National Conference on Recent Advances and Innovations in Pure and Applied Mathematics

Organized by Department of Mathematics Sri Akilandeswari Women's College, Wandiwash -604408

Algorithmic Structure of Smarandache-Lattice

Dr. N.Kannappa¹ and Mr. K Suresh²

¹Head and Associate Professor, PG&Research Department of Mathematics, T.B.M.L, College, Porayar, Tamil Nadu, India.

²Assistant professor, Department of Mathematics, Mailam Engineering college, Mailam, Tamil Nadu, India

<u>ABSTRACT:</u> In this paper, we introduced Smarandache-2-algebraic structure of Lattice. A Smarandache-2algebraic structure on a set N means a weak algebraic structure S_1 on N such that there exist a proper subset M of N, which is embedded with a stronger algebraic structure S_2 , stronger algebraic structure means satisfying more axioms, that is $S_1 << S_2$, by proper subset one can understand a subset different from the empty set, from the unit element if any, from the whole set. We define Smarandache-Lattice and construct its algorithms through orthomodular lattice ,residuated lattice, pseudocomplment lattice, arbitrary lattice and congruence and ideal lattice . For basic concept of near-ring we refer to Padilla Raul [21] and for smarandache algebraic structure we refer to Florentin Smarandache [8]

1. Introduction

In order that, new notions are introduced in algebra to better study the congruence in number theory by Florentin smarandache [8]. By<proper subset> of a set A we consider a set P included in A, and different from A, different from empty set and from the unit element in A-if any they rank the algebraic structures using an order relationship:

They say that the algebraic structures $S_1 \ll S_2$ if : both are defined on the same set; all S_1 laws are also S_2 laws; all axioms of an S_1 law are accomplished by the corresponding S_2 law; S_2 law accomplish strictly more axioms that S_1 laws or S_2 has more laws than S_1 .

For example: Semi group<< Monoid <<group<<ring<field, or semi group<< commutative semi group, ring<<unitary ring etc. they define a general special structure to be a structure SM on a set A, different from a structure SN, such that a proper subset of A is a structure, where SM<<SN.In additionwe have published [13],[14],[15],[16].

The characterization of Smarandache-lattice by the substructures of Lattice namely orthomodular lattice , ideal lattice, pseudo complement lattice, Arbitrary lattice, Residuated lattice was studied. From that it is observed that orthomodular lattice of Boolean algebra are {0} and itself, ideals of Boolean algebra are {0} and itself, pseudo complement lattice of Boolean algebra are {0} and itself, arbitrary lattice of Boolean algebra are {0} and itself, arbitrary lattice of Boolean algebra are {0} and itself, residuated lattice of Boolean algebra are {0} and itself, The converse of the above are also true if non-zero substructures are considered .Then the Boolean algebra itself is orthomodular lattice , ideals, pseudo complement lattice, Arbitrary lattice, Residuated lattice by this hypothesis, in this paper algorithms to construct the Smarandache lattice from its characterization obtained in paper[13],[14],[15],[16] are obtained.

2. Preliminaries Definition: 2.1

A partially ordered set (L, <) is said to form a **Lattice** if for every $a, b \in L$, Sup {a, b} and Inf {a, b} exist in L. In that case, we write Sup {a, b} = $a \lor b$, Inf{a, b} = $a \land b$ Other notations like a + b and a. b or $a \cup b$ and $a \cap b$ are also used for Sup {a, b} and Inf {a, b}.

Definition: 2.2 (Lattice as an Algebraic Structure)

A **lattice** as an algebraic structure is a set on which two binary operations are defined, called join and meet, denoted by \lor and \land , satisfying the following axioms (i) Commutative law (ii) Associative law (iii) Absorption law (iv) Idempotent law.

Definition: 2.3

A **Boolean algebra** consists of a set B, two binary operations \land and \lor (called meet and join respectively), a

unary operation and two constants 0 and 1. These obey the following laws: (i) Commutative Laws (ii) Associative Laws (iii) Distributive Laws (iv) Identity Laws (v) Complement Laws (vi) Idempotent Laws (vii) Null Laws(viii) Absorption Laws (ix) DeMorgan's Laws(x) Involution Law.

Definition 2.4

The **Smarandache lattice** is defined to be a lattice S, such that a proper subset of S is a Boolean algebra with respect to with same induced operations. By proper subset we understand a set included in S, different from the empty set, from the unit element if any, and from S.

