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Abstract: A set of vertices S in a graph G is called to be a Smarandachely dominating

k-set, if each vertex of G is dominated by at least k vertices of S. Particularly, if k = 1,

such a set is called a dominating set of G. The Smarandachely domination number γk(G) of

G is the minimum cardinality of a Smarandachely dominating set of G. For abbreviation,

we denote γ1(G) by γ(G). In 1996, Reed proved that the domination number γ(G) of every

n-vertex graph G with minimum degree at least 3 is at most 3n/8. Also, he conjectured that

γ(H) ≥ ⌈n/3⌉ for every connected 3-regular n-vertex graph H . In [?], the authors presented

a sequence of Hamiltonian cubic graphs whose domination numbers are sharp and in this

paper we study forcing domination number for those graphs.
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§1. Introduction

Throughout this paper, all graphs considered are finite, undirected, loopless and without mul-

tiple edges. We refer the reader to [12] for terminology in graph theory.

Let G be a graph, with n vertices and e edges. Let N (v) be the set of neighbors of a vertex

v and N [v] = N (v) ∪ {v}. Let d (v) = |N (v)| be the degree of v. A graph G is r−regular

if d (v) = r for all v. Particularly, if r = 3 then G is called a cubic graph. A vertex in a

graph G dominates itself and its neighbors. A set of vertices S in a graph G is called to be a

Smarandachely dominating k-set, if each vertex of G is dominated by at least k vertices of S.

Particularly, if k = 1, such a set is called a dominating set of G. The Smarandachely domination

number γk(G) of G is the minimum cardinality of a Smarandachely dominating set of G. For

abbreviation, we denote γ1(G) by γ(G). A subset F of a minimum dominating set S is a forcing

subset for S if S is the unique minimum dominating set containing F . The forcing domination

number f (G, γ) of S is the minimum cardinality among the forcing subsets of S , and the

forcing domination number f (G, γ) of G is the minimum forcing domination number among
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the minimum dominating sets of G ([1], [2], [5]-[7]). For every graph G, f (G, γ) ≤ γ (G). Also

The forcing domination number of several classes of graphs are determined, including complete

multipartite graphs, paths, cycles, ladders and prisms. The forcing domination number of the

cartesian product G of k copies of the cycle C2k+1 is studied.

The problem of finding the domination number of a graph is NP-hard, even when restricted

to cubic graphs. One simple heuristic is the greedy algorithm, ([11]). Let dg be the size

of the dominating set returned by the greedy algorithm. In 1991 Parekh [9] showed that

dg ≤ n + 1 −
√

2e+ 1. Also, some bounds have been discovered on γ (G) for cubic graphs.

Reed [10] proved that γ (G) ≤ 3
8n. He conjectured that γ(H) ≥

⌈
n
3

⌉
for every connected 3-

regular (cubic) n-vertex graph H. Reed’s conjecture is obviously true for Hamiltonian cubic

graphs. Fisher et al. [3]-[4] repeated this result and showed that if G has girth at least 5 then

γ (G) ≤ 5
14n. In the light of these bounds on γ, in 2004 Seager considered bounds on dg for

cubic graphs and showed that ([11]):

For any graph of order n,
⌈

n
1+∆G

⌉
≤ γ (G) (see [4]) and for a cubic graph G, dg ≤ 4

9n.

In this paper, we would like to study the forcing domination number for Hamiltonian cubic

graphs. In [8], the authors showed that:

Lemma A. If r ≡ 2 or 3 (mod 4), then γ
(
G

′

)
= γ (G).

Lemma B. If r ≡ 0 or 1 (mod 4), then γ
(
G

′

)
= γ (G) − 1.

Theorem C. If r ≡ 1 (mod 4), then γ (G0) = m
⌈

n
4

⌉
−
⌈

m
3

⌉
.

§2. Forcing domination number

Remark 2.1 Let G = (V,E) be the graph with V = {v1, v2, ..., vn} for n = 2r and E =

{vivj | |i − j| = 1 or r}. So G has two vertices v1 and vn of degree two and n − 2 vertices of

degree three. By the graph G is the graph described in Fig.1.

