On an additive analogue of the function S

József Sándor

Babes-Bolyai University, 3400 Cluj-Napoca, Romania

The function S, and its dual S_{*} are defined by

$$
\begin{gathered}
S(n)=\min \{m \in \mathbb{N}: n \mid m!\} \\
S_{*}(n)=\max \{m \in \mathbb{N}: m!\mid n\} \quad \text { (see e.g. [1]) }
\end{gathered}
$$

We now define the following "additive analogue", which is defined on a subset of real numbers.

Let

$$
\begin{equation*}
S(x)=\min \{m \in \mathbb{N}: x \leq m!\}, \quad x \in(1, \infty) \tag{1}
\end{equation*}
$$

as well as, its dual

$$
\begin{equation*}
S_{*}(x)=\max \{m \in \mathbb{N}: m!\leq x\}, \quad x \in[1, \infty) \tag{2}
\end{equation*}
$$

Clearly, $S(x)=m$ if $x \in((m-1)!, m!]$ for $m \geq 2$ (for $m=1$ it is not defined, as $0!=1!=1!$), therefore this function is defined for $x>1$.

In the same manner, $S_{*}(x)=m$ if $x \in\left[m!,(m+1)\right.$!) for $m \geq 1$, i.e. $S_{*}:[1, \infty) \rightarrow \mathbb{N}$ (while $S:(1, \infty) \rightarrow \mathbb{N}$).

It is immediate that

$$
S(x)=\left\{\begin{array}{lll}
S_{*}(x)+1, & \text { if } x \in(k!,(k+1)!) & (k \geq 1) \tag{3}\\
S_{*}(x), & \text { if } x=(k+1)! & (k \geq 1)
\end{array}\right.
$$

Therefore, $S_{*}(x)+1 \geq S(x) \geq S_{*}(x)$, and it will be sufficient to study the function $S_{*}(x)$.

The following simple properties of S_{*} are immediate:
$1^{\circ} S_{*}$ is surjective and an increasing function
$2^{\circ} S_{*}$ is continuous for all $x \in[1, \infty) \backslash A$, where $A=\{k!, k \geq 2\}$, and since $\lim _{x / k!} S_{*}(x)=$ $k-1, \lim _{x \backslash k!} S_{*}(x)=k(k \geq 2), S_{*}$ is continuous from the right in $x=k!(k \geq 2)$, but it is not continuous from the left.
$3^{\circ} S_{*}$ is differentiable on $(1, \infty) \backslash A$, and since $\lim _{x \backslash k!} \frac{S_{*}(x)-S_{*}(k!)}{x-k!}=0$, it has a rightderivative in $A \cup\{1\}$.
$4^{\circ} S_{*}$ is Riemann integrable in $[a, b] \subset \mathbb{R}$ for all $a<b$.
a) If $[a, b] \subset[k!,(k+1)!)(k \geq 1)$, then clearly

$$
\begin{equation*}
\int_{a}^{b} S_{*}(x) d x=k(b-a) \tag{4}
\end{equation*}
$$

b) On the other hand, since

$$
\int_{k!}^{l}=\int_{k!}^{(k+1)!}+\int_{(k+1)!}^{(k+2)!}+\ldots+\int_{(k+l-k-1)!}^{(k+l-k)!}
$$

(where $l>k$ are positive integers), and by

$$
\begin{equation*}
\int_{k!}^{(k+1)!} S_{*}(x) d x=k[(k+1)!-k!]=k^{2} \cdot k! \tag{5}
\end{equation*}
$$

we get

$$
\begin{equation*}
\int_{k!}^{l!} S_{*}(x) d x=k^{2} \cdot k!+(k+1)^{2}(k+1)!+\ldots+[k+(l-k-1)]^{2}[k+(l-k-1)!] \tag{6}
\end{equation*}
$$

c) Now, if $a \in[k!,(k+1)!], b \in[l!,(l+1)!)$, by

$$
\int_{a}^{b}=\int_{a}^{(k+1)!}+\int_{(k+1)!}^{l!}+\int_{l!}^{k}
$$

and (4), (5), (6), we get:

$$
\begin{align*}
& \int_{a}^{b} S_{*}(x) d x=k[(k+1)!-a]+(k+1)^{2}(k+1)!+\ldots+ \\
& +[k+1+(l-k-2)]^{2}[k+1+(l-k-2)!]+l(b-l!) \tag{7}
\end{align*}
$$

We now prove the following
Theorem 1.

$$
\begin{equation*}
S_{*}(x) \sim \frac{\log x}{\log \log x} \quad(x \rightarrow \infty) \tag{8}
\end{equation*}
$$

Proof. We need the following
Lemma. Let $x_{n}>0, y_{n}>0, \frac{x_{n}}{y_{n}} \rightarrow a>0$ (finite) as $n \rightarrow \infty$, where $x_{n}, y_{n} \rightarrow \infty$ ($n \rightarrow \infty$). Then

$$
\begin{equation*}
\frac{\log x_{n}}{\log y_{n}} \rightarrow 1 \quad(n \rightarrow \infty) \tag{9}
\end{equation*}
$$