Definition 2.5 (Alternate definition for Smarandache lattice)

If there exists superset of a Boolean algebra is a Lattice with respect to the same induced operations, then that Boolean algebra is said to be Smarandache lattice.

Definition 2.6

A **Boolean algebra** is **a lattice** that contains a least element and a greatest element and that is both complemented and distributive

Definition 2.7

An ortho poset P is called **orthomodular** if for every pair $a, b \in P$ with a < b there is $a, c \in P$ such that $c \perp a$ and $b = a \lor c$. We will write shortly P instead of $< P, \leq, \land, \lor, '>$. For every $a, b \in P$ with $a \leq b$ let us denote $b-a = (b \land a') = (b' \lor a)' \in P$ According to the orthomodular law, $b = a \land (b-a) \in P$ and $b \in P$ with $a \leq b$ and moreover $a \perp (b-a)$.

Definition 2.8

The orthomodular lattice L is called Boolean algebra if and if for every $a, b \in L$ the condition $a \wedge b = a \wedge b' = 0$ implies a = 0.

Definition 2.9

A **residuated lattice** is an algebra $< L \land, \lor \otimes, ' \rightarrow, 0, 1 >$ such that

(i) $< L \le , \land, \lor, '0, 1 >$ is Lattice (the corresponding order will be denoted by \le) with the least element 0 and the greatest element 1 (ii) $< L \land, \lor \otimes, ' \rightarrow, 0, 1 >$ is a commutative monoid (i.e. \otimes is commutative, associative, and $x \otimes x = 1$ holds) (iii) $x \otimes y \le z$ if and only if $x \le y \rightarrow z$ holds (adjointness condition).

Definition 2.10

A Boolean algebra is a **residuated lattice** which is both a Heyting algebra and an MV-algebra (relation to the usual axiomatization is $a \rightarrow b = \neg a \lor b$)

Definition 2.11

66

Let L be **a lattice** and $U \subseteq L$. U is said to be an **ideal** of L iff U is nonempty, $b \leq a \in U$ implies $B \in U$, and $a, b \in U$ implies $a \lor b \in U$.

National Conference on Recent Advances and Innovations in Pure and Applied Mathematics

Organized by Department of Mathematics Sri Akilandeswari Women's College, Wandiwash -604408

Definition 2.12

The **Lattice ideal** L is called a **Boolean algebr**a if for all $0 \in I$, $a \in I \Rightarrow b \leq a$ then $b \in I$, $a \lor b \in I$

Definition 2.13

The arbitrary **Lattice ideal** L is called a **Boolean algebr**a if $L \cong e(L)$

Definition 2.14

The **Pseudo complement Lattice** L is called a **Boolean algebr**a if $a \subseteq L$ and $b \subseteq L$ are such that $a \mid a' = a$

3. Algorithms

In Gunder pliz[19] in section 1.60(d). The theorem by Gratzer and Fain is given the following conditions for a near ring $N \neq \{0\}$ are equivalent

1. I $I \neq \{0\}, \{0\} \neq 1 \subseteq N$ 2. N contains a unique minimal ideal, contained in all other non-zero ideals.

Cosequently the following conditions for a lattice $N \neq \{0\}$ are equivalent

1. I $I \neq \{0\}, \{0\} \neq 1 \subseteq N$ 2. N contains a unique minimal larttice ideal, contained in all other non-zero lattice ideals

Algorithms 3.1 (Orthomodular Lattice)

Step 1: Consider a non-empty set B Step 2: Verify that B is a Boolean algebra under meet and join For, check the following conditions 1. (i) For all $a \in B$, $a \lor a = a \in B$ (ii) For all $a \in B$, $a \wedge a = a \in B$ 2 (i) For all $a, b \in B$, $a \lor b = b \lor a \in B$ (ii) For all $a, b \in B$, $a \wedge b = b \wedge a \in B$ 3 (i) For all $a,b,c \in B, a \lor (b \lor c) = (a \lor b) \lor c \in B$ (ii) For all $a,b,c \in B$, $a \land (b \land c) = (a \land b) \land c \in B$ 4 (i) For all $a, b \in B, a \lor (a \land b) = a \in B$ $a, b \in B, a \land (a \lor b) = a \in B$ (ii) For all 5(i). For all $a,b,c \in B$, $a \land (b \lor c) = (a \land b) \lor (a \land c) \in B$ $a,b,c \in B$, $a \lor (b \land c) = (a \lor b) \land (a \lor c) \in B$ (ii) For all 6 (i) For all a'' = a7 (i) For all $a \in B$, $a \lor a' = 1 \in B$ (ii) For all $a \in B$, $a \wedge a' = 0 \in B$