Fig.1. The graph G.

For the following we put Np[x] = {z| z is only dominated by x} ∪ {x}.

Remark 2.2 Suppose that the graphs G
′

and G
′′

are two induced subgraphs of G such that

V (G
′

) = V (G) − {v1, vn} and V (G
′′

) = V (G) − {v1} ( or V (G
′′

) = V (G) − {v2r}).

Remark 2.3 Let G0 be a graph of order mn that n = 2r, V (G0) = {v11, v12, ...,
v1n, v21, v22, ..., v2n, ..., vm1, vm2..., vmn} and E = ∪m

i=1{vijvil| |j− l| = 1 or r}∪{vinv(i+1)1| i =

1, 2, ...,m − 1} ∪ {v11vmn}. By the graph G0 is 3-regular graph. Suppose that the graph Gi
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is an induced subgraph of G0 with the vertices vi1, vi1, ..., vin. By the graph G0 is the graph

described in Fig. 2.

Fig. 2. The graph G0.

Proposition 2.4 If r ≡ 0 (mod 4), then f(G, γ) ≤ 2, otherwise f(G, γ) = 1.

proof First we suppose that r ≡ 1 (mod 4). It is easy to see that f(G, γ) > 0, because

G has at least two minimum dominating set. Suppose F = {v1} ⊂ S where S is a minimum

dominating set. Since γ(G) = 2⌊r/4⌋+ 1, for two vertices vx and vy in S, |N [vx] ∪N [vy]| ≥ 6.

This implies that {v2, vr+1} ∩ S = ∅, then vr+3 ∈ S. A same argument shows that v5 ∈ S.

Thus S must be contains {vr+7, v9, ..., v2r−2, vr}, therefore f(G, γ) = 1.

If r ≡ 2 (mod 4), we consider S = {v2, v6, v10, ..., vr, vr+4, vr+8, ..., v2r−6, v2r−2}. Assign

the set F = {v2} then it follows f(G, γ) ≤ 1, because |Np[x]| = 4 to each vertex x ∈ S. On the

other hand since G has at least two minimum dominating set. Hence f(G, γ) = 1.

If r ≡ 3 (mod 4), for S = {v1, v5, v9, ..., vr−2, vr+3, vr+7, ..., v2r−4, v2r}, the set F = {v1}
shows that f (G, γ) ≤ 1. Further, since G has at least two minimum dominating set, then it

follows f (G, γ) = 1.

Finally let r ≡ 0 (mod 4), we consider S = {v1, v5, v9, ..., vr−3, vr+1, vr+3,

vr+7, ..., v2r−5, v2r−1}. If F = {v1, vr+1}, a simple verification shows that f (G, γ) ≤ 2. �

Proposition 2.5 If r ≡ 1 (mod 4) then f
(
G

′

, γ
)

= 0.

Proof By Lemma B, we have γ
(
G

′

)
= 2 ⌊r/4⌋. Now, we suppose that S is an arbi-

trary minimum dominating set for G
′

. Obviously for each vertex vx ∈ S, |Np[vx]| = 4, so

{vr−1, vr+2} ⊂ S. But {v2r−2, vr−2} ∩ S = ∅ therefore v2r−3 ∈ S. Thus S must be contains

{vr−5, vr−9, ..., vr+10, vr+6}, then S is uniquely determined and it follows that f
(
G

′

, γ
)

= 0.�

Proposition 2.6 If r ≡ 0 (mod 4) then f
(
G

′′

, γ
)

= 0.

