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§1. Definition and the mean value properties of the Smarandache multiplicative

function

For any positive integer n, f(n) is called a Smarandache multiplicative function if f(ab) =

max(f(a), f(b)), (a, b) = 1, and if n = pα1
1 pα2

2 · · · p
αk
k is the prime powers factorization of n, then

f(n) = max
1≤i≤k

{f(pαii )}, (1.1)

for any prime p and any positive integer α, f(n) is a new Smarandache multiplicative function

if f(pα) = αp. That is

f(n) = max
1≤i≤k

{f(pαii )} = max
1≤i≤k

{αipi}.

J. Ma [11]. For any real number x ≥ 2, we have the asymptotic formula∑
n≤x

f(n) =
π2

12
· x

2

lnx
+O

(
x2

ln2 x

)
.

Y. Liu, P. Gao [10]. A new arithmetical function Pd(n) is defined as

Pd(n) =
∏
d|n

d = n
d(n)

2 ,

where d(n) =
∑
d|n 1 is the Dirichlet divisor function. For any real number x ≥ 2, we have the

asymptotic formula∑
n≤x

f(Pd(n)) =
π4

72
· x

2

lnx
+ C · x2

ln2 x
+O

(
x2

ln3 x

)
,

where C = 5π4

288 + 1
2

∑∞
n=1

d(n) lnn
n2 is a constant.
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X. Zhang [24]. For any integer n ∈ N+, n is named as a simple number if the product

of all proper divisors of n is no more than n. Now let A be a simple number set, that is

A = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, . . .}. For any real number x ≥ 2 we have the

asymptotic formula∑
n≤x
n∈A

f(n) = D1
x2

lnx
+D2

x2

ln2 x
+

2x

lnx
+

9x2/3

2 lnx
+O

(
x2

ln3 x

)
,

where D1, D2 are computable constants.

W. Xiong [19]. Let OF (N) denotes the number of all integers 1 ≤ k ≤ n such that f(n)

is odd, EF (n) denotes the number of all integer 1 ≤ k ≤ n such that f(n) is even. For any

positive integer n > 1, we have the asymptotic formula

EF (n)

OF (n)
= O

(
1

lnn

)
.

From the formula above, it can be immediately deduced the following

lim
n→∞

EF (n)

OF (n)
= 0.

J. Li [6]. For any real number x > 1, we have the asymptotic formula

∑
n∈N

f(n)≤x

= e
c
x

lnx
+O

(
x(ln lnx)2

ln2 x

)
,

where c =

∞∑
n=1

ln(n+ 1)

n(n+ 1)
is a constant.

Z. Feng [1]. A natural number n is of the k-full number if for any prime p, p | n implies

pk | n. Let Ak be a simple number set, for any real number x ≥ 2 we have the asymptotic

formula ∑
n≤x
n∈Ak

f(n) = C1
x2

lnx
+ C2

x2

ln2 x
+

2x

lnx
+

9x2/3

2 lnx
+O

(
x2

ln3 x

)
,

where C1, C2 are computable constants.

Y. Men [12]. Let Smd(n) =
∑
d|n

1
f(d) , for any real number x ≥ 1, when n 6= 1, 24, we

have

(1). If n = pα1
1 pα2

2 · · · pαss p, pα1
1 < pα2

2 < · · · < pαss < p, and p, pi(i = 1, 2, . . . , s) are

primes, then Smd(n) is not a positive integer;

(2). If n = p1p2 · · · ps, p1 < p2 < · · · < ps, pi(i = 1, 2, . . . , s) are primes, then Smd(n) is

not a positive integer.

R. Guo and X. Zhao [2]. 1. For any real number x ≥ 1 and any fixed positive integer

k ≥ 2, we have the asymptotic formula∑
n≤x

Λ(n)f(n) = x2
k∑
i=1

ci

lni−1 x
+O

(
x2

lnk x

)
,
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where Λ(n) is the Mangoldt function, ci(i = 1, 2, . . . , k) are computable constants and c1 = 1
2 .

2. For any real number x ≥ 1 and any fixed positive integer k ≥ 2, we have the asymptotic

formula

∑
n≤x

Λ(n)S(n) = x2
k∑
i=1

ci

lni−1 x
+O

(
x2

lnk x

)
,

where S(n) is the famous Smarandache function, S(n) = min{m : m ∈ N, n | m!}, ci(i =

1, 2, . . . , k) are computable constants and c1 = 1
2 .

For any positive integers m and n, an arithmetical function h(n) is defined as follows

(m,n) = 1⇒ h(mn) = max{h(m), h(n)}.

If n = pα1
1 pα2

2 · · · p
αk
k is the prime powers factorization of n, defining

h(1) = 1, h(n) = max
1≤i≤k

{ 1

αi + 1
}, (1.2)

then h(n) is also a Smarandache multiplicative function.