Special Issue

8(i) For all $a \in B$, $a \lor 0 = a \in B$, (ii) For all $a \in B$, $a \land 1 = a \in B$ 9(i) For all $a \in B$, $a \lor 1 = 1 \in B$, (ii) For all $a \in B$, $a \land 0 = 0 \in B$ 10(i) $a, b \in B$, $(\overline{a \lor b}) = \overline{a} \land \overline{b} \in B$ (ii) $a, b \in B$, $(\overline{a \land b}) = \overline{a} \lor \overline{b} \in B$ (ii)

If the above conditions are satisfied,

 $(B, \land, \lor, ', 0, 1) \text{ is a Boolean algebra.}$ Step 3: Let $B = B_0$ Step 4: Let B_i , i = 0, 1, 2, ..., n be supersets of B_0 $S = \bigcup_{i=1}^{n} B_i$ Step 5: Let $S = \bigcup_{i=1}^{n} B_i$ Step 6: Choose sets B_j 's from B_i 's subject to for all $a, b \in B$ such that $a \land b = a \land b \Rightarrow a = 0$

Step 7: I $B_j = B_0 \neq \{0\} \subset S$

Step 8: If step (7) is a true, then we write S is a Smarandache-Lattice.

Algorithms 3.2 (Pseudo complemented lattice)

Step 1: Consider a non-empty set M Step 2: Verify that B is a Boolean algebra under meet and join For, check the following conditions 1. (i) For all $a \in B$, $a \lor a = a \in B$ (ii) For all $a \in B$, $a \land a = a \in B$ 2 (i) For all $a, b \in B$, $a \land b = b \lor a \in B$, (ii) For all $a, b \in B$, $a \land b = b \land a \in B$ 3. (i) For all $a, b, c \in B$, $a \lor (b \lor c) = (a \lor b) \lor c \in B$ (ii) For all $a, b, c \in B$, $a \land (b \land c) = (a \land b) \land c \in B$ (ii) For all $a, b \in B$, $a \land (a \land b) = a \in B$ (ii) For all $a, b \in B$, $a \land (a \lor b) = a \in B$ (ii) For all $a, b, c \in B$, $a \land (b \lor c) = (a \land b) \lor (a \land c) \in B$ (ii) For all $a, b, c \in B$, $a \land (b \lor c) = (a \land b) \lor (a \land c) \in B$ (ii) For all $a, b, c \in B$, $a \land (b \lor c) = (a \lor b) \lor (a \land c) \in B$ (ii) For all $a, b, c \in B$, $a \lor (b \land c) = (a \lor b) \land (a \lor c) \in B$ (ii) For all $a, b, c \in B$, $a \lor (b \land c) = (a \lor b) \land (a \lor c) \in B$ (ii) For all $a, b, c \in B$, $a \lor (b \land c) = (a \lor b) \land (a \lor c) \in B$ (ii) For all $a, b, c \in B$, $a \lor (b \land c) = (a \lor b) \land (a \lor c) \in B$

6(i) For all a'' = a

7(i) For all $a \in B$, $a \lor a' = 1 \in B$

68 IJRAR- International Journal of Research and Analytical Reviews

National Conference on Recent Advances and Innovations in Pure and Applied Mathematics Organized by Department of Mathematics Sri Akilandeswari Women's College, Wandiwash -604408

