ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.9.11.53

MBJW - FILTERS OF LATTICE WAJSBERG ALGEBRAS

T. ANITHA ${ }^{1}$, V. AMARENDRABABU, AND G. BHANU VINOLIA

Abstract. In this paper we define the $\mathcal{M B} \mathcal{J}$ w - filters of Lattice wajsberg algebras and proved the properties of $\mathcal{M B} \mathcal{J}$ w - filters. We derive some relation between fuzzy ideals, interval valued fuzzy ideals to neutrosophic ideals. Further we prove that cut sets of $\mathcal{M B J}$ - sets formed $\mathcal{M B J} w$ - filter. Finally define the $\mathcal{M B} \mathcal{J} \mathrm{w}$ - lattice filters and proved every $\mathcal{M B} \mathcal{J} \mathrm{w}$ - filter is a $\mathcal{M B} \mathcal{J} \mathrm{w}$ - lattice filter and converse is not true.

1. Introduction

In 1935, [20] Wajsberg introduced the concept of wajsberg algebra. In 1984, [5] Front, Antonio and Torrens led the lattice wajsberg algebra and define filters, properties of filters. Ibrahim and Saravan [1] introduced the strong implicative filters of lattice wajsberg algebras and derived some properties B.Ahamed introduced [2] the concept of fuzzy implicative filter and obtained some properties of lattice wajsberg algebra. At first L. A. Zadeh introduced the Fuzzy sets to handle the real life problems with uncertainty. After that several researchers $[2,7,8,14,15,19]$ applied the fuzzy theory to different algebras, differential equations and derived some results. Later Gaw derived the vague set as a generalization of fuzzy set. Vague theory applied to several streams by researchers $[3,4,12,13]$. After that Smarandache $[6,18]$ introduced the concept of neutrosophic sets. Later Monoranjan and Madhumangal [9] recall some

[^0]definitions and introduced the truth value basedneutrosophic sets and neutrosophic sets and define new operations with examples. S.T. Rao, S.B. Kumar, H.S. Rao $[16,17]$ studied the gamma neutrosophic soft sets. Y.B. Jun, R.A. Borzooei and M. Mohseni [11] introduced the MBJ-neutrosophic sets and BMBJneutrosophic sets and applied to BCK algebra.

In this paper we consider MBJ-neutrosophic sets $\left(M_{B}^{J}\right)$ defined by Y.B. Jun and introduce the concept (M_{B}^{J})W-filter of lattice wajsberg algebra and obtain some results on them. For further information of lattice wajsberg algebra refer the wajsberg algebra [5] by Front, Antonio and Torrens and for MBJ-neutrosophic sets refer the [10] MBJ-neutrosophic structures.

2. Preliminaries

Definition 2.1. [5] Let $\left(w, \rightarrow,^{\prime}, 1_{m}\right)$ be a wajsberg algebra if it satisfies the following axioms for all $x_{m}, y_{m}, z_{m} \in w$
(i) $1_{m} \rightarrow x_{m}=x_{m}$
(ii) $\left(x_{m} \rightarrow y_{m}\right) \rightarrow\left(\left(y_{m} \rightarrow z_{m}\right) \rightarrow\left(x_{m} \rightarrow z_{m}\right)\right)=1_{m}$
(iii) $\left(x_{m} \rightarrow y_{m}\right) \rightarrow y_{m}=\left(y_{m} \rightarrow x_{m}\right) \rightarrow x_{m}$
(iv) $\left(x_{m}^{\prime} \rightarrow y_{m}^{\prime}\right) \rightarrow\left(y_{m} \rightarrow x_{m}\right)=1_{m}$

Definition 2.2. [5] The wajsberg algebra W is called a lattice wajsberg algebra with the bounds $0_{m}, 1_{m}$ if it satisfies the following axioms for all $x_{m}, y_{m} \in W$: A partial ordering \leq on W, such that $x_{m} \leq y_{m}$ if and only if $x_{m} \rightarrow x_{m}=1_{m}$, $\left(x_{m} \vee y_{m}\right)=\left(x_{m} \rightarrow y_{m}\right) \rightarrow y_{m}$ and $\left(x_{m} \wedge y_{m}\right)=\left(\left(x_{m}^{\prime} \rightarrow y_{m}^{\prime}\right) \rightarrow y_{m}^{\prime}\right)$.

