.
Define a binary hyperoperation o~ on X by

(Vz,y € X) (xo y= { {y} otherwise |-

Then (X,oX,1) is a UP-hyperalgebra.

Example 3.11. By Theorem ZI0, we have (RSQ,ORSO, 0) is a UP-hyperalgebra, where R<q is the
set of all negative real numbers with zero.

Using the axioms of a UP-algebra, we have the following theorem.
Theorem 3.12. Let H = (H,-,0) be a UP-algebra. Define a binary hyperoperation o on H by
(Ve,y € H)(zoy ={z-y}).
Then (H,o,0) is a UP-hyperalgebra.
By Theorem B4, we have the following corollary.

Corollary 3.13. Fvery UP-algebra induces a UP-hyperalgebra.
From now on, unless another thing is stated, we take H = (H,o0,0) as a UP-hyperalgebra.

Proposition 3.14. In a UP-hyperalgebra H, the following properties hold: for all x,y,z € H and
for all nonempty subsets A, B,C', and D of H,

(1) 0 <0,

(2) y < (zo0)o(zoy),
(3) 0 < (zoy)o(z00),
(4) r<y,r#y=y Kz,
(5) r<y=z0x<Kz0y,
(6) Doz < A=z < A,
(7) AC 00 A,

(8) A<O,

(9) 0 < A=0¢€ A,

(10) 0€ B= A< B,

(11) ACB,CCD=AoCC BoD,
(12) 0 A= B C Ao B,
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(13) ACB<K C=A<C, and
(14) (Vae€ A,Vbe B) (Ao B< C=aobx ().
Proof. (1) It is straightforward by B=2.

(2) By B2, we have 0oy < (z00)o(xzoy). By B2, we have y € 0oy. Thus y < (z00)o(xoy).
(3
(4
(5) Assume that z < y. By B2, we have 0 € zoy < (z0x) o (z0y). Then 0 < a for some
a€ (zox)o(zoy). By B2 and B2, we have a = 0. Thus zoz < z o y.

By B2, we have yo0 < (zoy)o(x00). By B2, we have 0 € yo0. Thus 0 < (zoy)o(z00).
It is straightforward by BZ2.

)
)
)
)

(6) It is straightforward by and the definition of <.

)
(7) By B2, we have a € 0oa C UOoazOoAforallaeA. Thus A C 0o A.
acA

(8) By B2, we have A < 0.

(9) Assume that 0 < A. Then 0 < a for some a € A. By B2 and B2, we have a = 0 and so
0c A

(10) Assume that 0 € B. Then, by B2, we have A < B.

(11) Assume that A C Band C C D. Then Ao C = U aocC U bod=BoD.

ac€ACB beB
ceCCD deD

(12) It follows from and [11).
(13) It is straightforward by the definition of <.

(14) It follows from [13]. O

Definition 3.15. A subset S of H is called a UP-hypersubalgebra of H if the constant 0 of H is
in S, and (S, 0,0) itself forms a UP-hyperalgebra. Clearly, H is a UP-hypersubalgebra of H.

The following example shows that the singleton {0} is not a UP-hypersubalgebra of a UP-
hyperalgebra in general.

Example 3.16. From Ezample T3, we have (H,0,0) is a UP-hyperalgebra. Since 0 o 0 =
{0,2} ¢ P*({0}), we have o is not a binary hyperoperation on {0}. Hence, ({0},0,0) is not a
UP-hypersubalgebra of H.

Example 3.17. From Example 5], we have (R207°R207 0) is a UP-hyperalgebra. Since lor,, 1=
R>0 & P*(No), we have or., is not a binary hyperoperation on No. Hence, (No,oRs,,0) is not a
UP-hypersubalgebra of R>o. But by Theorem &4, we have (Ng,oN,,0) is a UP-hyperalgebra.

Proposition 3.18. Let S be a nonempty subset of H. If t <y and zoy C S for some x,y € S,
then 0 € S.

Proof. Assume that x < y and x oy C S for some z,y € S. Then 0 € xoy C S. O
Theorem 3.19. Let S be a nonempty subset of H. Then the following statements hold:

(1) if S is a UP-hypersubalgebra of H, then So S =S,
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(2) if S is a UP-hypersubalgebra of H, then S o S is also a UP-hypersubalgebra of H,
(8) if So S C S and 0 € S, then S is a UP-hypersubalgebra of H, and
(4) if SoS C S and x <y for some x,y € S, then S is a UP-hypersubalgebra of H.

