

https://doi.org/10.26637/MJM0901/0134

Applications of Smarandache fuzzy minimal open semirings

J. Mahalakshmi^{1*} and M. Sudha²

Abstract

In this disquisition, the concepts of \mathscr{S} -fuzzy-minimal-open, \mathscr{S} -fuzzy-minimal-closed, \mathscr{S} -fuzzy-maximal-open, \mathscr{S} -fuzzy-maximal-closed semirings are instigated. Moreover, the ideas of \mathscr{S} -fuzzy-semiring-minimal-regular, \mathscr{S} -fuzzy-semiring-minimal-oregular, \mathscr{S} -fuzzy-semiring-minimal-normal spaces and \mathscr{S} -fuzzy-semiring-minimal-c-normal spaces are introduced and examined.

Keywords

 \mathscr{S} -fuzzy-semiring-minimal-regular spaces, \mathscr{S} -fuzzy-semiring-minimal-o-regular spaces, \mathscr{S} -fuzzy-semiring-minimal-normal spaces, \mathscr{S} -fuzzy-semiring-minimal-c-normal spaces.

AMS Subject Classification 54A40, 03E72.

^{1,2} Department of Mathematics, Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India. *Corresponding author: ¹ paapumaha13@gmail.com

Article History: Received 07 January 2021; Accepted 08 March 2021

©2021 MJM

Contents

1	Introduction760
2	Preliminaries760
3	S-Fuzzy-Semiring-Minimal-o-Regular Spaces761
4	S-Fuzzy-Semiring-Minimal-c-Normal Spaces 762
	References

1. Introduction

Numerous articles on minimal and maximal open and closed sets in classical topology is found in literature due to F. Nakoaka and N. Oda in [5], [6] and [7]. Later B.M. Ittanagi and R.S. Wali [3] extended such sets to fuzzy topological spaces. Thereafter, S. S. Benchalli, B. M. Ittanagi and R. S. Wali [2] propounded the notions of minimal T_0 , minimal *c*-regular and minimal completely regular spaces. The perception of minimal *c*-normal spaces was pioneered in [1]. In this paper, some of the applications of \mathscr{S} -fuzzy minimal open semirings like \mathscr{S} -fuzzy-semiring-minimal-*c*-normal and \mathscr{S} -fuzzy-semiring-minimal normal and their properties are analysed.

2. Preliminaries

Definition 2.1. [4] Let *S* be a \mathscr{S} -semiring. A family \mathscr{S} of \mathscr{S} -fuzzy semirings on *S* is termed Smarandache fuzzy semiring structure (briefly \mathscr{SFS} -structure) on *S* if it satisfies the following conditions:

- (i) $0_S, 1_S \in \mathscr{S}$,
- (ii) If $\lambda_1, \lambda_2 \in \mathscr{S}$, then $\lambda_1 \wedge \lambda_2 \in \mathscr{S}$,
- (iii) If $\lambda_i \in \mathscr{S}$ for each $i \in J$, then $\forall \lambda_i \in \mathscr{S}$.

And the ordered pair (S, \mathcal{S}) is termed \mathcal{SFS} -structure space. Every member of \mathcal{S} is termed \mathcal{S} -fuzzy-open-semiring and the complement of a \mathcal{S} -fuzzy-open-semiring is called an anti- \mathcal{S} -fuzzy-open-semiring (or a \mathcal{S} -fuzzy-closed-semiring).

The collections of all \mathscr{S} -fuzzy-open-semirings and \mathscr{S} -fuzzy-closed-semirings in (S, \mathscr{S}) are symbolised by \mathscr{SFOS} (S) and $\mathscr{SFCS}(S)$ respectively.

Definition 2.2. [4] Let (S, \mathscr{S}) be a \mathscr{SFS} -structure space. Let $\lambda \in I^S$. Then the \mathscr{SFS} -interior of λ is defined and symbolised as \mathscr{SFS} -int $(\lambda) = \lor \{\mu : \mu \leq \lambda \text{ and } \mu \in \mathscr{SFOS} (S)\}.$

Definition 2.3. [4] Let (S, \mathscr{S}) be a \mathscr{SFS} -structure space. Let $\lambda \in I^S$. Then the \mathscr{SFS} -closure of λ is defined and symbolised as \mathscr{SFS} - $cl(\lambda) = \land \{\mu : \mu \ge \lambda \text{ and } \mu \in \mathscr{SFCS} (S)\}.$ **Definition 2.4.** [4] Let *S* be a \mathscr{S} -semiring. If a \mathscr{S} -fuzzy semiring on *S* is a fuzzy point x_{λ} , then x_{λ} is termed \mathscr{S} -fuzzy semiring point on *S*.

The collection of all \mathscr{S} -fuzzy semiring points on *S* is denoted by SFSP(S).

Definition 2.5. [9] If *A* and *B* are any two fuzzy subsets of a set *X*, then "*A* is said to be included in *B*" or "*A* is contained in *B*" or "*A* is less then or equal to *B*" iff $A(x) \le B(x)$ for all *x* in *X* and is denoted by $A \le B$. Equivalently, $A \le B$ iff $\mu_A(x) \le \mu_B(X)$ for all *x* in *X*.