Let I denote the family of all intervals numbers of $[0,1]$. If $I_{1}=\left[a_{1}, b_{1}\right]$, $I_{2}=\left[a_{2}, b_{2}\right]$ are two elements of $I[0,1]$, we call $I_{1} \geq^{*} I_{2}$ if $a_{1} \geq a_{2}$ and $b_{1} \geq$ b_{2}. we define the term rmax to mean the maximum of two interval as rmax $\left[I_{1}, I_{2}\right]=\left[\max \left(a_{1}, a_{2}\right), \max \left(b_{1}, b_{2}\right)\right]$. Similarly, me can define the term rmin of any two intervals.

Definition 2.3. [10] A neutrosophic set (N^{s}), if the structure $A_{m}=<y_{m}, w_{T}^{A}\left(y_{m}\right)$, $w_{I}^{A}\left(y_{m}\right), w_{F}^{A}\left(y_{m}\right)>, y_{m} \in x$ where $\left(w_{T}^{A}\right)$ is truth membership function, $\left(w_{I}^{A}\right)$ is an indeterminate membership function and $\left(w_{F}^{A}\right)$ is false membership function, on a nonempty set X.

Definition 2.4. [10] A $M B J$ neutrosophic $\operatorname{set}\left(M_{B}^{J}-\right.$ set $)$ is of the structure $A_{m}=$ $<y_{m}, M_{T}^{A}\left(y_{m}\right), B_{I}^{A}\left(y_{m}\right), J_{F}^{A}\left(y_{m}\right)>, y_{m} \in x$ where M_{T}^{A} is truth membership function, B_{I}^{A} is an indeterminate interval -valued membership function and J_{F}^{A} is false membership function, on a nonempty set X. The M_{B}^{J} set is simply denoted by $A_{m}=$ $\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$. Throughout this paper W denotes the lattice wajsberg algebra and M_{B}^{J} - set denotes the $M B J$-neutrosophic set.

3. M_{B}^{J}-FILTERS

Definition 3.1. $A M_{B^{-}}^{J}$ set $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ on W is called a $M_{B}^{J} w-$ filter if it satisfies for all $x_{m}, y_{m} \in W$,
(3.1) $M_{T}^{A}\left(1_{m}\right) \geq M_{T}^{A}\left(x_{m}\right), B_{I}^{A}\left(1_{m}\right) \geq^{*} B\left(x_{m}\right)$ and $J_{F}^{A}\left(1_{m}\right) \leq J_{F}^{A}\left(x_{m}\right)$.
(3.2) $M_{T}^{A}\left(y_{m}\right) \geq \min \left\{M_{T}^{A}\left(x_{m} \rightarrow y_{m}\right), M_{T}^{A}\left(x_{m}\right)\right\}$,
$B_{I}^{A}\left(y_{m}\right) \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A}\left(x_{m}\right)\right\}$
and $F^{A}\left(y_{m}\right) \leq \max \left\{J_{F}^{A}\left(x_{m} \rightarrow y_{m}\right), J_{F}^{A}\left(x_{m}\right)\right\}$.
Example 1. Let $W=\left\{0_{m}, x_{m}, y_{m}, 1_{m}\right\}$ with the binary operation \rightarrow as follows: The M_{B}^{J} - set $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ defined on W as follows is M_{B}^{J}-filter of W.