Proof. (1) It is straightforward by the binary hyperoperation on S and B=2.
(2) It follows from [T}.
(3) Obviously from the definition of UP-hyperalgebras.

(4) Assume that So S C S and x < y for some z,y € S. By Proposition BIR, we have 0 € S.
It follows from that S is a UP-hypersubalgebra of H. O

Theorem 3.20. Let .7 be a nonempty family of UP-hypersubalgebras of H. Then (\gc, S is a
UP-hypersubalgebra of H.

Proof. Clearly, 0 € S for all S € .. Then 0 € (gc» S. Let 2,y € (ge» S Then z,y € S for all
S € . Since S is a UP-hypersubalgebra of H, it follows from Theorem BTY that xoy C S for
all S € . and so zoy C [\ge.» 5. By Theorem BTU[3], we have [\gc o S is a UP-hypersubalgebra
of H. O

Remark 3.21. The union of two UP-hypersubalgebras of a UP-hyperalgebra need not be a UP-
hypersubalgebra. We show the remark with Example B2Z2.

Example 3.22. Let H = {0, 1, 2,3} be a set with a binary hyperoperation o defined by the following

Cayley table:
o 0 1 2 3

ol or @ 23
1]{0,1} {01} {23} {1,2,3}

2| {0,2} {0,1,3} {0,2} {1,2,3}

30,3} {12} {0,1,3} {2,3)

Then (H,0,0) is a UP-hyperalgebra and {0,1} and {0,2} are UP-hypersubalgebras of H. Since
1,2 € {0,1,2} = {0,1} U {0,2} but 201 = {0,1,3} ¢ P*({0,1,2}), we have o is not a binary
hyperoperation on {0,1,2}. Hence, ({0,1,2},0,0) is not a UP-hypersubalgebra of H.

Remark 3.23. FEvery UP-subalgebra of a UP-algebra H is a UP-hypersubalgebra of the UP-
hyperalgebra H, which is defined in Theorem ZI3.

Proof. Let S be a UP-subalgebra of a UP-algebra H = (H,-,0). Then 0 € S. Let z,y € S. Since
S is a UP-subalgebra of H, we have -y € S. Thus zoy = {z-y} C 5,80 S0S C S. By Theorem
BTY [3), we have S is a UP-hypersubalgebra of the UP-hyperalgebra (H, o,0) in Theorem B12. [

Remark 3.24. The hyperproduct of two UP-hypersubalgebras of a UP-hyperalgebra need not be a
UP-hypersubalgebra. We show the remark with Example [Z2Z4.
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Example 3.25. Let H = {0,1,2,3,4,5,6} be a UP-algebra with a fized element 0 and a binary
operation - defined by the following Cayley table:

0123 456
0/j]0 1 2 3 4 5 6
110 0 2 3 2 3 6
2101 0 3 15 3
3101 2 0 4 1 2
410 0 0 3 0 3 3
5(0 0 2 0 2 0 2
6/0 1 0 01 10

Then {0,2} and {0,4} are UP-subalgebras of H. By Remark @23, we have {0,2} and {0,4} are
UP-hypersubalgebras of the UP-hyperalgebra H, which is defined in Theorem BIB. Since 1,4 €
{0,1,4} ={0,2} 0 {0,4} but 104 = {2} ¢ P*({0,1,4}), we have o is not a binary hyperoperation
on {0,1,4}. Hence, ({0,1,4},0,0) is not a UP-hypersubalgebra of H.

For the study of hyper BCC-algebras, hyper BCl-algebras, and hyper BCK-algebras, some
subsets have been defined. The results of the study can be summarized as follows.

In a hyper BCC-algebra (H,o,0) [3], the set S(H) := {&# € H | z ox = {0}} is a hyper
BCC-algebra.