Definition 2.6. [3] A nonzero fuzzy open set $A \neq 1$ of a fuzzy topological space (X,T) is said to be a fuzzy minimal open (briefly f-minimal open) set if any fuzzy open set which is contained in A is either 0 or A.

Definition 2.7. [3] A nonzero fuzzy closed set $B \neq 1$ of a fuzzy topological space (X,T) is said to be a fuzzy minimal closed (briefly f-minimal closed) set if any fuzzy closed set which is contained in *B* is either 0 or *B*.

Definition 2.8. [3] A nonzero fuzzy open set $A \neq (1)$ of a fuzzy topological space (X,T) is said to be a fuzzy maximal open (briefly f-maximal open) set if any fuzzy open set which contains A is either 1 or A.

Definition 2.9. [3] A nonzero fuzzy closed set $B (\neq 1)$ of a fuzzy topological space (X,T) is said to be a fuzzy maximal closed (briefly f-maximal closed) set if any fuzzy closed set which contains *B* is either 1 or *B*.

3. *S*-Fuzzy-Semiring-Minimal-*o*-Regular Spaces

In this section, the perception of \mathscr{SFS} -min-or spaces is pioneered and some attributes concerning this concept is explored.

Definition 3.1. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. A function $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ is said to be \mathscr{SFS} -structure continuous (simply \mathscr{S} -continuous) if for each $\lambda \in \mathscr{SFOS}(S_2)$ (resp. $\mathscr{SFCS}(S_2)$), $f^{-1}(\lambda) \in$ $\mathscr{SFOS}(S_1)$ (resp. $\mathscr{SFCS}(S_1)$).

Definition 3.2. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. A function $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ is termed \mathscr{SFS} -structure-open (resp. \mathscr{SFS} -structure-closed) if $f(\lambda) \in \mathscr{SFOS}(S_2)$ (resp. $\mathscr{SFCS}(S_2)$) for every $\lambda \in$ $\mathscr{SFOS}(S_1)$ (resp. $\mathscr{SFCS}(S_1)$).

Definition 3.3. A proper \mathscr{S} -fuzzy-open-semiring λ of a \mathscr{SFS} -structure space (S, \mathscr{S}) is termed \mathscr{S} -fuzzy-minimal-open (briefly \mathscr{SF} -minimal-open)-semiring if any \mathscr{S} -fuzzy-open-semiring which is contained in λ is either 0_S or λ .

Definition 3.4. A proper \mathscr{S} -fuzzy-closed-semiring μ of a \mathscr{SFS} -structure space (S, \mathscr{S}) is termed \mathscr{S} -fuzzy-minimalclosed (briefly \mathscr{SF} -minimal-closed)-semiring if any \mathscr{S} -fuzzyclosed-semiring which is contained in μ is either 0_S or μ . The family of all \mathscr{S} -fuzzy-minimal-open (resp. \mathscr{S} -fuzzy-minimal-closed) semirings in (S, \mathscr{S}) is denoted by $SFM_iO(S)$ (resp. $SFM_iC(S)$).

Definition 3.5. A proper \mathscr{S} -fuzzy-open-semiring λ of a \mathscr{SFS} -structure space (S, \mathscr{S}) is termed \mathscr{S} -fuzzy-maximalopen (briefly \mathscr{SF} -maximal-open)-semiring if any \mathscr{S} -fuzzyopen-semiring which contains λ is either 1_S or λ .

Definition 3.6. A proper \mathscr{S} -fuzzy-closed-semiring μ of a \mathscr{SFS} -structure space (S, \mathscr{S}) is termed \mathscr{S} -fuzzy-maximal-closed (briefly \mathscr{SF} -maximal-closed)-semiring if any \mathscr{S} -fuzzy-closed-semiring which contains μ is either 1_S or μ .

The family of all \mathscr{S} -fuzzy-maximal-open (resp. \mathscr{S} -fuzzy-maximal-closed) semirings in (S, \mathscr{S}) is denoted by $SFM_aO(S)$ (resp. $SFM_aC(S)$).

Definition 3.7. A \mathscr{SFS} -structure space (S, \mathscr{S}) is termed \mathscr{S} -fuzzy-semiring-minimal-regular (in short \mathscr{SFS} -min-r) if for every $x_{\lambda} \in SFSP(S)$ and $\mu \in SFM_iC(S)$ such that $x_{\lambda} \not q$ μ , there exist $\gamma, \delta \in SFM_iO(S)$ such that $x_{\lambda} \leq \gamma, \mu \leq \delta$ and $\gamma \not q \delta$.

Definition 3.8. A \mathscr{SFS} -structure space (S, \mathscr{S}) is termed \mathscr{S} -fuzzy-semiring-minimal-o-regular (in short \mathscr{SFS} -min-o-r) if for every $x_{\lambda} \in SFSP(S)$ and $\mu \in \mathscr{SFCS}(S)$ such that $x_{\lambda} \not q' \mu$, there exist $\gamma, \delta \in SFM_iO(S)$ such that $x_{\lambda} \leq \gamma$, $\mu \leq \delta$ and $\gamma \not q' \delta$.

Proposition 3.1. If a \mathscr{SFS} -structure space (S, \mathscr{S}) is a \mathscr{SFS} -min-o-r space, then (S, \mathscr{S}) is a \mathscr{SFS} -min-r space.