Table 1. W-Algebra

Col1	Col2	Col3	Col4	col5
\rightarrow	0_{m}	x_{m}	y_{m}	1_{m}
0_{m}	1_{m}	1_{m}	1_{m}	1_{m}
x_{m}	y_{m}	1_{m}	y_{m}	1_{m}
y_{m}	x_{m}	x_{m}	1_{m}	1_{m}
1_{m}	0_{m}	x_{m}	y_{m}	1_{m}

Col1	Col2	Col3	Col4
	M_{T}^{A}	B_{I}^{A}	J_{F}^{A}
0_{m}	.551	$[.557, .7]$.451
x_{m}	.551	$[.557, .7]$.41
y_{m}	.71	$[.61, .72]$.231
1_{m}	.71	$[.61, .72]$.231

Example 2. Let $W=\left\{0_{m}, x_{m}, y_{m}, z_{m} \cdot v_{m}, 1_{m}\right\}$ with the binary operation \rightarrow as follows:

TABLE 2. W-Algebra

Col1	Col2	Col3	Col4	col5	col6	col7
\rightarrow	0_{m}	x_{m}	y_{m}	z_{m}	v_{m}	1_{m}
0_{m}	1_{m}	1_{m}	1_{m}	1_{m}	1_{m}	1_{m}
x_{m}	z_{m}	1_{m}	y_{m}	z_{m}	y_{m}	1_{m}
y_{m}	v_{m}	x_{m}	1_{m}	y_{m}	x_{m}	1_{m}
z_{m}	x_{m}	x_{m}	1_{m}	1_{m}	x_{m}	1_{m}
v_{m}	y_{m}	1_{m}	1_{m}	y_{m}	1_{m}	1_{m}
1_{m}	0_{m}	x_{m}	y_{m}	x_{m}	y_{m}	1_{m}

The M_{B}^{J} - set $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ defined on W as follows is M_{B}^{J}-filter of W.
Table 3. MBJW-filter

Col1	Col2	Col3	Col4
	M_{T}^{A}	B_{I}^{A}	J_{F}^{A}
0_{m}	.451	$[.5, .557]$.51
x_{m}	.671	$[.6, .641]$.445
y_{m}	.451	$[.5, .557]$.51
z_{m}	.451	$[.5, .557]$.51
v_{m}	.451	$[.5, .557]$.51
1_{m}	.671	$[.6, .641]$.445

Theorem 3.1. Let $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is M_{B}^{J} - set of W. If $\left(M_{T}^{A}, J_{F}^{A}\right)$ is an intuitionistic fuzzy filter of W and B_{I}^{A+} and B_{I}^{A-} are fuzzy filters of W then $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is a $M_{B}^{J} w$ - filter of W.

Proof. For any $x_{m}, y_{m} \in W$, we have

$$
\begin{aligned}
& B_{I}^{A}\left(1_{m}\right)=\left[B_{I}^{A-}\left(1_{m}\right), B_{I}^{A+}\left(1_{m}\right)\right] \geq^{*}\left[B_{I}^{A-}\left(x_{m}\right), B_{I}^{A+}\left(x_{m}\right)\right]=B_{I}^{A}\left(x_{m}\right) \text { and } \\
& B_{I}^{A}\left(y_{m}\right)=\left[B_{I}^{A-}\left(y_{m}\right), B_{I}^{A+}(y m)\right] \\
& \quad \geq^{*}\left[\min \left\{B_{I}^{A-}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A-}\left(x_{m}\right)\right\}, \min \left\{B_{I}^{A+}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A+}\left(x_{m}\right)\right\}\right. \\
& \quad=\operatorname{rmin}\left\{\left[B_{I}^{A-}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A+}\left(x_{m} \rightarrow y_{m}\right)\right],\left[B_{I}^{A-}\left(x_{m}\right), B_{I}^{A+}\left(x_{m}\right)\right\}\right. \\
& \left.\quad=\operatorname{rmin}\left\{B_{I}^{A}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A}\left(x_{m}\right)\right\}\right] .
\end{aligned}
$$