J. Zhang and P. Zhang [22]. 1. For any real number x > 1, we have the asymptotic

formula ∑
n≤x

h(n) =
1

2
· x+O(x

1
2 ).

2. For any real number x > 1, we have the asymptotic formula∑
n≤x

(
h(n)− 1

2

)2

=
1

36
·
ζ( 3

2 )

ζ(3)
·
√
x+O(x

1
3 ),

where ζ(n) is the Riemann Zeta-function.

The Smarandache multiplicative function g(n) can also be defined as follows

g(1) = 0, (m,n) = 1⇒ g(mn) = min{g(m), g(n)}. (1.3)

If n = pt11 p
t2
2 · · · ptrr is the prime powers factorization of n, then

g(n) = min
1≤i≤r

{f(ptii )}, (1.4)

specifically let g(pt) = min{t, p}, then g(n) is a new Smarandache multiplicative function.

Z. Ren [13]. For any real number x > 1, we have the asymptotic formula∑
n≤x

g(n) = x+
12x1/2

π2

∏
p

(
1 +

1

(p+ 1)(p
1
2 − 1)

)
+

18x1/3

π2

∏
p

(
1 +

1

(p+ 1)(p
1
3 − 1)

)
+O(x

1
4+X),

where X is any fixed positive number.

L. Li [8]. 1. For any positive integer n, if n = pt11 p
t2
2 · · · ptrr is the prime powers

factorization of n, let λ = max
1≤i≤r

{ti}, i = 1, . . . , r and

F (1) = 1, F (n) = min
1≤i≤r

{ 1

ti + 1
} =

1

λ+ 1
, (1.5)



12 Y. Qi No. 1

then F (n) is a Smarandache multiplicative function. For any real number x > 1, we have the

asymptotic formula ∑
n≤x

F (n) =
1

λ+ 1
x+O(x

1
2 ).

2. For any real number x > 1, we have the asymptotic formula∑
n≤x

(
F (n)− 1

2

)2

=
12

π2

√
x+O(x

1
3 ).

T. Zhang [23]. Let p be a prime and for any positive real number m, Um(n) is defined

as follows

U(1) = 1, Um(pα) = pα +m, (1.6)

if n = pα1
1 pα2

2 · · · p
αk
k is the prime powers factorization of n, Um(n) is defined as Um(n) =

Um(pα1
1 ) · · ·Um(pαkk ). For any real number x > 1, we have the asymptotic formula∑

n≤x

Um(n) =
1

2
x2
∏
p

(
1 +

m

p(p+ 1)

)
+O(x

3
2+ε).

X. Wang [18]. Let I(n) be the multiplicative function such that for any prime p and any

integer α ≥ 1, one has

I(pα) =
pα+1

α+ 1
,

then we have ∑
mn≤x

I(m)I(n) = Cx3 +O(x
5
2+ε),

where C is an explicit constant.

L. Wang [16]. Let N0 ≥ 1 be a fixed integer and for the multiplicative function I(n), we

have ∑
n≤x

I(n) = x3 log
1
2 x

( N0∑
i=1

ci log−i x+O(log−N0−1 x)

)
,

where ci(i ≥ 1) are computable constants.

§2. Some hybrid mean values involving the Smarandache multiplicative func-

tion

Y. Yi [21]. For any prime p and positive integer α, the Smarandache multiplicative

function f(n) is defined as f(pα) = p

1

α . Let n = pα1
1 pα2

2 · · · pαrr is the prime powers factorization

of n, then from the definition of f(pα) we have

f(n) = max
1≤i≤r

{f(pαii )} = max
1≤i≤r

{
p

1
αi
i

}
.
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For any real number x ≥ 3, we have the asymptotic formula

∑
n≤x

(f(n)− P (n))
2

=
2ζ( 3

2 )x
3
2

3 lnx
+O

(
x

3
2

ln2 x

)
,

where ζ(n) denotes the Riemann zeta-function and P (n) is the greatest prime divisor of n.

W. Lu and L. Gao [9]. For any real number x ≥ 3 and any real number or complex

number α, we have the asymptotic formula∑
n≤x

δα(n) (f(n)− P (n))
2

=
ζ(α+ 3)ζ(2α+ 3)x2α+3

(2α+ 3) lnx
+

r∑
i=2

ci · x2α+3

lni x
+O

(
x2α+3

lnr+1 x

)
,

where ζ(n) denotes the Riemann zeta-function and all ci are computable constants.

H. Shen [14]. For any positive integer n, if n = pα1
1 pα2

2 · · · pαrr is the prime powers

factorization of n, the Smarandache multiplicative function V (n) is defined as follows

V (1) = 1, V (n) = max
1≤i≤r

{α1p1, . . . , αrpr}. (2.1)

For any real number x ≥ 1 and any fixed positive integer r, we have the asymptotic formula∑
n≤x

(V (n)− p(n))
2

= x
3
2

r∑
i=1

ci

lni x
+O

(
x

3
2

lnr+1 x

)
,

where p(n) is the least prime divisor of n and all ci are computable constants.