In a hyper BCl-algebra (H,o,0) [?4], the set S(H) := {x € H | 0oz = {0}} is a hyper BCI-
algebra if S(H) is nonempty, the set Si := {x € H | zo(x00) = {0}} is a hyper BCI-algebra and
also a hyper BCK-algebra if Sk is nonempty, and the set Sy :={x € H | x oz = {0}} is a hyper
BClI-algebra if S} is nonempty.

For a UP-hyperalgebra (H,o,0), we define the subsets as follows in the previous study:

Sy={r€ H |z <z},
Sy={x € H|xzox={0}},
Spr={x € H|0ox = {x}},
Srz={r€ H|z00={0}},

Sk ={rx€ H|zo(xo0)={0}}.

The following example shows that there is an Sy for some UP-hyperalgebras which is neither
an empty subset nor a UP-hypersubalgebra.

Example 3.26. From Ezample B3, we have (H,o,0) is a UP-hyperalgebra. We see that Sg =
{0,2}. Since 202 =1{0,1,2} ¢ P*({0,2}) = P*(Su), we have o is not a binary hyperoperation on
Sgr. Hence, (Sg,0,0) is not a UP-hypersubalgebra of H.

The following example shows that there is an Sz for some UP-hyperalgebras which is neither
an empty subset nor a UP-hypersubalgebra.

Example 3.27. Let H = {0,1,2} be a set with a binary hyperoperation o defined by the following
Cayley table:

ol © 1 2
0|{o0,1}y {1} {1,2}
1]{0,1} {o} {o,1}
21{0,1} {2} {o}
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Then (H,o,0) is a UP-hyperalgebra. We see that Sy = {1,2} but 0 ¢ Sz. Hence, (Sz,0,0) is not
a UP-hypersubalgebra of H.

The following example shows that there is an Sy ; for some UP-hyperalgebras which is neither
an empty subset nor a UP-hypersubalgebra.

Example 3.28. Let H = {0, 1,2} be a set with a binary hyperoperation o defined by the following
Cayley table:

ol © 1 2

o|{o,1} {1} {1,2}

1{0,1} {0,1,2} {2}

2{0,1} {0,2} {1,2}
Then (H,0,0) is a UP-hyperalgebra. We see that Spr = {1} but 0 ¢ Sr;. Hence, (Srr1,0,0) is not
a UP-hypersubalgebra of H.

The following example shows that there is an Sz for some UP-hyperalgebras which is neither
an empty subset nor a UP-hypersubalgebra.

Example 3.29. Let H = {0, 1,2} be a set with a binary hyperoperation o defined by the following
Cayley table:

ol 0 1 2

0|{o,1} {1} {1,2}

1 {op {12} {0,1}

2] {0} {2} {0,1,2}
Then (H,0,0) is a UP-hyperalgebra. We see that Sgpz = {1,2} but 0 ¢ Srz. Hence, (Sgrz,o,0) is
not a UP-hypersubalgebra of H.

The following example shows that there is an Sk for some UP-hyperalgebras which is neither
an empty subset nor a UP-hypersubalgebra.

Example 3.30. From Ezample @29, we see that Sk = {1,2} but 0 ¢ Sk. Hence, (Sk,0,0) is
not a UP-hypersubalgebra of H.

4 UP-Hyperideals and s-UP-Hyperideals

In this section, we introduce the concepts of UP-hyperideals of types 1 and 2 and s-UP-hyperideals
of types 1 and 2 in UP-hyperalgebras, and give some relations among these concepts.

Definition 4.1. A subset I of H is called
(1) a UP-hyperideal of type 1 of H if

(i) the constant 0 of H is in I, and
(ii) (Vr,y,z € H)(xo(yoz) CIl,yel=x0zCI).

(2) a UP-hyperideal of type 2 of H if

(i) the constant 0 of H is in I, and
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(ii) (Vz,y,z € H)(zo(yoz) CI,yel = (xoz)NI#0D).
(3) a strong UP-hyperideal of type 1 of H (we shortly call an s-UP-hyperideal of type 1) if
(i) the constant O of H is in I, and
(i) (Vo,y,z2 € H)((xo(yo2))NI#0,yel=x02zCI).
(4) a strong UP-hyperideal of type 2 of H (we shortly call an s-UP-hyperideal of type 2) if
(i) the constant 0 of H is in I, and
(it) (Va,y,z € H)((xo(yoz)NI#0,yel= (xoz)NI#D).
The following theorem follows directly from Definition B
Theorem 4.2. (1) Every s-UP-hyperideal of type 1 of H is a UP-hyperideal of type 1.
(2) Every s-UP-hyperideal of type 1 of H is an s-UP-hyperideal of type 2.
(3) Every UP-hyperideal of type 1 of H is a UP-hyperideal of type 2.
(4) Every s-UP-hyperideal of type 2 of H is a UP-hyperideal of type 2.
The following example shows that the converse of Theorem B2 is not true in general.