Proof Let r ≡ 0 (mod 4) and S be an arbitrary minimum dominating set for G
′′

with

V (G′′) = V (G) − {v1}. If {v2r, v2r−1} ∩ S 6= ∅. Without loss of generality, we assume that

v2r ∈ S then S must be contains {vr+2, vr−2, vr−6, ..., v10, v6, v2r−4, v2r−8, ..., vr+8}. On the

other hand by Lemma B, γ
(
G

′′

)
= 2 ⌊r/4⌋ (Note that by Proof of Lemma B one can see
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γ(G
′

) = γ(G
′′

) where r ≡ 0 (mod 4)). So the vertices v3, v4, vr+4 and vr+5 must be dominated

by one vertex and this is impossible. Thus necessarily vr ∈ S, but {vr−1, v2r−1} ∩ S = ∅
which implies v2r−2 ∈ S. Finally the remaining non-dominated vertices {vr+1, vr+2, v2} is just

dominated by vr+2. Therefore the set S = {v4, v8, ..., vr−4, vr, vr+2, vr+6, ..., v2r−2} is uniquely

determined which implies f
(
G

′′

, γ
)

= 0. �

§3. Main Results

Theorem 3.1 If r ≡ 2 or 3 (mod 4), then f (G0, γ) = m.

Proof Let r ≡ 2 (mod 4) and S be a minimum dominating set for G0. If there exists

i ∈ {1, 2, ...,m} such that S ∩ {vi1, vin} 6= ∅ then it implies |S ∩Gi| > 2 ⌊r/4⌋ + 1. Moreover

γ (G0) = m (2 ⌊r/4⌋ + 1). From this it immediately follows that there exists j ∈ {1, 2, ...,m} −
{i} such that |S ∩Gj | < 2 ⌊r/4⌋+ 1 and this is contrary to Lemma A. Hence S ∩ {vi1, vin} = ∅
for 1 ≤ i ≤ m. On the other hand f (Gi, γ) = 1 for 1 ≤ i ≤ m which implies f (G0, γ) = m.

Now we suppose that r ≡ 3 (mod 4) and S is minimum dominating set for G0, such that

F = {vi1| 1 ≤ i ≤ m} ⊂ S. Since vi1 ∈ S and γ (G0) = 2 ⌊r/4⌋+2 then {vi2, vi3}∩S = ∅ and this

implies vi(r+3) ∈ S. With similar description, we have {vi5, vi9, ..., vi(r−2), vi(r+6), vi(r+11), ...,

vi(2r−4)} ⊂ S. But for the remaining non-dominated vertices vir , vi(2r) and vi(2r−1) necessarily

implies that vi(2r) ∈ S. Hence S is the unique minimum dominating set containing F . Thus

f (G0, γ) ≤ m. A trivial verification shows that f
(
G

′

, γ
)
, f
(
G

′′

, γ
)
≥ 1 for i ∈ {1, 2, ...,m},

therefore f (G0, γ) = m. �

Theorem 3.2 f (G0, γ) =





1 if m ≡ 0 (mod 3)

2 otherwise

for r ≡ 1 (mod 4).

Proof If m ≡ 0 (mod 3), we suppose that F = {v1n} ⊂ S and S is a minimum dominating

set for G0. By Theorem C, we have γ (G0) = m ⌈n/4⌉− ⌊m/3⌋, then v3,1 ∈ S. Here, we use the

proof of Propositions 4 and 5. From this the sets S ∩ V (G1), S ∩ V (G2), S ∩ V (G3) uniquely

characterize. By continuing this process the set S uniquely obtain, then f (G0, γ) = 1.

If m ≡ 1 or 2 (mod 3), then the set F = {v1n, vmn} uniquely characterize the minimum

dominating set for G0, therefore f (G0, γ) = 2. �

Theorem 3.3 f (G0, γ) =






⌊
m
3

⌋
+ 1 if m ≡ 0 (mod 3)

⌊
m
3

⌋
+ 3 otherwise

for r ≡ 0 (mod 4).

Proof If m ≡ 0 (mod 3) the set F = {v21, v2(r+4), v5(r+4), v8(r+4), ..., vm−1(r+4)} determine

the unique minimum dominating set for G0 then f (G0, γ) ≤ ⌊m/3⌋ + 1. But γ (Gi) = 2 ⌊r/4⌋
for ⌊m/3⌋ of Gis. Hence f (G0, γ) = ⌊m/3⌋ + 1. The proof of the case m ≡ 1 or 2 (mod 3) is

similar to the previous case. �
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