Proof. $\log \frac{x_{n}}{y_{n}} \rightarrow \log a$, i.e. $\log x_{n}-\log y=\log a+\varepsilon(n)$, with $\varepsilon(n) \rightarrow 0(n \rightarrow \infty)$. So

$$
\frac{\log x_{n}}{\log y_{n}}-1=\frac{\log a}{\log y_{n}}+\frac{\varepsilon(n)}{\log y_{n}} \rightarrow 0+0 \cdot 0=0 .
$$

Lemma 2. a) $\frac{n \log \log n!}{\log n!} \rightarrow 1$;
b) $\frac{\log n!}{\log (n+1)!} \rightarrow 1$;
c) $\frac{\log \log n!}{\log \log (n+1)!} \rightarrow 1$ as $n \rightarrow \infty$

Proof. a) Since $n!\sim C e^{-n} n^{n+1 / 2}$ (Stirling's formula), clearly $\log n!\sim n \log n$, so b) follows by $\frac{\log n}{\log (n+1)} \sim 1\left((9)\right.$, since $\left.\frac{n}{n+1} \sim 1\right)$. Now c) is a consequence of b) by the Lemma. Again by the Lemma, and $\log n!\sim n \log n$ we get

$$
\log \log n!\sim \log (n \log n)=\log n+\log \log n \sim \log n
$$

and a) follows.

Now, from the proof of (8), remark that

$$
\frac{n \log \log n!}{\log (n+1)!}<\frac{S_{*}(x) \log \log x}{\log x}<\frac{n \log \log (n+1)!}{\log n!}
$$

and the result follows by (10).
Theorem 2. The series $\sum_{n=1}^{\infty} \frac{1}{n\left(S_{*}(n)\right)^{\alpha}}$ is convergent for $\alpha>1$ and divergent for $a \leq 1$.

Proof. By Theorem 1,

$$
A \frac{\log n}{\log \log n}<S_{*}(n)<B \frac{\log n}{\log \log n}
$$

($A, B>0$) for $n \geq n_{0}>1$, therefore it will be sufficient to study the convergence of $\sum_{n \geq n_{0}}^{\infty} \frac{(\log \log n)^{\alpha}}{n(\log n)^{\alpha}}$.

The function $f(x)=(\log \log x)^{\alpha} / x(\log x)^{\alpha}$ has a derivative given by

$$
x^{2}(\log x)^{2 \alpha} f^{\prime}(x)=(\log \log x)^{\alpha-1}(\log x)^{\alpha-1}[1-(\log \log x)(\log x+\alpha)]
$$

implying that $f^{\prime}(x)<0$ for all sufficiently large x and all $\alpha \in \mathbb{R}$. Thus f is strictly decreasing for $x \geq x_{0}$. By the Cauchy condensation criterion ([2]) we know that $\sum a_{n} \leftrightarrow$ $\sum 2^{n} a_{2^{n}}$ (where \leftrightarrow means that the two series have the same type of convergence) for $\left(a_{n}\right)$ strictly decreasing, $a_{n}>0$. Now, with $a_{n}=(\log \log n)^{\alpha} / n(\log n)^{\alpha}$ we have to study $\sum \frac{2^{n}\left(\log \log 2^{n}\right)^{\alpha}}{2^{n}\left(\log 2^{n}\right)^{\alpha}} \leftrightarrow \sum\left(\frac{\log n+a}{n+b}\right)^{\alpha}$, where a, b are constants $(a=\log \log 2, b=$ $\log 2$). Arguing as above, $\left(b_{n}\right)$ defined by $b_{n}=\left(\frac{\log n+a}{n+b}\right)^{\alpha}$ is a strictly positive, strictly decreasing sequence, so again by Cauchy's criterion

$$
\sum_{n \geq m_{0}} b_{n} \leftrightarrow \sum_{n \geq m_{0}} \frac{2^{n}\left(\log 2^{n}+a\right)^{\alpha}}{\left(2^{n}+b\right)^{\alpha}}=\sum_{n \geq m_{0}} \frac{2^{n}(n b+a)^{\alpha}}{\left(2^{n}+b\right)^{\alpha}}=\sum_{n \geq m_{0}} c_{n}
$$

Now, $\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}=\frac{1}{2^{\alpha-1}}$, by an easy computation, so D'Alembert's criterion proves the theorem for $\alpha \neq 1$. But for $\alpha=1$ we get the series $\sum \frac{2^{n}(n b+a)}{2^{n}+b}$, which is clearly divergent.

References

[1] J. Sándor, On certain generalizations of the Smarandache function, Notes Numb. Th. Discr. Math. 5(1999), No.2, 41-51.
[2] W. Rudin, Principles of Mathematical Analysis, Second ed., Mc Graw-Hill Company, New York, 1964.