Example 4.3. Let H = {0, 1,2} be a set with a binary hyperoperation o defined by the following
Cayley table:

o ‘ 0 1 2

op {op {1} {2}

10,2} {0} {0}

2 {0.2} {12} {0,2)
Then (H,0,0) is a UP-hyperalgebra and I := {0,2} is a UP-hyperideal of type 1 of H. Since
(20(001))NI={1,2}N{0,2} #0 and 0 € I, but 201 = {1,2} ¢ {0,2} = I, we have I is not
an s-UP-hyperideal of type 1 of H.

The following example shows that the converse of Theorem B2 is not true in general.

Example 4.4. Let H = {0,1,2} be a set with a binary hyperoperation o defined by the following
Cayley table:

ol © 1 2

of{o,1y {1y {2}

1 {01} {020 {12}

21{0,1} {o,1} {0,1,2}
Then (H,o0,0) is a UP-hyperalgebra and I := {0} is an s-UP-hyperideal of type 2 of H. Since
(20(001))NI={0,1}N{0} #0 and 0 € I, but 201 = {0,1} € {0} = I, we have I is not an
s-UP-hyperideal of type 1 of H.

The following example shows that the converse of Theorem A2 is not true in general.
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Example 4.5. Let H = {0,1,2} be a set with a binary hyperoperation o defined by the following
Cayley table:

o ‘ 0 1 2

of{o,1p {1y {1,2}

1{o,1}p {1,2} {0,1}

2/ {01} {2} {012}
Then (H,0,0) is a UP-hyperalgebra and I := {0,1} is a UP-hyperideal of type 2 of H. Since
0o(102)={0,1} C{0,1} =T and 1 € I, but 002 = {1,2} € {0,1} = I, we have I is not a
UP-hyperideal of type 1 of H.

The following example shows that the converse of Theorem =2 is not true in general.

Example 4.6. From Example .3, it follows from Theorem [F.3 that I = {0,2} is a UP-
hyperideal of type 2 of H. Since (0o (201))NI={1,2}Nn{0,2} 0 and 2 € I, but (0o1)NI =
{1} n{0,2} = 0, we have I is not an s-UP-hyperideal of type 2 of H.

By Theorem B2 and Examples 823, B4, B3, and B4, we have that the concept of UP-hyperideals
of type 1 is a generalization of s-UP-hyperideals of type 1, s-UP-hyperideals of type 2 is a gen-
eralization of s-UP-hyperideals of type 1, hyper UP-ideals of type 2 is a generalization of hyper
UP-ideals of type 1, and hyper UP-ideals of type 2 is a generalization of s-hyper UP-ideals of type
2. Then, we get the diagram of generalization of UP-hyperideals in UP-hyperalgebras as shown in
Figure .

hyper UP-ideal of type 2

s-hyper UP-ideal of type 2
hyper UP-ideal of type 1

s-hyper UP-ideal of type 1

Figure 1: UP-hyperideals and s-UP-hyperideals

Example 4.7. From Exzamples -3 and G-8, we have {0,2} is a UP-hyperideal of type 1 of H but
it 1s not an s-UP-hyperideal of type 2 of H.