Therefore $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is a $M_{B}^{J} \mathrm{~W}$ - filter of W. If $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is a $M_{B}^{J} \mathrm{~W}$ - filter of W , then for all $x_{m}, y_{m} \in W$,

$$
\begin{aligned}
& {\left[B_{I}^{A-}\left(y_{m}\right), B_{I}^{A+}\left(y_{m}\right)\right]=B_{I}^{A}\left(y_{m}\right) \geq *} \\
& \quad=\operatorname{rmin}\left\{\left[B_{I}^{A-}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A+}\left(x_{m} \rightarrow y_{m}^{A}\right)\right],\left[B_{I}^{A-}\left(x_{m}\right), B_{I}^{A+}\left(x_{m}\right)\right\}\right. \\
& \quad=\min \left\{B_{I}^{A-}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A-}\left(x_{m}\right)\right\}, \min \left\{B_{I}^{A+}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A+}\left(x_{m}\right)\right\}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& B_{I}^{A-}\left(y_{m}\right) \geq \min \left\{B_{I}^{A-}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A-}\left(x_{m}\right)\right\} \text { and } \\
& B_{I}^{A+}\left(y_{m}\right) \geq \min \left\{B_{I}^{A+}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A+}\left(x_{m}\right)\right\} .
\end{aligned}
$$

Thus B_{I}^{A-} and B_{I}^{A+} are fuzzy filters of W. But $\left(M_{T}^{A}, J_{F}^{A}\right)$ is need not to be an intuitionistic fuzzy filter of W.

For example the M_{B}^{J} - sets $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ and $B_{m}=\left(M_{T}^{B}, B_{I}^{B}, J_{F}^{B}\right)$ in the example 3.3 are $M_{B}^{J} \mathrm{~W}$ - filters of W but $\left(M_{T}^{A}, J_{F}^{A}\right)$ is an intuitionistic fuzzy filter of W and $\left(M_{T}^{B}, J_{F}^{B}\right)$ is not an intuitionistic fuzzy filter of W.

Theorem 3.2. If $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is a $M_{B}^{J} w$ - filter of W then the sets

$$
\left(M_{T}^{A}, B_{I}^{A-}, J_{F}^{A}\right)\left(M_{T}^{A}, B_{I}^{A+}, J_{F}^{A}\right)
$$

are $N w$ - filters of W.
Proof. Let $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is a $M_{B}^{J} \mathrm{~W}$ - filter of W. Then $B_{I}^{A}\left(1_{m}\right) \geq^{*} B\left(x_{m}\right)$ then clearly $B_{I}^{A-}\left(1_{m}\right) \geq B_{I}^{A-}\left(x_{m}\right)$ and $B_{I}^{A+}\left(1_{m}\right) \geq B_{I}^{A+}\left(x_{m}\right)$ forall $x_{m} \in W$. And

$$
B_{I}^{A}\left(y_{m}\right) \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A}\left(x_{m}\right)\right\}
$$

that is

$$
\begin{aligned}
& B_{I}^{A-}\left(y_{m}\right) \geq \min \left\{B_{I}^{A-}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A-}\left(x_{m}\right)\right\}, \\
& B_{I}^{A+}\left(y_{m}\right) \geq \min \left\{B_{I}^{A+}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A+}\left(x_{m}\right)\right\} .
\end{aligned}
$$

B_{I}^{A-} and B_{I}^{A+} satisfies the necessary conditions. So the sets $\left(M_{T}^{A}, B_{I}^{A-}, J_{F}^{A}\right)$ and $\left(M_{T}^{A}, B_{I}^{A+}, J_{F}^{A}\right)$ are $N w$ - filters of W.