Proof. Let $x_{\lambda} \in SFSP(S)$ and $\mu \in SFM_iC(S)$ such that x_{λ} $q' \mu$. Since every \mathscr{SF} -minimal-closed-semiring is a \mathscr{S} -fuzzy-closed-semiring, $\mu \in \mathscr{SFCS}(S)$ such that $x_{\lambda} q' \mu$. As (S, \mathscr{S}) is a \mathscr{SFS} -min-o-r space, there exist $\gamma, \delta \in SFM_iO(S)$ such that $x_{\lambda} \leq \gamma, \mu \leq \delta$ and $\gamma q' \delta$. Hence (S, \mathscr{S}) is a \mathscr{SFS} -min-r space. \Box

Proposition 3.2. If a \mathscr{SFS} -structure space (S,\mathscr{S}) is a \mathscr{SFS} -min-o-r space, then for every $x_{\lambda} \in SFSP(S)$ and $\mu \in \mathscr{SFOS}(S)$ such that $x_{\lambda} \leq \mu$, there exists $\gamma \in SFM_iO(S)$ such that $x_{\lambda} \leq \gamma \leq \mathscr{SFS}$ -cl $(\gamma) \leq \mu$.

Proof. Let $x_{\lambda} \in SFSP(S)$ and $\mu \in \mathscr{SFOS}(S)$ such that $x_{\lambda} \leq \mu$. Then $(1_{S} - \mu) \in \mathscr{SFCS}(S)$ such that $x_{\lambda} q'(1_{S} - \mu)$. Since (S, \mathscr{S}) is a \mathscr{SFSP} -min-o-r space, there exist $\gamma, \delta \in SFM_{i}O(S)$ such that $x_{\lambda} \leq \gamma, (1_{S} - \mu) \leq \delta$ and $\gamma q' \delta$. Now $\gamma q' \delta$ implies $\gamma \leq (1_{S} - \delta)$. This implies $\mathscr{SFS-cl}(\gamma) \leq \mathscr{SFS-cl}(\gamma) \leq \mathscr{SFS-cl}(\gamma) \leq (1_{S} - \delta)$. Also we have $(1_{S} - \mu) \leq \delta$. This implies $(1_{S} - \delta) \leq \mu$. Thus $\mathscr{SFS-cl}(\gamma) \leq (1_{S} - \delta) \leq \mu$. Therefore $x_{\lambda} \leq \gamma \leq \mathscr{SFS-cl}(\gamma) \leq \mu$.

Definition 3.9. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. A function $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ is termed \mathscr{S} -fuzzy-semiring-minimal-closed (in short \mathscr{SFS} -min-c) if $f(\lambda) \in \mathscr{SFCS}(S_2), \mathscr{S}_2$) for every $\lambda \in SFM_iC(S_1)$.

Definition 3.10. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. A function $f: (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ is termed \mathscr{S} -fuzzy-semiring-minimal-irresolute (in short \mathscr{SFS} -minir) if $f^{-1}(\lambda) \in SFM_iO(S_1)$ (resp. $SFM_iC(S_1)$) for every $\lambda \in SFM_iO(S_2)$ (resp. $SFM_iC(S_2)$).

Proposition 3.3. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. Let $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ be a bijective, \mathscr{SFS} -min-c and \mathscr{SFS} -min-ir function. If (S_2, \mathscr{S}_2) is a \mathscr{SFS} -min-o-r space, then (S_1, \mathscr{S}_1) is a \mathscr{SFS} -min-r space.

Proof. Let $x_{\lambda} \in SFSP(S_1)$ and let $\mu \in SFM_iC(S_1)$ such that $x_{\lambda} \not\in \mu$. Since f is bijective, there exists $y_{\eta} \in SFSP(S_2)$ such that $f(x_{\lambda}) = y_{\eta}$, which implies $x_{\lambda} = f^{-1}(y_{\eta})$. As f is \mathscr{SFSP} -min-c, $f(\mu) \in \mathscr{SFCS}(S_2)$ and $x_{\lambda} \not\in \mu$ implies $f(x_{\lambda}) \not\in f(\mu)$. Hence $y_{\eta} \not\in f(\mu)$. Since (S_2, \mathscr{S}_2) is a \mathscr{SFSP} -min-o-r space, there exist $\gamma, \delta \in SFM_iO(S_2)$ such that $y_{\eta} \leq \gamma$, $f(\mu) \leq \delta$ and $\gamma \not\in \delta$.

As f is \mathscr{SFS} -min-ir, $f^{-1}(\gamma), f^{-1}(\delta) \in SFM_iO(S_1)$. Now $y_{\eta} \leq \gamma$ implies $f^{-1}(y_{\eta}) \leq f^{-1}(\gamma)$. Hence $x_{\lambda} \leq f^{-1}(\gamma)$. Also $f(\mu) \leq \delta$ implies $\mu \leq f^{-1}(\delta)$ and $\gamma \not q \delta$ implies $f^{-1}(\gamma) \not q$ $f^{-1}(\delta)$. Thus for every $x_{\lambda} \in SFSP(S_1)$ and $\mu \in SFM_iC(S_1)$ such that $x_{\lambda} \not q \mu$, there exist $f^{-1}(\gamma), f^{-1}(\delta) \in SFM_iO(S_1)$ such that $x_{\lambda} \leq f^{-1}(\gamma), \mu \leq f^{-1}(\delta)$ and $f^{-1}(\gamma) \not q f^{-1}(\delta)$. Hence (S_1, \mathscr{S}_1) is a \mathscr{SFS} -min-r space.

