The Forcing Domination Number of Hamiltonian Cubic Graphs

H.Abdollahzadeh Ahangar

(Department of Mathematics, University of Mysore, Manasagangotri, Mysore- 570006

Pushpalatha L.

(Department of Mathematics, Yuvaraja's College, Mysore-570005) E-mail: ha.ahangar@yahoo.com, pushpakrishna@yahoo.com

Abstract: A set of vertices S in a graph G is called to be a Smarandachely dominating k-set, if each vertex of G is dominated by at least k vertices of S. Particularly, if k=1, such a set is called a dominating set of G. The Smarandachely domination number $\gamma_k(G)$ of G is the minimum cardinality of a Smarandachely dominating set of G. For abbreviation, we denote $\gamma_1(G)$ by $\gamma(G)$. In 1996, Reed proved that the domination number $\gamma(G)$ of every n-vertex graph G with minimum degree at least 3 is at most 3n/8. Also, he conjectured that $\gamma(H) \geq \lceil n/3 \rceil$ for every connected 3-regular n-vertex graph H. In [?], the authors presented a sequence of Hamiltonian cubic graphs whose domination numbers are sharp and in this paper we study forcing domination number for those graphs.

Key Words: Smarandachely dominating k-set, dominating set, forcing domination number, Hamiltonian cubic graph.

AMS(2000): 05C69

§1. Introduction

Throughout this paper, all graphs considered are finite, undirected, loopless and without multiple edges. We refer the reader to [12] for terminology in graph theory.

Let G be a graph, with n vertices and e edges. Let N(v) be the set of neighbors of a vertex v and $N[v] = N(v) \cup \{v\}$. Let d(v) = |N(v)| be the degree of v. A graph G is r-regular if d(v) = r for all v. Particularly, if v = 1 then v is called a cubic graph. A vertex in a graph v dominates itself and its neighbors. A set of vertices v in a graph v is called to be a Smarandachely dominating v-set, if each vertex of v is dominated by at least v vertices of v. Particularly, if v is the minimum cardinality of a Smarandachely domination number v is a function of v in v is the minimum dominating set of v in v in v in v in v is a function v in v

¹Received April 3, 2009. Accepted June 2, 2009.

the minimum dominating sets of G ([1], [2], [5]-[7]). For every graph G, $f(G, \gamma) \leq \gamma(G)$. Also The forcing domination number of several classes of graphs are determined, including complete multipartite graphs, paths, cycles, ladders and prisms. The forcing domination number of the cartesian product G of k copies of the cycle C_{2k+1} is studied.

The problem of finding the domination number of a graph is NP-hard, even when restricted to cubic graphs. One simple heuristic is the greedy algorithm, ([11]). Let d_g be the size of the dominating set returned by the greedy algorithm. In 1991 Parekh [9] showed that $d_g \leq n+1-\sqrt{2e+1}$. Also, some bounds have been discovered on $\gamma(G)$ for cubic graphs. Reed [10] proved that $\gamma(G) \leq \frac{3}{8}n$. He conjectured that $\gamma(H) \geq \left\lceil \frac{n}{3} \right\rceil$ for every connected 3-regular (cubic) n-vertex graph H. Reed's conjecture is obviously true for Hamiltonian cubic graphs. Fisher et al. [3]-[4] repeated this result and showed that if G has girth at least 5 then $\gamma(G) \leq \frac{5}{14}n$. In the light of these bounds on γ , in 2004 Seager considered bounds on d_g for cubic graphs and showed that ([11]):

For any graph of order n, $\left\lceil \frac{n}{1+\Delta G} \right\rceil \leq \gamma(G)$ (see [4]) and for a cubic graph G, $d_g \leq \frac{4}{9}n$.

In this paper, we would like to study the forcing domination number for Hamiltonian cubic graphs. In [8], the authors showed that:

Lemma A. If $r \equiv 2$ or $3 \pmod{4}$, then $\gamma\left(G'\right) = \gamma\left(G\right)$.

Lemma B. If $r \equiv 0$ or $1 \pmod{4}$, then $\gamma\left(G^{'}\right) = \gamma\left(G\right) - 1$.

Theorem C. If $r \equiv 1 \pmod{4}$, then $\gamma(G_0) = m \left\lceil \frac{n}{4} \right\rceil - \left\lceil \frac{m}{3} \right\rceil$.