Theorem 3.3. Let $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is $M_{B}^{J} w$ - filter of W. If $x_{m} \leq y_{m}$ then $\left\{M_{T}^{A}\left(x_{m}\right) \leq M_{T}^{A}\left(y_{m}\right), B_{I}^{A}\left(x_{m}\right) \leq^{*} B_{I}^{A}\left(y_{m}\right) \operatorname{and} J_{F}^{A}\left(x_{m}\right) \geq J_{F}^{A}\left(y_{m}\right)\right\}$ for all $x_{m}, y_{m} \in$ W.

Proof. Since $x_{m} \leq y_{m}$, then $x_{m} \rightarrow y_{m}=1$. By A_{m} is $M_{B}^{J} \mathrm{~W}$-filter of W, We have

$$
\begin{aligned}
M_{T}^{A}\left(y_{m}\right) & \geq \min \left\{M_{T}^{A}\left(x_{m} \rightarrow y_{m}\right), M_{T}^{A}\left(x_{m}\right)\right\} \\
& =\min \left\{M_{T}^{A}\left(1_{m}\right), M_{T}^{A}\left(x_{m}\right)\right\}=M_{T}^{A}\left(x_{m}\right), \\
B_{I}^{A}\left(y_{m}\right) & \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(x_{m} \rightarrow y_{m}, B_{I}^{A}\left(x_{m}\right)\right\}\right. \\
& =\min \left\{B_{I}^{A}\left(1_{m}\right), B_{I}^{A}\left(x_{m}\right)\right\}=B_{I}^{A}\left(x_{m}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
J_{F}^{A}\left(y_{m}\right) & \leq \max \left\{J_{F}^{A}\left(x_{m} \rightarrow y_{m}\right), J_{F}^{A}\left(x_{m}\right)\right\} \\
& =\max \left\{J_{F}^{A}\left(1_{m}\right), J_{F}^{A}\left(x_{m}\right)\right\}=J_{F}^{A}\left(x_{m}\right) .
\end{aligned}
$$

Theorem 3.4. $A M_{B}^{J}$ set $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is $M_{B}^{J} w$ - filter of W if and only if it holds (3.1) and for all $x_{m}, y_{m}, z_{m} \in W$,

$$
\begin{aligned}
& \text { (3.3) } M_{T}^{A}\left(x_{m} \rightarrow y_{m}\right) \geq \min \left\{M_{T}^{A}\left(y_{m} \rightarrow\left(x_{m} \rightarrow z_{m}\right), M_{T}^{A}\left(y_{m}\right)\right\},\right. \\
& \\
& B_{I}^{A}\left(x_{m} \rightarrow z_{m}\right) \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(y_{m} \rightarrow\left(x_{m} \rightarrow z_{m}\right), B_{I}^{A}\left(y_{m}\right)\right\}\right.
\end{aligned}
$$

and

$$
J_{F}^{A}\left(x_{m} \rightarrow z_{m}\right) \leq \max \left\{J_{F}^{A}\left(y_{m} \rightarrow\left(x_{m} \rightarrow z_{m}\right)\right), J_{F}^{A}\left(y_{m}\right)\right\} .
$$

Proof. Let A_{m} is a $M_{B}^{J} \mathrm{w}$-filter of W, perceptibly it hold (3.1) and (3.3).
Conversely suppose that A_{m} is a M_{B}^{J} - set with (3.1) and (3.3). Taking $x_{m}=1_{m}$ in (3.3), we get