Definition 3.11. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. A function $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ is termed \mathscr{S} -fuzzy-semiring-strongly-minimal-open (in short \mathscr{SFS} *s-min-o*) if $f(\lambda) \in SFM_iO(S_2)$ for every $\lambda \in SFM_iO(S_1)$.

Proposition 3.4. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} -structure spaces. Let $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ be a bijective, \mathscr{SFS} -structure continuous and \mathscr{SFS} -s-min-o function. If (S_1, \mathscr{S}_1) is a \mathscr{SFS} -min-o-r space, then (S_2, \mathscr{S}_2) is a \mathscr{SFS} -min-o-r space.

Proof. Let $y_{\eta} \in SFSP(S_2)$ and let $\mu \in \mathscr{SFCS}(S_2)$ such that $y_{\eta} \not q' \mu$. Since *f* is bijective, there exists $x_{\lambda} \in SFSP(S_1)$ such that $f(x_{\lambda}) = y_{\eta}$, which implies $x_{\lambda} = f^{-1}(y_{\eta})$. As *f* is \mathscr{SFSP} -structure continuous, $f^{-1}(\mu) \in \mathscr{SFCS}(S_1)$. Also $y_{\eta} \not q' \mu$ implies $f^{-1}(y_{\eta}) \not q' f^{-1}(\mu)$. Hence $x_{\lambda} \not q' f^{-1}(\mu)$.

Since (S_1, \mathscr{S}_1) is a \mathscr{GFG} -min-o-r space, there exist $\gamma, \delta \in SFM_iO(S_1)$ such that $x_{\lambda} \leq \gamma, f^{-1}(\mu) \leq \delta$ and $\gamma \not{q} \delta$. As f is \mathscr{GFG} -s-min-o, $f(\gamma), f(\delta) \in SFM_iO(S_2)$. Now $x_{\lambda} \leq \gamma$ implies $f(x_{\lambda}) \leq f(\gamma)$. Hence $y_{\eta} \leq f(\gamma)$. Also $f^{-1}(\mu) \leq \delta$ implies $\mu \leq f(\delta)$ and $\gamma \not{q} \delta$ implies $f(\gamma) \not{q} f(\delta)$. Thus for every $y_{\eta} \in SFSP(S_2)$ and $\mu \in \mathscr{GFCG}(S_2)$ such that $y_{\eta} \not{q}$ μ , there exist $f(\gamma), f(\delta) \in SFM_iO(S_2)$ such that $y_{\eta} \leq f(\gamma)$, $\mu \leq f(\delta)$ and $f(\gamma) \not{q} f(\delta)$. Hence (S_2, \mathscr{G}_2) is a \mathscr{GFG} -min-o-r space.

Proposition 3.5. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. Let $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ be a bijective, \mathscr{SFS} -structure-closed and \mathscr{SFS} -min-ir function. If (S_2, \mathscr{S}_2) is a \mathscr{SFS} -min-o-r space, then (S_1, \mathscr{S}_1) is a \mathscr{SFS} min-o-r space. *Proof.* Let $x_{\lambda} \in SFSP(S_1)$ and let $\mu \in \mathscr{GFCS}(S_1)$ such that $x_{\lambda} \not q \mu$. Since *f* is bijective, there exists $y_{\eta} \in SFSP(S_2)$ such that $f(x_{\lambda}) = y_{\eta}$, which implies $x_{\lambda} = f^{-1}(y_{\eta})$. As *f* is \mathscr{GFS} -structure closed, $f(\mu) \in \mathscr{GFCS}(S_2)$ and $x_{\lambda} \not q \mu$ implies $f(x_{\lambda}) \not q f(\mu)$. Hence $y_{\eta} \not q f(\mu)$. Since (S_2, \mathscr{S}_2) is a \mathscr{GFS} -min-o-*r* space, there exist $\gamma, \delta \in SFM_iO(S_2)$ such that $y_{\eta} \leq \gamma$, $f(\mu) \leq \delta$ and $\gamma \not q \delta$. As *f* is \mathscr{GFS} -min-ir, $f^{-1}(\gamma), f^{-1}(\delta) \in SFM_iO(S_1)$. Now $y_{\eta} \leq \gamma$ implies $f^{-1}(y_{\eta}) \leq f^{-1}(\gamma)$. Hence $x_{\lambda} \leq f^{-1}(\gamma)$. Also $f(\mu) \leq \delta$ implies $\mu \leq f^{-1}(\delta)$ and $\gamma \not q \delta$ implies $f^{-1}(\gamma) \not q f^{-1}(\delta)$. Thus for every $x_{\lambda} \in SFSP(S_1)$ and $\mu \in \mathscr{GFCS}(S_1)$ such that $x_{\lambda} \leq f^{-1}(\gamma), \mu \leq f^{-1}(\delta)$ and $f^{-1}(\gamma) \not q f^{-1}(\delta)$. Hence (S_1, \mathscr{S}_1) is a \mathscr{GFS} -min-o-r space. □

Definition 3.12. Let (S_1, \mathcal{S}_1) and (S_2, \mathcal{S}_2) be any two \mathcal{SFS} structure spaces. A function $f: (S_1, \mathcal{S}_1) \to (S_2, \mathcal{S}_2)$ is termed \mathcal{S} -fuzzy-semiring-minimal-continuous (in short \mathcal{SFS} -mincontinuous) if $f^{-1}(\lambda) \in \mathcal{SFOS}(S_1)$ (resp. $\mathcal{SFCS}(S_1)$ for every $\lambda \in SFM_iO(S_2)$ (resp. $SFM_iC(S_2)$).