Example 4.8. Let H = {0,1,2,3} be a set with a binary hyperoperation o defined by the following
Cayley table:

ol 0 1 2 3
o {0} {12} {23} {123}
1 {0,1} {23} {o0,1} {13}
21{0,2,3} {1,2} {0,2} {2}

3| H  {0,2,3} {0,1,3} {0,2}

Then (H,o,0) is a UP-hyperalgebra, and {0,2,3} is an s-UP-hyperideal of type 2 of H but it
is not a UP-hyperideal of type 1. Indeed, 0o (203) = {2,3} C {0,2,3} and 2 € {0,2,3} but
003=1{1,2,3} £ {0,2,3}.
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By Examples B74 and B8, we have that a UP-hyperideal of type 1 and an s-hyper UP-ideal of
type 2 are not sufficient conditions for each other in general. Then, we get the diagram as shown
in Figure B.

hyper UP-ideal 7 - s-hyper UP-ideal
of type 1 7 " of type 2

Figure 2: UP-hyperideals of type 1 and s-UP-hyperideals of type 2

Theorem 4.9. {0} is a UP-hyperideal of type 1 of H and also a UP-hyperideal of type 2.

Proof. Clearly, 0 € {0}. Let z,y,z € H be such that z o (yo z) C {0} and y € {0}. Then
zo(0oz) C {0}. ByB2, we have z € 0o z. Thus xoz C zo (0o z) C {0}. Hence, {0} is a
UP-hyperideal of type 1 of H. O

The following example shows that {0} of a UP-hyperalgebra need not be an s-UP-hyperideal
of types 1 and 2.

Example 4.10. Let H = {0, 1,2, 3} be a set with a binary hyperoperation o defined by the following

Cayley table:
o 0 1 2 3

of {oy {1} {2} {23}

{01} {01} {01} {1,2,3)

21{0,2} {2,3} {0,2} {1,2,3}

31030 {12} {013} {2.3)

Then (H,o,0) is a UP-hyperalgebra. Since (20(003))N{0} = (20{2,3})N{0} = HN{0} = {0} # 0
and 0 € {0} but (203)N{0} ={1,2,3} N{0} = 0. Hence, {0} is not an s-UP-hyperideal of type 2
of H and also not an s-UP-hyperideal of type 1.

Remark 4.11. From Theorem g-9 and Example 318, we have a UP-hyperideal of type 1 of H is not
a UP-hypersubalgebra in general. Also, a UP-hyperideal of type 2 of H is not a UP-hypersubalgebra
m general.

Theorem 4.12. If H is a UP-hyperalgebra satisfying the following condition:
(Vx € H)(0Oox = {z}), (4.1)
then {0} is an s-UP-hyperideal of type 2 of H.

Proof. Assume that H is a UP-hyperalgebra satisfying the condition (). Clearly, 0 € {0}. Let
x,y,z € H be such that (zo(yoz))N{0} #0 and y € {0}. Then0 € z0(0oz) =zo{z} =zoz,
so (zoz)N{0} # (. Hence, {0} is an s-UP-hyperideal of type 2 of H. O

Remark 4.13. If H is a UP-hyperalgebra with its binary hyperoperation maps to a singleton set,
then {0} is an s-UP-hyperideal of type 1 of H.
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Proof. Assume that H is a UP-hyperalgebra with its binary hyperoperation maps to a singleton
set. Clearly, 0 € {0}. Let z,y,2 € H be such that (z o (yoz))N{0} # 0 and y € {0}. By
assumption and B3, we have {0} =z o0 (0oz) =z o{z} =z oz, that is, z 0z C {0}. Hence, {0} is
an s-UP-hyperideal of type 1 of H. O

The following example shows that the condition: its binary hyperoperation maps to a singleton
set that is necessary.

Example 4.14. Let H = {0,1,2} be a set with a binary hyperoperation o defined by the following
Cayley table:

o| 0 1 2

orfoy {1} {2}

1) 0.12) (0.2}

2 {0y {1} {0,2}
Then (H,o0,0) is a UP-hyperalgebra but {0} is not an s-UP-hyperideal of type 1 of H. Indeed,
(20(002))N{0} ={0,2} N {0} #0 and 0 € {0}, but 202 ={0,2} Z {0}.

Example 4.15. From FExample and by Theorem .13, we have H is a UP-hyperalgebra
satisfying the condition (B1) and {0} is an s-UP-hyperideal of type 2 of H but not an s-UP-
hyperideal of type 1.

Remark 4.16. If H is a UP-hyperalgebra with its binary hyperoperation maps to a singleton set,
then UP-hyperideals of type 1, UP-hyperideals of type 2, s-UP-hyperideals of type 1, and s-UP-
hyperideals of type 2 of H coincide.