$$
\begin{aligned}
M_{T}^{A}\left(1_{m} \rightarrow z_{m}\right) & \geq \min \left\{M_{T}^{A}\left(y_{m} \rightarrow\left(1_{m} \rightarrow z_{m}\right)\right), M_{T}^{A}\left(y_{m}\right)\right\} \\
M_{T}^{A}\left(z_{m}\right) & \left.\geq \min \left\{M_{T}^{A}\left(y_{m} \rightarrow z_{m}\right)\right), M_{T}^{A}\left(y_{m}\right)\right\}, \\
B_{I}^{A}\left(1_{m} \rightarrow z_{m}\right) & \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(y_{m} \rightarrow\left(1_{m} \rightarrow z_{m}\right)\right), B_{I}^{A}\left(y_{m}\right)\right\} \\
B_{I}^{A}\left(z_{m}\right) & \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(y_{m} \rightarrow z_{m}\right), B_{I}^{A}\left(y_{m}\right)\right\} \\
J_{F}^{A}\left(1_{m} \rightarrow z_{m}\right) & \leq \max \left\{J_{F}^{A}\left(y_{m} \rightarrow\left(1_{m} \rightarrow z_{m}\right)\right), J_{F}^{A}\left(y_{m}\right)\right\} \\
J_{F}^{A}\left(z_{m}\right) & \leq \max \left\{J_{F}^{A}\left(y_{m} \rightarrow z_{m}\right), J_{F}^{A}\left(y_{m}\right)\right\} .
\end{aligned}
$$

Hence A_{m} is a M_{B}^{J} w-filter of W.
Theorem 3.5. $A M_{B}^{J}$ set $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is $M_{B}^{J} w$ - filter of W if and only if it hold (3.1) and

$$
\begin{aligned}
& \text { (3.4) } \quad M_{T}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow z_{m}\right) \geq \min \left\{M_{T}^{A}\left(x_{m}\right), M_{T}^{A}\left(y_{m}\right)\right\}, \\
& \\
& B_{I}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow z_{m}\right) \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(x_{m}\right), B_{I}^{A}\left(y_{m}\right)\right\}
\end{aligned}
$$

and

$$
J_{F}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow z_{m}\right) \leq \max \left\{J_{F}^{A}\left(x_{m}\right), J_{F}^{A}\left(y_{m}\right)\right\}
$$

for all $x_{m}, y_{m}, z_{m} \in W$.
Proof. Suppose that A_{m} is a $M_{B}^{J} \mathrm{~W}$ - filter of W and $x_{m}, y_{m}, z_{m} \in W$. Clearly

$$
\begin{aligned}
& M_{T}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow z_{m}\right) \\
\geq & \min \left\{M_{T}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right), M_{T}^{A}\left(y_{m}\right)\right\}
\end{aligned}
$$

and

$$
\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow\left(y_{m} \rightarrow z_{m}\right)=\left(x_{m}\left(y_{m} \rightarrow z_{m}\right) \geq x_{m} .\right.\right.
$$

So, $M_{T}^{A}\left(\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \geq M_{T}^{A}\left(x_{m}\right)\right.$.
From above we get,

$$
M_{T}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow z_{m}\right) \geq \min \left\{M_{T}^{A}\left(x_{m}\right), M_{T}^{A}\left(y_{m}\right)\right\} .
$$

Clearly,

$$
B_{I}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow z_{m}\right)
$$

$\geq \min \left\{B_{I}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right), B_{I}^{A}\left(y_{m}\right)\right\}$
and
$B_{I}^{A}\left(\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \geq B_{I}^{A}\left(x_{m}\right)\right.$.
From above we get

$$
B_{I}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow z_{m}\right) \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(x_{m}\right), B_{I}^{A}\left(y_{m}\right)\right\} .
$$

Clearly

$$
\begin{aligned}
& J_{F}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow z_{m}\right) \\
\leq & \min \left\{J_{F}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right), J_{F}^{A}\left(y_{m}\right)\right\}
\end{aligned}
$$

and

$$
J_{F}^{A}\left(\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow z_{m}\right) \leq J_{F}^{A}\left(x_{m}\right) .\right.
$$

From above we get, $J_{F}^{A}\left(\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right) \rightarrow z_{m}\right) \leq \max \left\{J_{F}^{A}\left(x_{m}\right), J_{F}^{A}\left(y_{m}\right)\right\}$.
Conversely suppose that A_{m} is a M_{B}^{J}-set with (3.1) and (3.4).