§2. Forcing domination number

Remark 2.1 Let G = (V, E) be the graph with $V = \{v_1, v_2, ..., v_n\}$ for n = 2r and $E = \{v_i v_j | |i - j| = 1 \text{ or } r\}$. So G has two vertices v_1 and v_n of degree two and n - 2 vertices of degree three. By the graph G is the graph described in Fig.1.

Fig.1. The graph G.

For the following we put $N_p[x] = \{z \mid z \text{ is only dominated by } x\} \cup \{x\}.$

Remark 2.2 Suppose that the graphs $G^{'}$ and $G^{''}$ are two induced subgraphs of G such that $V(G^{'}) = V(G) - \{v_1, v_n\}$ and $V(G^{''}) = V(G) - \{v_1\}$ (or $V(G^{''}) = V(G) - \{v_{2r}\}$).

Remark 2.3 Let G_0 be a graph of order mn that n = 2r, $V(G_0) = \{v_{11}, v_{12}, ..., v_{1n}, v_{21}, v_{22}, ..., v_{2n}, ..., v_{m1}, v_{m2}, ..., v_{mn}\}$ and $E = \bigcup_{i=1}^{m} \{v_{ij}v_{il} | |j-l| = 1 \text{ or } r\} \cup \{v_{in}v_{(i+1)1} | i = 1, 2, ..., m-1\} \cup \{v_{11}v_{mn}\}$. By the graph G_0 is 3-regular graph. Suppose that the graph G_i

is an induced subgraph of G_0 with the vertices $v_{i1}, v_{i1}, ..., v_{in}$. By the graph G_0 is the graph described in Fig. 2.

Fig. 2. The graph G_0 .

Proposition 2.4 If $r \equiv 0 \pmod{4}$, then $f(G, \gamma) \leq 2$, otherwise $f(G, \gamma) = 1$.

proof First we suppose that $r \equiv 1 \pmod{4}$. It is easy to see that $f(G, \gamma) > 0$, because G has at least two minimum dominating set. Suppose $F = \{v_1\} \subset S$ where S is a minimum dominating set. Since $\gamma(G) = 2\lfloor r/4 \rfloor + 1$, for two vertices v_x and v_y in S, $|N[v_x] \cup N[v_y]| \geq 6$. This implies that $\{v_2, v_{r+1}\} \cap S = \emptyset$, then $v_{r+3} \in S$. A same argument shows that $v_5 \in S$. Thus S must be contains $\{v_{r+7}, v_9, ..., v_{2r-2}, v_r\}$, therefore $f(G, \gamma) = 1$.

If $r \equiv 2 \pmod{4}$, we consider $S = \{v_2, v_6, v_{10}, ..., v_r, v_{r+4}, v_{r+8}, ..., v_{2r-6}, v_{2r-2}\}$. Assign the set $F = \{v_2\}$ then it follows $f(G, \gamma) \leq 1$, because $|N_p[x]| = 4$ to each vertex $x \in S$. On the other hand since G has at least two minimum dominating set. Hence $f(G, \gamma) = 1$.

If $r \equiv 3 \pmod{4}$, for $S = \{v_1, v_5, v_9, ..., v_{r-2}, v_{r+3}, v_{r+7}, ..., v_{2r-4}, v_{2r}\}$, the set $F = \{v_1\}$ shows that $f(G, \gamma) \leq 1$. Further, since G has at least two minimum dominating set, then it follows $f(G, \gamma) = 1$.

Finally let $r \equiv 0 \pmod{4}$, we consider $S = \{v_1, v_5, v_9, ..., v_{r-3}, v_{r+1}, v_{r+3}, v_{r+7}, ..., v_{2r-5}, v_{2r-1}\}$. If $F = \{v_1, v_{r+1}\}$, a simple verification shows that $f(G, \gamma) \leq 2$.

Proposition 2.5 If $r \equiv 1 \pmod{4}$ then $f(G', \gamma) = 0$.