Proof. Since xo(yoz) is a singleton set for all z,y, 2 € H, it is straightforward by the definition. [

Theorem 4.17. Let % be a nonempty family of UP-hyperideals of type 1 of H. Then (\;c 1 is
a UP-hyperideal of type 1 of H.

Proof. Clearly, 0 € I for all I € .#. Then 0 € (;c,I. Let z,y,2 € H be such that z o (yoz) C
NiesIand y € ey L. Thenzo(yoz) CIandy € I forall I €.#. Since I is a UP-hyperideal
of type 1 of H, we have z oy C I for all I € .# and so z oy C (;c, 1. Hence, ((;c, 1 is a
UP-hyperideal of type 1 of H. O

Remark 4.18. The intersection of two UP-hyperideals of type 2 of a UP-hyperalgebra need not be
a UP-hyperideal of type 2. We show the remark with Example =19

Example 4.19. Let H = {0, 1,2, 3} be a set with a binary hyperoperation o defined by the following

Cayley table:
o 0 1 2 3

of {o} {1} {2,3t {2,3}

10,1} {01} {01} {1,2,3)

21{0,2} {2,3} {0,2} {1,2,3}

30,3} (L2} (0,13} {2.3)

Then (H,0,0) is a UP-hyperalgebra and {0,1,2} and {0,1,3} are UP-hyperideals of type 2. Then
{0,1,2} n{0,1,3} = {0,1}. Since 0o (102) ={0,1} C {0,1} and 1 € {0,1} but 002 = {2,3} &
{0,1}. Hence, {0,1} is not a UP-hyperideal of type 2 of H.
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Remark 4.20. The union of two UP-hyperideals of type 1 (resp., UP-hyperideals of type 2) of a
UP-hyperalgebra need not be a hyper UP-ideal of type 1 (resp., hyper UP-ideal of type 2). We show
the remark with Example F-Z1.

Example 4.21. From Ezxample 10, we have {0,2} and {0,3} are UP-hyperideals of type 1 of H
and also UP-hyperideals of type 2. Then {0,2} U {0,3} = {0,2,3}. Since 0o (201) = {2,3} C
{0,2,3} and 2 € {0,2,3} but (001)N{0,2,3} = {1} N{0,2,3} = 0, we have {0,2,3} is not a
UP-hyperideal of type 2 of H and also not a UP-hyperideal of type 1.

Remark 4.22. The hyperproduct of two UP-hyperideals of type 1 (resp., UP-hyperideals of type
2) of a UP-hyperalgebra need not be a hyper UP-ideal of type 1 (resp., hyper UP-ideal of type 2).
We show the remark with Example [.23.

Example 4.23. From Ezample -Z1, we have {0,3} is a UP-hyperideal of type 1 of H and also a
UP-hyperideal of type 2. Then {0,3}0{0,3} ={0,2,3}. It follows from Example g-21 that {0,2,3}
is not a UP-hyperideal of type 2 of H and also not a UP-hyperideal of type 1.

Theorem 4.24. Let .7 be a nonempty family of s-UP-hyperideals of type 1 of H. Then (\;c 1
is an s-UP-hyperideal of type 1 of H.

Proof. Clearly, 0 € I for all I € .#. Then 0 € ();c 1. Let x,y,2 € H be such that (zo (yoz))N
Nies I #0andy € ey L. Then (zo(yoz))NI# (@ andy e I forall I € .. Since I is an
s-UP-hyperideal of type 1 of H, we have z oy C I for all I € # and so xoy C (;c 1. Hence,
Nes I is an s-UP-hyperideal of type 1 of H. O

Remark 4.25. The intersection of two s-UP-hyperideals of type 2 of a UP-hyperalgebra need not
be an s-UP-hyperideal of type 2. We show the remark with Fxample G-24.

Example 4.26. From Ezample 13, we have {0,1,2} and {0,1,3} are s-UP-hyperideals of type
2 of H. Then {0,1,2} n{0,1,3} = {0,1}. Since (0o (103))N{0,1} = {1,2,3} N{0,1} # 0 and
1€{0,1} but (003)N{0,1} ={2,3}N{0,1} =0, we have {0,1} is not an s-UP-hyperideal of type
2 of H.