(ii) For all $a \in B$, $a \wedge a' = 0 \in B$ 8(i) For all $a \in B$, $a \lor 0 = a \in B$ (ii) For all $a \in B$, $a \wedge 1 = a \in B$ 9(i) For al $a \in B$, $a \lor 1 = 1 \in B$ (ii) For all $a \in B$, $a \wedge 0 = 0 \in B$ 10(i) $a, b \in B$, $\overline{(a \lor b)} = \overline{a} \land \overline{b} \in B$ (ii) $a, b \in B$, $\overline{(a \wedge b)} = \overline{a} \vee \overline{b} \in B$ If the above conditions are satisfied, $(B, \land, \lor, ', 0, 1)$ is a Boolean algebra. Step 3: Let $B = B_0$ Step 4: Let B_i , $i = 0, 1, 2, \dots, n$ be supersets of B_0 Step 5: Let $S = \bigcup_{i=1}^{n} B_i$ Step 6: Choose sets B_j 's from B_i 's subject to for all $a \subseteq L$ and $b \subseteq L$ are such that $a \mathbf{I} a' = a$ Step 7: I $B_j = B_0 \neq \{0\} \subset S$ Step 8: If step (7) is a true, then we write S is a Smarandache-Lattice

Algorithmsn 3.3 (Residuated lattice)

Step 1: Consider a non-empty set M Step 2: Verify that B is a Boolean algebra under meet and join For, check the following conditions

1. (i) For all
$$a \in B$$
, $a \lor a = a \in B$
(ii) For all $a \in B$, $a \land a = a \in B$
2. (i) For all $a, b \in B$, $a \lor b = b \lor a \in B$,
(ii) For all $a, b \in B$, $a \land b = b \land a \in B$
3. (i) For all $a, b, c \in B$, $a \lor (b \lor c) = (a \lor b) \lor c \in B$
(ii) For all $a, b, c \in B$, $a \land (b \land c) = (a \land b) \land c \in B$
4. (i) For all $a, b \in B$, $a \lor (a \land b) = a \in B$
(ii) For all $a, b \in B$, $a \land (a \lor b) = a \in B$
(ii) For all $a, b \in B$, $a \land (a \lor b) = a \in B$
5 (i). For all $a, b, c \in B$, $a \land (b \lor c) = (a \land b) \lor (a \land c) \in B$
(ii) For all $a, b, c \in B$, $a \lor (b \land c) = (a \lor b) \lor (a \land c) \in B$
(ii) For all $a, b, c \in B$, $a \lor (b \land c) = (a \lor b) \lor (a \lor c) \in B$

Special Issue

6 (i) For all a'' = a7 (i) For all $a \in B$, $a \lor a' = 1 \in B$, (ii) For all $a \in B$, $a \land a' = 0 \in B$ 8 (i) For all $a \in B$, $a \land 0 = a \in B$, (ii) For all $a \in B$, $a \land 1 = a \in B$ 9 (i) For all $a \in B$, $a \lor 1 = 1 \in B$, (ii) For all $a \in B$, $a \land 0 = 0 \in B$ 10 (i) $a, b \in B$, $(a \lor b) = \overline{a} \land \overline{b} \in B$ (ii) $a, b \in B$, $(\overline{a \land b}) = \overline{a} \lor \overline{b} \in B$

If the above conditions are satisfied, $(B, \land, \lor, ', 0, 1)$ is a Boolean algebra.

Step 3: Let $B = B_0$ Step 4: Let B_i , $i = 0, 1, 2, \dots, n$ be supersets of B_0 Step 5: Let $S = \bigcup_{i=1}^{n} B_i$

Step 6: Choose sets B_j 's from B_i 's subject to for all $a, b \in B$ such that $a \rightarrow b = \neg a \lor b$, Step 7: I $B_j = B_0 \neq \{0\} \subset S$

Step 8: If step (7) is a true, then we write S is a Smarandache-Lattice

Algorithms 3.4 (Arbitrary lattice and Congruence's)

Step 1: Consider a non-empty set M Step 2: Verify that B is a Boolean algebra under meet and join For, check the following conditions 1. (i) For all $a \in B$, $a \lor a = a \in B$ (ii) For all $a \in B$, $a \land a = a \in B$ 2. (i) For all $a, b \in B$, $a \lor b = b \lor a \in B$, (ii) For all $a, b \in B$, $a \land b = b \land a \in B$ 3. (i) For all $a, b, c \in B$, $a \lor (b \lor c) = (a \lor b) \lor c \in B$ (ii) For all $a, b, c \in B$, $a \land (b \land c) = (a \land b) \land c \in B$ (ii) For all $a, b \in B$, $a \lor (a \land b) = a \in B$ 4. (i) For all $a, b \in B$, $a \land (a \lor b) = a \in B$