Proof By Lemma B, we have $\gamma\left(G'\right)=2\left\lfloor r/4\right\rfloor$. Now, we suppose that S is an arbitrary minimum dominating set for G'. Obviously for each vertex $v_x\in S$, $|N_p[v_x]|=4$, so $\{v_{r-1},v_{r+2}\}\subset S$. But $\{v_{2r-2},v_{r-2}\}\cap S=\emptyset$ therefore $v_{2r-3}\in S$. Thus S must be contains $\{v_{r-5},v_{r-9},...,v_{r+10},v_{r+6}\}$, then S is uniquely determined and it follows that $f\left(G',\gamma\right)=0$. \square

Proposition 2.6 If $r \equiv 0 \pmod{4}$ then $f(G'', \gamma) = 0$.

Proof Let $r\equiv 0\pmod 4$ and S be an arbitrary minimum dominating set for $G^{''}$ with $V(G'')=V(G)-\{v_1\}$. If $\{v_{2r},v_{2r-1}\}\cap S\neq \emptyset$. Without loss of generality, we assume that $v_{2r}\in S$ then S must be contains $\{v_{r+2},v_{r-2},v_{r-6},...,v_{10},v_6,v_{2r-4},v_{2r-8},...,v_{r+8}\}$. On the other hand by Lemma B, $\gamma\left(G^{''}\right)=2\left\lfloor r/4\right\rfloor$ (Note that by Proof of Lemma B one can see

 $\gamma(G^{'})=\gamma(G^{''})$ where $r\equiv 0\pmod 4$). So the vertices v_3,v_4,v_{r+4} and v_{r+5} must be dominated by one vertex and this is impossible. Thus necessarily $v_r\in S$, but $\{v_{r-1},v_{2r-1}\}\cap S=\emptyset$ which implies $v_{2r-2}\in S$. Finally the remaining non-dominated vertices $\{v_{r+1},v_{r+2},v_2\}$ is just dominated by v_{r+2} . Therefore the set $S=\{v_4,v_8,...,v_{r-4},v_r,v_{r+2},v_{r+6},...,v_{2r-2}\}$ is uniquely determined which implies $f\left(G^{''},\gamma\right)=0$.

§3. Main Results

Theorem 3.1 If $r \equiv 2$ or 3 (mod 4), then $f(G_0, \gamma) = m$.

Proof Let $r \equiv 2 \pmod 4$ and S be a minimum dominating set for G_0 . If there exists $i \in \{1,2,...,m\}$ such that $S \cap \{v_{i1},v_{in}\} \neq \emptyset$ then it implies $|S \cap G_i| > 2 \lfloor r/4 \rfloor + 1$. Moreover $\gamma(G_0) = m \ (2 \lfloor r/4 \rfloor + 1)$. From this it immediately follows that there exists $j \in \{1,2,...,m\} - \{i\}$ such that $|S \cap G_j| < 2 \lfloor r/4 \rfloor + 1$ and this is contrary to Lemma A. Hence $S \cap \{v_{i1},v_{in}\} = \emptyset$ for $1 \leq i \leq m$. On the other hand $f(G_i,\gamma) = 1$ for $1 \leq i \leq m$ which implies $f(G_0,\gamma) = m$.

Now we suppose that $r \equiv 3 \pmod 4$ and S is minimum dominating set for G_0 , such that $F = \{v_{i1} | 1 \le i \le m\} \subset S$. Since $v_{i1} \in S$ and $\gamma(G_0) = 2 \lfloor r/4 \rfloor + 2$ then $\{v_{i2}, v_{i3}\} \cap S = \emptyset$ and this implies $v_{i(r+3)} \in S$. With similar description, we have $\{v_{i5}, v_{i9}, ..., v_{i(r-2)}, v_{i(r+6)}, v_{i(r+11)}, ..., v_{i(2r-4)}\} \subset S$. But for the remaining non-dominated vertices $v_{ir}, v_{i(2r)}$ and $v_{i(2r-1)}$ necessarily implies that $v_{i(2r)} \in S$. Hence S is the unique minimum dominating set containing F. Thus $f(G_0, \gamma) \le m$. A trivial verification shows that $f(G', \gamma), f(G'', \gamma) \ge 1$ for $i \in \{1, 2, ..., m\}$, therefore $f(G_0, \gamma) = m$.