$$
\begin{aligned}
& M_{T}^{A}\left(y_{m}\right)=M_{T}^{A}\left(1_{m} \rightarrow y_{m}\right)=M_{T}^{A}\left(\left(\left(x_{m} \rightarrow y_{m}\right) \rightarrow\left(x_{m} \rightarrow y_{m}\right)\right) \rightarrow y_{m}\right) \\
\geq & \min \left\{M_{T}^{A}\left(x_{m} \rightarrow y_{m}\right), M_{T}^{A}\left(x_{m}\right)\right\} . \\
& B_{I}^{A}\left(y_{m}\right)=B_{I}^{A}\left(1_{m} \rightarrow y_{m}\right)=B_{I}^{A}\left(\left(\left(x_{m} \rightarrow y_{m}\right) \rightarrow\left(x_{m} \rightarrow y_{m}\right)\right) \rightarrow y_{m}\right) \\
\geq & \geq^{*} \min \left\{B_{I}^{A}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A}\left(x_{m}\right)\right\} . \\
& J_{F}^{A}\left(y_{m}\right)=J_{F}^{A}\left(1_{m} \rightarrow y_{m}\right)=J_{F}^{A}\left(\left(\left(x_{m} \rightarrow y_{m}\right) \rightarrow\left(x_{m} \rightarrow y_{m}\right)\right) \rightarrow y_{m}\right) \\
\leq & \max \left\{J_{F}^{A}\left(x_{m} \rightarrow y_{m}\right), J_{F}^{A}\left(x_{m}\right)\right\} .
\end{aligned}
$$

So, A_{m} is a $M_{B}^{J} \mathrm{~W}$-filter of W.
Theorem 3.6. Every $M_{B}^{J} w$ - filter $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ fulfills the following result: If $x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)=1_{m}$ then for all $x_{m}, y_{m}, z_{m} \in W$,
$M_{T}^{A}\left(z_{m}\right) \geq \min \left\{M_{T}^{A}\left(x_{m}\right), M_{T}^{A}\left(y_{m}\right)\right\}, B_{I}^{A}\left(z_{m}\right) \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(x_{m}\right), B_{I}^{A}\left(y_{m}\right)\right\}$
and $\left.J_{F}^{A}\left(z_{m}\right) \leq \max \left\{J_{F}^{A}\left(x_{m}\right)\right), J_{F}^{A}\left(y_{m}\right)\right\}$
Proof. Suppose A_{m} is $M_{B}^{J} \mathrm{~W}$ - filter of W and $x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)=1_{m}$ and $x_{m}, y_{m}, z_{m} \in W$.

We get

$$
M_{T}^{A}\left(z_{m}\right) \geq \min \left\{M_{T}^{A}\left(y_{m} \rightarrow z_{m}\right), M_{T}^{A}\left(y_{m}\right)\right\}
$$