Remark 4.27. The union of two s-UP-hyperideals of type 1 of a UP-hyperalgebra need not be an
s-UP-hyperideal of type 1. We show the remark with Example [-28.

Example 4.28. Let H = {0, 1,2, 3} be a set with a binary hyperoperation o defined by the following
Cayley table:
o| 0 1 2 3

01{oy {1} {2} {3}

1 {0} {0} {2} {2}

21 {o} {1y {0} {1}

31{o} {o} {o} {0}

Then (H,o0,0) is a UP-hyperalgebra and {0,1} and {0,2} are s-UP-hyperideals of type 1 and also
s-UP-hyperideals of type 2. Then {0,1} N {0,2} = {0,1,2}. Since (0o (103))N{0,1,2} =
{2} n{0,1,2} #0 and 1 € {0,1,2} but (003)N{0,1,2} = {3} N{0,1,2} = 0. Hence, {0,1,2} is
not an s-UP-hyperideal of type 2 of H and also not an s-UP-hyperideal of type 1.

Remark 4.29. The hyperproduct of two s-UP-hyperideals of type 2 of a UP-hyperalgebra need not
be an s-UP-hyperideal of type 2. We show the remark with Fxample G-30.
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Example 4.30. Let H = {0, 1,2, 3} be a set with a binary hyperoperation o defined by the following
Cayley table:
o 0 1 2 3

01{0,1} {1} {2} {3}

L{oy {0y {12} {2}

20 {op {1,3p {op {1}

31 {0y {0} {op {0}

Then (H,o,0) is a UP-hyperalgebra and {0} is an s-UP-hyperideal of type 2. Then {0} o {0} =
{0,1}. Since (00 (102))N{0,1} = {1,2} N {0,1} # 0 and 1 € {0,1} but (002) N {0,1} =
{2} n{0,1} = 0. Hence, {0,1} is not an s-UP-hyperideal of type 2 of H.

Open Problem. Is the hyperproduct of two s-UP-hyperideals of type 1 of a UP-hyperalgebra an
s-hyper UP-ideal of type 17

By the definition of o in Theorem B2 and Theorem BE=2, we have the following proposition.
Proposition 4.31. Every UP-ideal of a UP-algebra H is a UP-hyperideal of type 1 (resp. s-UP-

hyperideal of type 2, UP-hyperideal of type 1, UP-hyperideal of type 2) of the UP-hyperalgebra H,
which is defined in Theorem [ZI12.

Example 4.32. Let H = {0,1,2,3} be a set with a binary operation - defined by the following
Cayley table:

01 2 3
0j0 1 2 3
110 0 2 2
2101 0 2
3101 0 0

Then (H,-,0) is a UP-algebra and S := {0,2} is a UP-subalgebra of H but it is not a UP-ideal
of H. Indeed, 0-(2-3) =2¢€ Sand2 € S, but 0-3 =3 ¢ S. By Remark B2Z3, we have
S is a UP-hypersubalgebra of the UP-hyperalgebra H, which is defined in Theorem BI3. Since
00(203)=00{2} ={2} C{0,2} =S and2 € S, but 003 = {3} € {0,2} = S. Hence, S is not
a UP-hyperideal of type 2 of H and also is not a UP-hyperideal of type 1.

Remark 4.33. From Example f.33, we have a UP-hypersubalgebra of H is not a UP-hyperideal
of type 2 in general. Also, a UP-hypersubalgebra of H is not a UP-hyperideal of type 1 in general.

By Remarks B-11 and B=33, Theorem B2 [3]), and Example B3, we have that a UP-hyperideal
of type 1 is not a UP-hypersubalgebra, a hyper UP-ideal of type 2 is not a UP-hypersubalgebra,
a UP-hypersubalgebra is not a hyper UP-ideal of type 2, a UP-hypersubalgebra is not a hyper
UP-ideal of type 1 in general, but the concept of hyper UP-ideals of type 2 is a generalization of
hyper UP-ideals of type 1. Then, we get the diagram as shown in Figure B.

Definition 4.34. A nonempty subset I of H satisfies the closed condition if
Ve,ye H) (s < y,yc I =z €cl).

