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ABSTRACT. Let n be a positive integer, pg(n) denotes the product of all positive
divisors of n, gg(n) denotes the product of all proper divisors of n. In this paper,
we study the properties of the sequences {ps(n)} and {gg(n)}, and prove that the
Makowski & Schinzel conjecture hold for the sequences {p4(n)} and {ga4(n)}.

1. INTRODUCTION .

Let n be a positive integer, pa(n) denotes.the product of all positive divisors of
n. That is, pa(n) = Hd. For example, p4a(1) = 1, pa(2) = 2, pa(3) = 3, pa(4) = 8,
din

pd(5) =5, pa(6) =36, ---, pa(p) = p, ---. qa(n) denoctes the product of all proper

divisors of n. That is, gs(n) = d. For example, ¢4(1) = 1, ¢u(2) = 1,
. din,d<n :

q4(3) = 1, qu(4) = 2, qa(5) = 1, qa(6) = 6, ---. In problem 25 and 26 of (1],

Professor F.Smarandach asked us to study the properties of the sequences {pa(n)}
and {ga(n)}. About this problem, it seems that none had studied it, at least we
have not seen such a paper before. In this paper. we use the elementary inethods
to study the properties of the sequences {ps(n)} and {g4(n)}, and prove that the
Makowski & Schinzel conjecture hold for pa(n) and gg(n). That is, we shall prove
the following:

Theorem 1. For any positive integer n, we have the inequality

7 ($(pa(n))) 2 Fpaln),

where ¢(k) is the Euler’s function and o(k) is the divisor sum function.

Theorem 2. For any positive integer n, we have the inequality

: 1
g (8(qa(n))) 2 5qa(n).
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2. SOME LEMMAS

To complete the proof of the Theorems, we need the following two Lemmas:

Lemma 1. For any positive integer n, we have the identities

and gq4(n)=n"z
where d(n) = Z 1 s the diwvisor function.

d|n
Proof. From the definition of ps(n) we know that

pa(n) =] d= H—-

dln din

So by this formula we have

(1) p3(n) = H n =ni™,

din

From (1) we immediately get
d(n

pa(n)=n"2

14
ga(n) = H d= dln =n 1,
d|n,d<n

and

This completes the proof of Lemma 1.

Lemma 2. For any positive integer n, let n = p‘l”‘p;’- Py with a; > 2 (1 =
L,2,---,8), pi(7 = 1,2,--- ,5) are some different primes with p; < py < --- < p,,
then we have the estimate

o (9(n)) > .

Proof. From the properties of the Euler’s function we have

é(n) = &(p*)o(p3?)- - (p%*)

(2) =pr TP T e — Wpe = 1)+ (pa — 1),
Let (p1 — 1) po —1)--(ps — 1) = p1 p9 ’q{‘q?- -q;*, where 3; > 0, i =
L,2,-- s, 21,5=12,--- ;tand q; < @2 < - < ¢ are different primes. Then
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from (2) we have
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This completes the proof of Lemma 2.

3. PrROOF OF THE THEOREMS

In this section, we shall complete the proof of the Theorems. First we prove
Theorem 1. We separate n into prime and composite number two cases. If n is a
prime, then d(n) = 2. This time by Lemma 1 we have

din)
pi(n)=n"2 =n.

Hence, from this formula and ¢(n) = n — 1 we immediately get
1

c(@(pa(n)) =oln—1)= Y d2n-122 = —py(n).
djn—1 - -



If n is a composite number, then d(n) > 3. If d(n) = 3, we have n = p?, where p is
a prime. So that

d{n)

(3) pa(n)=n"7 =pi® =pd

From Lemma 2 and (3) we can easily get the inequality

o (B(paln) = o (6 (57) > 5P > 3

=

pa(n).

If d(n) > 4, let ps(n) = nst = pitpy? - pge with pp < p; < -+ < ps, then we
have a; > 2,1 =1,2,--- ,s. So from Lemma 2 we immediately obtain the inequality

o (¢ (pa(m))) = —gpa(rn) > Spulr).

This completes the proof of Theorem 1.
The proof of Theorem 2. We also separate n into two cases. If n is a prime,

then we have
4(n)

ga(n)=n"7 =1

From this formula we have
1
o (#(ga(n))) =12 Sgaln).

If n is a composite number, we have d(n) > 3, then we discuss the following four
cases. First, if d(n) = 3, then n = p?, where p is a prime. So we have

din) _ _
ga(n)=n"2 1=pM " =p

From this formula and the proof of Theorem 1 we easily get

7 (8 (aa(n))) 2 50

Second, if d(n) = 4, from Lemma 1 we may get

rn) 4

(4) ga(n) =n"7T " =n

and n = p® or n = p;p2, where p,p; and p are primes with p; < p;. If n = P2,
from (4) and Lemma 2 we have

a (¢ (ga(n))) = o (¢(n)) = o (¢(p”))

1 1
(5) > §p3 = saun).
If n = pyp2. we consider p; = 2 and p; > 2 two cases. If 2 =p, < py, then p» — 1
is an even number. Supposing p — 1 = p‘f‘pgqurl coegt with @1 < g2 < -+ < gy,
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gi(z = 1,2,--- ,t) are different primesand r; > 1 (j =1,2,--- ,1), /1 > 1, f2 2 0.
Note that the proof of Lemma 2 and (4) we can obtain

o (¢ (ga(n)) )=0(¢ n))

1 j=1 7

(l-p%) (“é)

>n(l - Z)(l - g)

Q = 4d(n).

If2 < p1 < pa, then both p; —1 and p; — 1 are even numbers. Let (p; —1)(pz—1) =
Ph pzﬁqu"q;2 gyt with 1 < ¢ < -+ < ¢q4,qi(t = 1,2,--- ,t) are different primes
and r; > 1(y = 1,2,--+,t),51,P2 =2 0, then we have ¢ = 2 and r; > 2. So from
the proof of Lemma 2 and (4) we have

o (¢ (ga(n))) = o (¢(n))
=T (1= o ) 1L (14 2+ )
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Combining (5), (6) and (7) we obtain

I
V)

7 ($(aan))) > Sauln) i d(n) =4

Third, if d(n) = 5, we have n = p*, where p is a prime. Then from Lemma 1
and Lemma 2 we immediately get

o (6(qa(n))) =0 (o (p%)) >



Finaly, if d(n) > 6, then from Lemma 1 and Lemma 2 we can easily obtain

1
o (8(ga(m))) = aaln).
This completes the proof of Theorem 2.
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