Proposition 3.6. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. Let $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ be a bijective, \mathscr{SFS} -min-continuous and \mathscr{SFS} -s-min-o function. If (S_1, \mathscr{S}_1) is a \mathscr{SFS} -min-o-r space, then (S_2, \mathscr{S}_2) is a \mathscr{SFS} min-r space.

Proof. Let $y_{\eta} \in SFSP(S_2)$ and let $\mu \in SFM_iC(S_2)$ such that $y_{\eta} \not \mu \mu$. Since f is bijective, there exists $x_{\lambda} \in SFSP(S_1)$ such that $f(x_{\lambda}) = y_{\eta}$, which implies $x_{\lambda} = f^{-1}(y_{\eta})$. As f is \mathscr{SFSP} -min-continuous, $f^{-1}(\mu) \in \mathscr{SFCS}(S_1)$. Also $y_{\eta} \not \mu \mu$ implies $f^{-1}(y_{\eta}) \not q' f^{-1}(\mu)$. Hence $x_{\lambda} \not q' f^{-1}(\mu)$.

Since (S_1, \mathscr{S}_1) is a \mathscr{PFP} -min-o-r space, there exist $\gamma, \delta \in SFM_iO(S_1)$ such that $x_{\lambda} \leq \gamma, f^{-1}(\mu) \leq \delta$ and $\gamma \not q \delta$. As f is \mathscr{PFP} -s-min-o, $f(\gamma), f(\delta) \in SFM_iO(S_2)$. Now $x_{\lambda} \leq \gamma$ implies $f(x_{\lambda}) \leq f(\gamma)$. Hence $y_{\eta} \leq f(\gamma)$. Also $f^{-1}(\mu) \leq \delta$ implies $\mu \leq f(\delta)$ and $\gamma \not q \delta$ implies $f(\gamma) \not q f(\delta)$. Thus for every $y_{\eta} \in SFSP(S_2)$ and $\mu \in SFM_iO(S_2)$ such that $y_{\eta} \not q$ μ , there exist $f(\gamma), f(\delta) \in SFM_iO(S_2)$ such that $y_{\eta} \leq f(\gamma)$, $\mu \leq f(\delta)$ and $f(\gamma) \not q f(\delta)$. Hence (S_2, \mathscr{S}_2) is a \mathscr{PFP} -min-r space. \Box

4. *S*-Fuzzy-Semiring-Minimal-*c*-Normal Spaces

In this section, the ideas of \mathscr{SFS} -min-n and \mathscr{SFS} -min-c-n spaces are instigated and some of their captivating properties are examined. Furthermore, an interesting characterisation involving \mathscr{SFS} -min-c-n space is obtained.

Definition 4.1. A \mathscr{SFS} -structure space (S, \mathscr{S}) is termed \mathscr{S} -fuzzy-semiring-minimal-normal (in short \mathscr{SFS} -min-n) if for every λ , $\mu \in SFM_iC(S)$ such that $\lambda \not \in \mu$, there exist $\gamma, \delta \in SFM_iO(S)$ such that $\lambda \leq \gamma, \mu \leq \delta$ and $\gamma \not \in \delta$.

Proposition 4.1. If a \mathscr{SFS} -structure space (S, \mathscr{S}) is a \mathscr{SFS} -min-*n* space, then for every $\lambda \in SFM_iC(S)$ and $\mu \in$

 $SFM_aO(S)$ such that $\lambda \leq \mu$, there exists $\gamma \in SFM_iO(S)$ such that $\lambda \leq \gamma \leq \mathscr{SFS}$ - $cl(\gamma) \leq \mu$.

Proof. Let $\lambda \in SFM_iC(S)$ and $\mu \in SFM_aO(S)$ such that $\lambda \leq \mu$. Then $(1_S - \mu) \in SFM_iC(S)$. Hence $\lambda \not q'(1_S - \mu)$. Since (S, \mathscr{S}) is a \mathscr{SFS} -min-n space, there exist $\gamma, \delta \in SFM_iO(S)$ such that $\lambda \leq \gamma, (1_S - \mu) \leq \delta$ and $\gamma \not q' \delta$. Now $\gamma \not q' \delta$ implies $\gamma \leq (1_S - \delta)$. This implies \mathscr{SFS} -cl $(\gamma) \leq \mathscr{SFS}$ -cl $(1_S - \delta) = 1_S - \delta$ since $(1_S - \delta) \in \mathscr{SFCS}(S)$. Hence \mathscr{SFS} -cl $(\gamma) \leq (1_S - \delta)$. Also we have $(1_S - \mu) \leq \delta$. This implies $(1_S - \delta) \leq \mu$. Thus \mathscr{SFS} -cl $(\gamma) \leq (1_S - \delta) \leq \mu$. Therefore $\lambda \leq \gamma \leq \mathscr{SFS}$ -cl $(\gamma) \leq \mu$.