H. Liu and W. Cui [3]. Let n ≥ 1 is a positive integer, we have the asymptotic formula

∑
n≤x

V (n)p(n) =

r∑
i=1

x3ai

lni x
+O

(
x3

lnr+1 x

)
,

where all ai(i = 1, . . . , r) are computable constants.

§3. Mean values involving the Smarandache-type multiplicative function

The Smarandache-type multiplicative function Cm(n) is defined as the m-th root of the

largest m-th power dividing n, Jm(n) is denoted as m-th root of the smallest m-th power

divisible by n.

H. Liu and J. Gao [5]. 1. For any integer m ≥ 3 and real number x ≥ 1, we have∑
n≤x

Cm(n) =
ζ(m− 1)

ζ(m)
x+O

(
x

1
2+ε

)
.

2. For any integer m ≥ 1 and real number x ≥ 1, we have

∑
n≤x

Jm(n) =
x2

2ζ(2)

∏
p

[
1 +

1
p2m + 1

p3 −
1

p2m+1 − 1
p2m+2

(1 + 1
p )(1− 1

p2 )(1− 1
p2m−1 )

]
+O(x

3
2+ε).

H. Liu and J. Gao [4]. 1. For any integer m ≥ 3 and real number x ≥ 1, we have∑
n≤x

Λ(n)Cm(n) = x+O

(
x

log x

)
,
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where Λ(n) is the Mangoldent function.

2. For any integer m ≥ 2 and real number x ≥ 1, we have∑
n≤x

Λ(n)Jm(n) = x2 +O

(
x2

log x

)
,

The Smarandache-type multiplicative function Km(n) is the largest m-th power-free num-

ber dividing n, Lm(n) is denoted as: n divided by the largest m-th power-free number dividing

n. That is, if n = pα1
1 pα2

2 · · · p
αk
k is the prime powers factorization of n, it follows that

Km(n) = pβ1

1 p
β2

2 · · · p
βk
k ,

Lm(n) = pγ11 p
γ2
2 · · · p

γk
k ,

where βi = min(αi,m− 1), γi = max(0, αi −m+ 1)

C. Yang and C. Li [20]. 1. Let m ≥ 2 is a given integer, then for any real number

x ≥ 1, we have∑
n≤x

Km(n) =
x2

2ζ(m)

∏
p

(
1 +

1

(pm − 1)(p+ 1)

)
+O

(
x

3
2+ε

)
.

2. Let m ≥ 2 is a given integer, then for any real number x ≥ 1, we have∑
n≤x

1

Lm(n)
=

x

ζ(m)

∏
p

(
1 +

1

(pm − 1)(p+ 1)

)
+O

(
x

1
2+ε

)
,

where ζ(s) is the Riemann Zeta-function.

J. Wang [15]. The asymptotic formula

∑
n≤x

Km(n) =
x2

2ζ(m)

∏
p

(
1 +

1

(pm − 1)(p+ 1)

)
+O

(
x1+

1
m e−c0δ(x)

)
.

holds, where c0 is an absolute positive constant and δ(x) = (log x)3/5(log log x)−1/5.

For any fixed positive integer n with the normal factorization pα1
1 pα2

2 · · · p
αk
k , (1 ≤ i ≤ k),

the Smarandache-type multiplicative function Fm(n), Gm(n) are denoted as

Fm(pαii ) =

 1, if αi = mk,

pmi , otherwise .

and

Gm(pαii ) =

 1, if αi = mk,

pi, otherwise .

J. Li and D. Liu [7]. 1. For any integer m ≥ 2 and real number x ≥ 1, we have

∑
n≤x

Fm(n) =
6ζ(m2 +m)ζ(m+ 1)R(m+ 1)xm+1

π2
+O

(
xm+ 1

2+ε

)
,
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where ε be any fixed positive integer,and

R(m+ 1) =
∏
p

(
1− 1

pm+1 + pm
− 1

pm2 + pm2−1

)
.

2. For any integer m ≥ 2 and real number x ≥ 1, we have∑
n≤x

Gm(n) = ζ(2m)R(2)x2 +O(x
3
2+ε),

where

R(2) =
∏
p

(
1− 1

p2 + p
− 1

p2m−1 + p2m−2

)
.

M. Wang [17]. 1. For any integer m ≥ 2, A be a set without m-th power factor number,

we have∑
n≤x
n∈A

Fm(n) =
6ζ(m+ 1)xm+1

π2

∏
p

(
1− 1

pm−1 + pm
− 1

pm2 + pm2−1

)
+O

(
xm+ 1

2−ε
)
,

where ε be any fixed positive number.

2. For any positive integer m ≥ 2, A be a set without m-th power factor number, we have∑
n≤x
n∈A

Gm(n) = x2
∏
p

(
1− 1

p2 + pm
− 1

p2m−1 + p2m−2

)
+O

(
x

3
2−ε
)
.
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