Example 4.35. From Example f-10, we have {1},{3},{1,3},{1,2,3}, and H are all subsets of
H satisfying the closed condition.
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// hyper UP-ideal of type 2

hyper UP-subalgebra

v
\\\ hyper UP-ideal of type 1

Figure 3: UP-hypersubalgebras and UP-hyperideals of types 1 and 2

Theorem 4.36. Let € be a nonempty family of nonempty subsets of H satisfy the closed condition.
Then oy C and ey C satisfy the closed condition if (\oeq C is nonempty.

Proof. Let x,y € H be such that < y and y € |Jocyy C. Then y € C for some C' € €. Since
C satisfies the closed condition, we have z € C' C |Jpey C. Hence, |Jocy C satisfies the closed
condition. Assume that (), C is nonempty. Let 2,y € H be such that + < y and y € [y C.
Then y € C for all C' € €. Since C satisfies the closed condition for all C' € €, we have x € C for
all C € €. Thus x € ey C. Hence, [y C satisfies the closed condition. O

Lemma 4.37. If a nonempty subset I of H satisfies the closed condition, then for any A C H, A <
I implies A C I.

Proof. Let A C H be such that A < I and let x € A. Then x < y for some y € I. By the closed
condition of I, we have x € I. Hence, A C I. O

Theorem 4.38. If a nonempty subset I of H containing 0 satisfies the closed condition, then
I = H. Moreover, H is the only closed UP-hypersubalgebra (resp., closed UP-hyperideal of types 1
and 2, closed s-UP-hyperideal of types 1 and 2) of H.

Proof. 1t is straightforward by Proposition B4 and Lemma B=34. O

The following proposition follows from Proposition BT4 and the definition of a UP-
hyperideal of types 1 and 2.

Proposition 4.39. Let A and B be subsets of H. Then the following statements hold:
(1) if I is a UP-hyperideal of type 1 of H and if Ao (x o B) C I forx €I, then Ao B C I, and
(2) if I is a UP-hyperideal of type 2 of H and if Ao (xoB) C I for x € I, then (Ao B)NI # 0.
Definition 4.40. A nonempty subset I of H satisfies the R-condition if 0ol = 1.

Example 4.41. From Ezample 10, we have {0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},{2,3},
and H are all subsets of H satisfying the R-condition.

Theorem 4.42. If I is a UP-hyperideal of type 1 (and also an s-UP-hyperideal of type 1) of H
satisfying the R-condition, then

(Vael,Vre H)(aocx CI=zx€el).

Moreover,

(Vae ILVAC H)(ao ACT= ACI).
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Proof. Let a € I and x € H be such that aox C I. By Proposition 314 and the R-condition,
we have 0o (aoxz) C 0ol = 1. Since I is a UP-hyperideal of type 1 of H and by B3, we have
z€0ox C1I. ]

Theorem 4.43. If I is an s-UP-hyperideal of type 1 of H satisfying the R-condition, then
(Vae ILVx € H)((aoz)NIT #0 =z €1).

Moreover,
VACH)((Vze A,Jae )((acx)NT#0)= ACI).

Proof. Let a € I and x € H be such that (aox)NI # (). Then we choose an element b € (aoz)NI.
By Proposition B4 and the R-condition, we have b € 0o (aox) and b € 0ol = I. Thus
(0o(aox))NI # . Since I is an s-UP-hyperideal of type 1 of H and by B2, we have z € Qox C I. [

5 Conclusions and Future Work

In this paper, we have introduced the concept of UP-hyperalgebras which is a generalization of UP-
algebras, and investigated some related properties. Moreover, the concepts of UP-hypersubalgebras,
UP-hyperideals of types 1 and 2, and s-UP-hyperideals of types 1 and 2 in UP-hyperalgebras are
introduced and some relations among these concepts are presented.

In our future study of UP-hyperalgebras, may be the following topics should be considered:
(1) To get more results in UP-hyperalgebras and application.

(2) To study the fuzzy set theory of UP-hypersubalgebras, UP-hyperideals of types 1 and 2, and
s-UP-hyperideal of types 1 and 2.

(3) To define Smarandache structure of UP-hyperalgebras.

(4) To get more connection between UP-hyperalgebras and Smarandache UP-hyperalgebras.
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