Definition 4.2. A \mathscr{SFS} -structure space (S, \mathscr{S}) is termed \mathscr{S} -fuzzy-semiring-minimal-*c*-normal (in short \mathscr{SFS} -min*c*-*n*) if for every $\lambda, \mu \in SFM_iC(S)$ such that $\lambda \not q \mu$, there exist $\gamma, \delta \in \mathscr{SFOS}(S)$ such that $\lambda \leq \gamma, \mu \leq \delta$ and $\gamma \not q' \delta$.

Proposition 4.2. Let (S, \mathscr{S}) be a \mathscr{SFS} -structure space. Then the following statements are equivalent :

- (i) (S, \mathscr{S}) is a \mathscr{SFS} -min-c-n space.
- (ii) For every $\lambda \in SFM_iC(S)$ and $\mu \in SFM_aO(S)$ such that $\lambda \leq \mu$, there exists $\gamma \in \mathscr{SFOS}(S)$ such that $\lambda \leq \gamma \leq \mathscr{SFS-cl}(\gamma) \leq \mu$.
- (iii) For every $\lambda, \mu \in SFM_iC(S)$ such that $\lambda \not q'\mu$, there exist $\gamma, \delta \in \mathscr{SFOS}(S)$ with $\gamma \not q \delta$ such that $\lambda \leq \gamma, \mathscr{SFS-}$ $cl(\gamma) \not q'\mu$ and $\mu \leq \delta, \mathscr{SFS-}cl(\delta) \not q'\lambda$.
- (iv) For every $\lambda, \mu \in SFM_iC(S)$ such that $\lambda \not q \mu$, there exist $\gamma, \delta \in \mathscr{SFOS}(S)$ with $\gamma \not q \delta$ such that $\lambda \leq \gamma, \mu \leq \delta$ and $\mathscr{SFS-cl}(\gamma) \not q \mathscr{SFS-cl}(\delta)$.

Proof. (i) \Rightarrow (ii) Let $\lambda \in SFM_iC(S)$ and $\mu \in SFM_aO(S)$ such that $\lambda \leq \mu$. Then $(1_S - \mu) \in SFM_iC(S)$. Hence $\lambda \not q'(1_S - \mu)$. Since (S, \mathscr{S}) is a \mathscr{SFS} -min-c-n space, there exist $\gamma, \delta \in \mathscr{SFOS}(S)$ such that $\lambda \leq \gamma, (1_S - \mu) \leq \delta$ and $\gamma \not q' \delta$. Now $\gamma \not q' \delta$ implies $\gamma \leq (1_S - \delta)$. This implies \mathscr{SFS} - $cl(\gamma) \leq \mathscr{SFS}$ - $cl(1_S - \delta) = 1_S - \delta$. Since $(1_S - \delta) \in \mathscr{SFSS}(S)$. Hence \mathscr{SFS} - $cl(\gamma) \leq (1_S - \delta)$. Also we have $(1_S - \mu) \leq \delta$. This implies $(1_S - \delta) \leq \mu$. Thus \mathscr{SFS} - $(\gamma) \leq (1_S - \delta) \leq \mu$. Therefore $\lambda \leq \gamma \leq \mathscr{SFS}$ - $cl(\gamma) \leq \mu$.

(ii) \Rightarrow (iii) Let $\lambda, \mu \in SFM_iC(S)$ with $\lambda \not\in \mu$. This implies $\lambda \leq (1_S - \mu)$, where $(1_S - \mu) \in SFM_aO(S)$. By (ii), there exists $\gamma \in \mathscr{SFOS}(S)$ such that $\lambda \leq \gamma \leq \mathscr{SFS-cl}(\gamma) \leq (1_S - \mu)$. Now $\mathscr{SFS-cl}(\gamma) \leq (1_S - \mu)$ implies $\mathscr{SFS-cl}(\gamma) \leq (1_S - \mu)$. Now $\mathscr{SFS-cl}(\gamma)$. Then $\mu \leq \delta \leq (1_S - \gamma) \leq (1_S - \lambda)$. Since $(1_S - \gamma) \in \mathscr{SFCS}(S), \mu \leq \mathscr{SFS-cl}(\delta) \leq (1_S - \lambda)$. Now $\mathscr{SFS-cl}(\delta) \leq (1_S - \lambda)$ implies $\mathscr{SFS-cl}(\delta) q \lambda$ and it is apparent that $\gamma \not\in \delta$. (iii) \Rightarrow (iv) Let $\lambda, \mu \in SFMcC(S)$ with $\lambda \not\in \mu$. By (iii) there

(iii) \Rightarrow (iv) Let $\lambda, \mu \in SFM_iC(S)$ with $\lambda \not q'\mu$. By (iii), there exist $\gamma, \delta \in \mathscr{SFOS}(S)$ with $\gamma \not q'\delta$ such that $\lambda \leq \gamma, \mu \leq \delta$, $\mu \leq (1_S - \mathscr{SFS} - cl(\gamma))$ and $\mathscr{SFS} - cl(\delta) \leq (1_S - \lambda)$. It is apparent that $\mathscr{SFS} - cl(\delta) \not q' \mathscr{SFS} - cl(\gamma)$. (iv) \Rightarrow (i) The proof is apparent. **Proposition 4.3.** Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. Let $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ be a bijective, \mathscr{SFS} -min-ir and \mathscr{SFS} -structure-open function. If (S_1, \mathscr{S}_1) is a \mathscr{SFS} -min-c-n space, then (S_2, \mathscr{S}_2) is a \mathscr{SFS} min-c-n space.