(ii) For all

70

$$a,b,c \in B, a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \in B$$
(ii) For all
$$a,b,c \in B, a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c) \in B$$
(ii) For all
$$a'' = a$$
7(i) For all
$$a \in B, a \vee a' = 1 \in B,$$
(ii) For all
$$a \in B, a \wedge a' = 0 \in B$$
8(i) For all
$$a \in B, a \wedge 0 = a \in B,$$
(ii) For all
$$a \in B, a \wedge 1 = a \in B$$
9(i) For all
$$a \in B, a \wedge 1 = 1 \in B,$$
(ii) For all
$$a \in B, a \wedge 0 = 0 \in B$$
10(i)
$$a,b \in B, (a \vee b) = \overline{a} \vee \overline{b} \in B$$
(ii)
$$a,b \in B, (a \wedge b) = \overline{a} \vee \overline{b} \in B$$

If the above conditions are satisfied,

$$(B, \land, \lor, ', 0, 1) \text{ is a Boolean algebra.}$$

Step 3: Let $B = B_0$
Step 4: Let B_i , $i = 0, 1, 2, ..., n$ be supersets of B_0
 $S = \bigcup_{i=1}^n B_i$
Step 5: Let

Step 6: Choose sets B_j 's from B_i 's subject to for all $L \cong e(L)$ (Isomorphic to congruence of L) Step 7: I $B_j = B_0 \neq \{0\} \subset S$

Step 8: If step (7) is a true, then we write S is a Smarandache-Lattice

Algorithms 3.5 (Lattice Ideal)

Step 1: Consider a non-empty set M Step 2: Verify that B is a Boolean algebra under meet and join For, check the following conditions

1. (i) For all $a \in B$, $a \lor a = a \in B$ (ii) For all $a \in B$, $a \land a = a \in B$ 2. (i) For all $a, b \in B$, $a \lor b = b \lor a \in B$, (ii) For all $a, b \in B$, $a \land b = b \land a \in B$ 3. (i) For all $a, b, c \in B$, $a \lor (b \lor c) = (a \lor b) \lor c \in B$ (ii) For all $a, b, c \in B$, $a \land (b \land c) = (a \land b) \land c \in B$

 $a, b \in B, a \lor (a \land b) = a \in B$

 $a,b \in B, a \land (a \lor b) = a \in B$ (ii) For all 5(i). For all $a,b,c \in B$, $a \land (b \lor c) = (a \land b) \lor (a \land c) \in B$ $a,b,c \in B$, $a \lor (b \land c) = (a \lor b) \land (a \lor c) \in B$ (ii) For all 6 (i) For all a'' = a7 (i) For all $a \in B$, $a \lor a' = 1 \in B$ (ii) For all $a \in B$, $a \wedge a' = 0 \in B$ 8 (i) For all $a \in B$, $a \lor 0 = a \in B$ (ii) For all $a \in B$, $a \wedge 1 = a \in B$ 9 (i) For all $a \in B$, $a \lor 1 = 1 \in B$ (ii) For all $a \in B$, $a \wedge 0 = 0 \in B$ 10 (i) For all $a, b \in B$, $\overline{(a \lor b)} = \overline{a} \land \overline{b} \in B$ (ii) For all $a, b \in B$, $\overline{(a \wedge b)} = \overline{a} \vee \overline{b} \in B$ If the above conditions are satisfied, $(B, \land, \lor, ', 0, 1)$ is a Boolean algebra. Step 3: Let $B = B_0$ Step 4: Let B_i , $i = 0, 1, 2, \dots, n$ be supersets of B_0 $S = \bigcup_{i=1}^{n} B_i$ Step 5: Let Step 6: Choose sets B_j 's from B_i 's subject to for all $0 \in I$ if $a \in I \Longrightarrow b \le a$ then $b \in I$ $a \lor b \in I$