Theorem 3.2
$$f(G_0, \gamma) = S$$
. Hence S is the unique minimum dominating set containing F . Thus $f(G_0, \gamma) \leq m$. A trivial verification shows that $f(G', \gamma), f(G'', \gamma) \geq 1$ for $i \in \{1, 2, ..., m\}$, therefore $f(G_0, \gamma) = m$. \Box

Theorem 3.2 $f(G_0, \gamma) = \begin{cases} 1 & \text{if } m \equiv 0 \pmod{3} \\ 2 & \text{otherwise} \end{cases}$

Proof If $m \equiv 0 \pmod 3$, we suppose that $F = \{v_{1n}\} \subset S$ and S is a minimum dominating set for G_0 . By Theorem C, we have $\gamma(G_0) = m \lceil n/4 \rceil - \lfloor m/3 \rfloor$, then $v_{3,1} \in S$. Here, we use the proof of Propositions 4 and 5. From this the sets $S \cap V(G_1)$, $S \cap V(G_2)$, $S \cap V(G_3)$ uniquely characterize. By continuing this process the set S uniquely obtain, then $f(G_0, \gamma) = 1$.

If $m \equiv 1$ or 2 (mod 3), then the set $F = \{v_{1n}, v_{mn}\}$ uniquely characterize the minimum dominating set for G_0 , therefore $f(G_0, \gamma) = 2$.

Theorem 3.3
$$f(G_0, \gamma) = \begin{cases} \left\lfloor \frac{m}{3} \right\rfloor + 1 & \text{if } m \equiv 0 \pmod{3} \\ \left\lfloor \frac{m}{3} \right\rfloor + 3 & \text{otherwise} \end{cases}$$
 for $r \equiv 0 \pmod{4}$.

Proof If $m \equiv 0 \pmod{3}$ the set $F = \{v_{21}, v_{2(r+4)}, v_{5(r+4)}, v_{8(r+4)}, ..., v_{m-1(r+4)}\}$ determine the unique minimum dominating set for G_0 then $f(G_0, \gamma) \leq \lfloor m/3 \rfloor + 1$. But $\gamma(G_i) = 2 \lfloor r/4 \rfloor$ for $\lfloor m/3 \rfloor$ of G_i s. Hence $f(G_0, \gamma) = \lfloor m/3 \rfloor + 1$. The proof of the case $m \equiv 1$ or $2 \pmod{3}$ is similar to the previous case.

Acknowledgement

The authors would like to thank the referee for his helpful suggestions.

References

- [1] G. Chartrand, H. Galvas, R. C. Vandell and F. Harary, The forcing domination number of a graph, *J. Comb. Math. Comb. Comput.*, 25 (1997), 161-174.
- [2] W. E. Clark, L. A. Dunning, Tight upper bounds for the domination numbers of graphs with given order and minimum degree, *The Electronic Journal of Combinatorics*, 4 (1997), #R26.
- [3] D. Fisher, K. Fraughnaugh, S. Seager, Domination of graphs with maximum degree three, Proceedings of the Eighth Quadrennial Internationa Conference on Graph Theory, Combinatorics, Algorithms and Applications, Vol I (1998) 411-421.
- [4] D. Fisher, K. Fraughnaugh, S. Seager, The domination number of cubic graphs of larger girth, to appear in *Proceedings of the Ninth Quadrennial Internatioal Conference on Graph Theory, Combinatorics, Algorithms and Applications.*
- [5] W. Goddard, M. A. Henning, Clique/connected/total domination perfect graphs, Bulletin of the ICA, Vol. 41 (2004), 20-21.
- [6] S. Gravian, M. Mollard, Note on domination numbers of cartesian product of paths, *Discrete Applied Mathematics*, 80 (1997) 247-250.
- [7] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, New York, (1998).
- [8] D. Mojdeh, S. A. Hassanpour, H. Abdollahzadeh. A, A. Ahmadi. H, On domination in Hamiltonian cubic graphs, Far East J. Math. Sci. (FJMS), 24(2), (2007), 187-200.
- [9] A.K.Parekh, Analysis of a greedy heuristic for finding small dominating sets in graphs, Information Processing Letters, 39 (1991) 237-240.
- [10] B. Reed, Paths, starts, and the number three, Combin. Probab. Comput., 5 (1996) 277-295.
- [11] S. M. Seager, The greedy algorithm for domination in cubic graphs, *Ars Combinatoria*, 71(2004), pp.101-107.
- [12] D. B. West, Introduction to Graph Theory, Prentice Hall of India, (2003).