Proof. Let $\lambda, \mu \in SFM_iC(S_2)$ such that $\lambda \not q \mu$. As *f* is *S*𝔅𝔅*f*-*min-ir*, *f*⁻¹(λ), *f*⁻¹(μ) ∈ *SFM_iC*(*S*₁). Also *f*⁻¹(λ) $q' f^{-1}(\mu)$. Since (*S*₁, *S*₁) is a *S*𝔅𝔅*f*-*min-c-n* space, there exist $\gamma, \delta \in S𝔅𝔅𝔅𝔅(S_1)$ such that $f^{-1}(\lambda) \leq \gamma, f^{-1}(\mu) \leq \delta$ and $\gamma \not q \delta$. As *f* is *S*𝔅𝔅𝔅*f*-structure-open, *f*(γ), *f*(δ) ∈ *S*𝔅𝔅𝔅𝔅(*S*₂). Now *f*⁻¹(λ) ≤ γ implies $\lambda \leq f(\gamma), f^{-1}(\mu) \leq \delta$ implies $\mu \leq f(\delta)$ since *f* is bijective and also $\gamma \not q \delta$ implies *f*(γ) $q' f(\delta$). Thus for every $\lambda, \mu \in SFM_iC(S_2)$ such that $\lambda \leq f(\gamma), \mu \leq f(\delta)$ and $f(\gamma) q' f(\delta)$. Hence (*S*₂, *S*₂) is a *S*𝔅𝔅*f*-*min-c-n* space.

Definition 4.3. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. A function $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ is termed \mathscr{S} -fuzzy-semiring-strongly-minimal-closed (in short \mathscr{SFS} *s-min-c*) if $f(\lambda) \in SFM_iC(S_2)$ for every $\lambda \in SFM_iC(S_1)$.

Proposition 4.4. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} -structure spaces. Let $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ be a bijective, \mathscr{SFS} -structure-continuous and \mathscr{SFS} -s-min-c function. If (S_2, \mathscr{S}_2) is a \mathscr{SFS} -min-c-n space, then (S_1, \mathscr{S}_1) is a \mathscr{SFS} -min-c-n space.

Proof. Let $\lambda, \mu \in SFM_iC(S_1)$ such that $\lambda \not \in \mu$. As f is \mathscr{SFS} -s-min-c, $f(\lambda), f(\mu) \in SFM_iC(S_2)$. Also $f(\lambda) \not \in f(\mu)$.

Since (S_2, \mathscr{S}_2) is a \mathscr{IFF} -min-c-n space, there exist $\gamma, \delta \in \mathscr{IFOF}(S_2)$ such that $f(\lambda) \leq \gamma, f(\mu) \leq \delta$ and $\gamma \not q$ δ . As f is \mathscr{IFF} -structure-continuous, $f^{-1}(\gamma), f^{-1}(\delta) \in$ $\mathscr{IFOF}(S_1)$. Now $f(\lambda) \leq \gamma$ implies $\lambda \leq f^{-1}(\gamma), f(\mu) \leq \delta$ implies $\mu \leq f^{-1}(\delta)$ since f is bijective and also $\gamma \not q \delta$ implies $f^{-1}(\gamma) \not q f^{-1}(\delta)$. Thus for every $\lambda, \mu \in SFM_iC(S_1)$ such that $\lambda \not q \mu$, there exist $f^{-1}(\gamma), f^{-1}(\delta) \in \mathscr{IFOF}(S_1)$ such that $\lambda \leq f^{-1}(\gamma), \mu \leq f^{-1}(\delta)$ and $f^{-1}(\gamma) \not q f^{-1}(\delta)$. Hence (S_1, \mathscr{S}_1) is a \mathscr{IFF} -min-c-n space.

Definition 4.4. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. A function $f: (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ is termed \mathscr{S} -fuzzy-semiring-minimal-open (in short \mathscr{SFS} -min-o) if $f(\lambda) \in \mathscr{SFOS}(S_2)$ for every $\lambda \in SFM_iO(S_1)$

Proposition 4.5. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. Let $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ be a bijective, \mathscr{SFS} -min-o and \mathscr{SFS} -min-ir function. If (S_1, \mathscr{S}_1) is a \mathscr{SFS} -min-n space, then (S_2, \mathscr{S}_2) is a \mathscr{SFS} -min-c-n space.