Step 7: I $B_j = B_0 \neq \{0\} \subset S$

Step 8: If step (7) is a true, then we write S is a Smarandache-Lattice

4. References

- 1. Akkurt M, Barker GP. "Structural matrix algebra and their lattices of invariant Subspaces . LinearAlgebra", Appl. 2005; 39:25-38.
- 2. Akkurt M. Emira.and barker George Philip .,"Complemented invariant subspaces of structural Matrix algebras, "Turkish Journal of Mathematics. 2013; 37:993-1000.
- 3. AntonioFernandezLopez and Maria Isabel Tocon Barroso"Pseudo complemented semilattices, Boolean Algebras, and Compatible Products", Journal of Algebra, No. 2001; 242:60-91.
- 4. Birkhoff G. "Lattice Theory", rev. ed., Amer. Math. Soc. Colloq. Publ, 1948, 25.
- 5. Coelho SP. "The Automorphism group of structural matrix algebra. Linear Algebra Appl". 1998; 195:35-58.
- 6. Dilworth RP. "The structure of relatively complemented Lattices", Ann. of Math. 1950; 51:348-359.
- 7. Dilworth RP. "Abstract residuationover lattices", Bull. Amer. Math. Soc. 1938; 44:262–268.
- 8. Florentin Smarandache. "Special Algebraic structures" University of New Mexico, 1998.
- 9. Frink o. "Psudo -complements in semi lattices", Duck Math.J. 1962; 29:505-514.
- 10. George Gratzer. "General lattice theory", Academic Press, New York ,1978.
- 11. George Boole. "An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probability",1849 reprinted by Dover Publications, Inc., New York, (1954).

72	IIDAD International Journal of Desearch and Analytical Deviews
12	IIIAI IIII IIIII IIIIIIIII IUIIIIII UI NESEAI LII AIIU AIIAIVULAI NEVIEWS
	,

National Conference on Recent Advances and Innovations in Pure and Applied Mathematics

Organized by Department of Mathematics Sri Akilandeswari Women's College, Wandiwash -604408

- 12. Hashimoto J. "Ideal theory for lattices", Math. Japonicae. 1952; 2:149-186.
- 13. Josef Tkadlec, Esko Turunen. "Commutative Bounded Integral Residuated Orthomodular Lattices are Boolean Algebras", soft compute. 2011; 15:635-636.
- 14. Kannappa N, Suresh K. "Some Characterization of Smarandache-Lattice and Congruences".International Journal of Acta Ciencia Indica, ISSN 0970-0455,Vol.XL M, No. 2014; 4:581-588. (Meerut)
- Kannappa N, Suresh K. "Smarandache- Lattice and Pseudo Complement", International Journal Mathematical Combinatorics The Madis Academy of Sciences and published in USA, ISSN 1937- 1055. 2014; 4:120-126. (P.R. China)
- Kannappa N, Suresh K. "Smarandache- Lattice and complemented invariant subspaces of structural matrix algebras", International Journal of Applied Engineering Research, ISSN 0973-4562. 2015; 10(51):981-984. (India)
- 17. Kannappa N, Suresh K. "Smarandache-Lattice and algorithms", International Malaya Journal of Mathematik", ISSN 2319-3786. 2015; 3(2):462-468. (Malaysia).
- 18. Monk J, Donald, Bonnet, Robert. "Hand book of Boolean Algebras", Amsterdam, North Holland Publishing co, 1989.
- 19. Padilla Raul. "Smarandache Algebraic Structure" < Smarandache Notions journal > USA,Vol 9, No 1-2, pp 36-38, summer, 1998.
- 20. Padilla Raul. "Smarandache Algebraic Structure"< Bulletin of pure and Applied Sciences>Delhi, India. 1998; 17E(1):119-121.
- 21. Padilla Raul. "On Smarandache Algebraic Structures", American presented to th international Conference on semigroup, universidade do minho, Portugal, 1999, 18-23
- 22. Peter crawley. "Lattices whose congruences form a Boolean algebra", California institute of tech. 1960; 10(3):787-795.
- 23. Pliz G. Near rings, North Holland, Amercian Research press, Amsterdam, 1983
- 24. Samba Siva Rao M. "Ideals in pseudo- complemented distributive Lattices", Archivum Mathematicum (Brno). 2012; 48:97-105.
- 25. Tkadlec J. "Conditions that force an orthomodular poset to be a Boolean algebra", Tatra Mt.Math. Publ. 1997; 10:55–62.
- 26. Wyk LV, Meyer JH. "Matrix rings of invariant subspaces" II. Chines J.Math. 1996; 24:251-264.
- 27. Wyk LV. "Matrix ring satisfying column sum conditions versus structural matrix rings. Linear Algebra" Appl. 1996; 249:15-28.