Proof. Let $\lambda, \mu \in SFM_iC(S_2)$ such that $\lambda \not\in \mu$. As f is \mathscr{SFS} -min-ir, $f^{-1}(\lambda), f^{-1}(\mu) \in SFM_iC(S_1)$. Also $f^{-1}(\lambda)$ $\not\in f^{-1}(\mu)$. Since (S_1, \mathscr{S}_1) is a \mathscr{SFS} -min-n space, there exist $\gamma, \delta \in SFM_iO(S_1)$ such that $f^{-1}(\lambda) \leq \gamma, f^{-1}(\mu) \leq \delta$ and $\gamma \not\in \delta$. As f is \mathscr{SFS} -min-o, $f(\gamma), f(\delta) \in \mathscr{SFOS}(S_2)$. Since

f is bijective $f^{-1}(\lambda) \leq \gamma$ implies $\lambda \leq f(\gamma)$, $f^{-1}(\mu) \leq \delta$ implies $\mu \leq f(\delta)$ and also $\gamma \not q' \delta$ implies $f(\gamma) \not q' f(\delta)$. Thus for every $\lambda, \mu \in SFM_iC(S_2)$ such that $\lambda \not q' \mu$, there exist $f(\gamma)$, $f(\delta) \in \mathscr{SFOS}(S_2)$ such that $\lambda \leq f(\gamma), \mu \leq f(\delta)$ and $f(\gamma) \not q' f(\delta)$. Hence (S_2, \mathscr{S}_2) is a \mathscr{SFS} -min-c-n space.

Proposition 4.6. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} -structure spaces. Let $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ be a bijective, \mathscr{SFS} -s-min-o and \mathscr{SFS} -min-ir function. If (S_1, \mathscr{S}_1) is a \mathscr{SFS} -min-n space, then (S_2, \mathscr{S}_2) is a \mathscr{SFS} -min-n space.

Proof. The proof is similar to that of Proposition 4.5. \Box

Proposition 4.7. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. Let $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ be a bijective, \mathscr{SFS} -min-continuous and \mathscr{SFS} -s-min-c function. If (S_2, \mathscr{S}_2) is a \mathscr{SFS} -min-n space, then (S_1, \mathscr{S}_1) is a \mathscr{SFS} -minc-n space.

Proof. Let $\lambda, \mu \in SFM_iC(S_1)$ such that $\lambda \not\in \mu$. As f is \mathscr{SFS} -s-min-c, $f(\lambda), f(\mu) \in SFM_iC(S_2)$. Also $f(\lambda) \not\in f(\mu)$. Since (S_2, \mathscr{S}_2) is a \mathscr{SFS} -min-n space, there exist $\gamma, \delta \in$ $SFM_iO(S_2)$ such that $f(\lambda) \leq \gamma, f(\mu) \leq \delta$ and $\gamma \not\in \delta$. As fis \mathscr{SFS} -min-continuous, $f^{-1}(\gamma), f^{-1}(\delta) \in \mathscr{SFOS}(S_1)$. Since f is bijective, $f(\lambda) \leq \gamma$ implies $\lambda \leq f^{-1}(\gamma), f(\mu) \leq \delta$ implies $\mu \leq f^{-1}(\delta)$ and also $\gamma \not\in \delta$ implies $f^{-1}(\gamma) \not\in f^{-1}(\delta)$. Thus for every $\lambda, \mu \in SFM_iC(S_1)$ such that $\lambda \notin \mu$, there exist $f^{-1}(\gamma), f^{-1}(\delta) \in \mathscr{SFOS}(S_1)$ such that $\lambda \leq f^{-1}(\gamma), \mu \leq f^{-1}(\delta)$ and $f^{-1}(\gamma) \not\in f^{-1}(\delta)$. Hence (S_1, \mathscr{S}_1) is a \mathscr{SFS} -min-c-n space. \Box

Proposition 4.8. Let (S_1, \mathscr{S}_1) and (S_2, \mathscr{S}_2) be any two \mathscr{SFS} structure spaces. Let $f : (S_1, \mathscr{S}_1) \to (S_2, \mathscr{S}_2)$ be a bijective, \mathscr{SFS} -min-ir and \mathscr{SFS} -s-min-c function. If (S_2, \mathscr{S}_2) is a \mathscr{SFS} -min-n space, then (S_1, \mathscr{S}_1) is a \mathscr{SFS} -min-n space.

Proof. The proof is similar to that of Proposition 4.7. \Box

References

- [1] S. S. Benchalli, B. M. Ittanagi and R. S. Wali, On minimal normal and minimal compact spaces, *J. Comput. Math. Sci.*, 3(2012), 280-286.
- [2] S. S. Benchalli, B. M. Ittanagi and R. S. Wali, On minimal separation axioms in topological spaces, 3(2012), 98-104.
- ^[3] B.M. Ittanagi and R.S. Wali, On fuzzy minimal open and fuzzy maximal open sets in fuzzy topological spaces, *Int. J. Mathematical Sciences and Applications*, 1(2011), 1023-1037.
- [4] J. Mahalakshmi and M. Sudha, Smarandache fuzzy semiring para-nearly compact spaces, *The Journal of Fuzzy Mathematics*, 28(2020), 523-543.
- ^[5] F. Nakaoka and N. Oda, Some applications of minimal open sets, *Int. J. Math. Math. Sci.*, 27(2001), 471-476.
- [6] F. Nakaoka and N. Oda, Some properties of maximal open sets, Int. J. Math. Math. Sci., 21(2003), 1331-1340.

- [7] F. Nakaoka and N. Oda, Minimal closed sets and maximal closed sets, *Int. J. Math. Sci.*, (2006), 1-8.
- [8] W. B. Vasantha Kandasamy, Smarandache Fuzzy Algebra, American Research Press, Rehoboth, 2003.
- [9] L.A.Zadeh, Fuzzy sets, *Information and control*, 8 (1965), 338-353.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