$$
\begin{aligned}
& \geq \min \left\{\min \left\{M_{T}^{A}\left(x_{m}\right), M_{T}^{A}\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right)\right\}, M_{T}^{A}\left(y_{m}\right)\right\} \\
& \geq \min \left\{\min \left\{M_{T}^{A}\left(x_{m}\right), M_{T}^{A}\left(1_{m}\right)\right\}, M_{T}^{A}\left(y_{m}\right)\right\} \\
& \geq \min \left\{M_{T}^{A}\left(x_{m}\right), M_{T}^{A}\left(y_{m}\right)\right\} \\
B_{I}^{A}\left(z_{m}\right) & \geq{ }^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(y_{m} \rightarrow z_{m}\right), B_{I}^{A}\left(y_{m}\right)\right\} \\
& \geq{ }^{*} \operatorname{rmin}\left\{\min \left\{B_{I}^{A}\left(x_{m}\right), B_{I}^{A}\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right)\right\} B_{I}^{A}\left(y_{m}\right)\right\} \\
& \geq^{*} \operatorname{rmin}\left\{\min \left\{B_{I}^{A}\left(x_{m}\right), B_{I}^{A}\left(1_{m}\right)\right\}, B_{I}^{A}\left(y_{m}\right)\right\} \\
& \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(x_{m}\right), B_{I}^{A}\left(y_{m}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
J_{F}^{A}\left(z_{m}\right) & \leq \max \left\{J_{F}^{A}\left(y_{m} \rightarrow z_{m}\right), J_{F}^{A}\left(y_{m}\right)\right\} \\
& \leq \max \left\{\max \left\{J_{F}^{A}\left(x_{m}\right), J_{F}^{A}\left(x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)\right)\right\}, J_{F}^{A}\left(y_{m}\right)\right\} \\
& \leq \max \left\{\max \left\{J_{F}^{A}\left(x_{m}\right), J_{F}^{A}\left(1_{m}\right)\right\}, J_{F}^{A}\left(y_{m}\right)\right\} \\
& \leq \max \left\{J_{F}^{A}\left(x_{m}\right), J_{F}^{A}\left(y_{m}\right)\right\} .
\end{aligned}
$$

Lemma 3.1. Every M_{B}^{J} set $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ of W fulfills the following result for all $x\left(\left(n_{w}\right),---------, x\left(1_{w}\right), y_{m} \in W\right.$:

$$
\begin{aligned}
& \text { If } \left.x\left(n_{w}\right) \rightarrow\left(x(n-1)_{w}\right) \rightarrow------\left(x\left(1_{w}\right) \rightarrow y_{m}\right)\right)=1_{m} \text { then } \\
& \quad M_{T}^{A}\left(y_{m}\right) \geq \min \left\{M_{T}^{A}\left(x\left(n_{w}\right)\right),-------, M_{T}^{A}\left(x\left(1_{w}\right)\right)\right\} \text {, } \\
& \quad B_{I}^{A}\left(y_{m}\right) \geq^{*} r \operatorname{rin}\left\{B_{I}^{A}\left(x\left(n_{w}\right)\right),------, B_{I}^{A}\left(x\left(1_{w}\right)\right)\right\} . \\
& \text { And } J_{F}^{A}\left(y_{m}\right) \leq \max \left\{J_{F}^{A}\left(x\left(n_{w}\right)\right),------, J_{F}^{A}\left(x\left(1_{w}\right)\right)\right\} .
\end{aligned}
$$

Theorem 3.7. Let A_{m} and B_{m} are two $M_{B}^{J} w$-filters of W, then $A_{m} \cap B_{m}$ is also a $M_{B}^{J} w$-filter of W.

Proof. Let $x_{m}, y_{m}, z_{m} \in W$ such that $x_{m} \leq\left(y_{m} \rightarrow z_{m}\right)$, then $x_{m} \rightarrow\left(y_{m} \rightarrow z_{m}\right)=$ 1_{m}. Since A_{m} and B_{m} are two $M_{B}^{J} \mathrm{~W}$-filters of W, we have

$$
M_{T}^{A}\left(z_{m}\right) \geq \min \left\{M_{T}^{A}\left(x_{m}\right), M_{T}^{A}\left(y_{m}\right)\right\}, B_{I}^{A}\left(z_{m}\right) \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}(x m), B_{I}^{A}(y m)\right\}
$$

and

$$
\begin{aligned}
& \left.J_{F}^{A}(z m) \leq \max \left\{J_{F}^{A}\left(x_{m}\right)\right), J_{F}^{A}\left(y_{m}\right)\right\} . \\
& M_{T}^{B}\left(z_{m}\right) \geq \min \left\{M_{T}^{B}\left(x_{m}\right), M_{T}^{B}\left(y_{m}\right)\right\}, \\
& B_{I}^{B}\left(z_{m}\right) \geq * \operatorname{rmin}\left\{B_{I}^{B}\left(x_{m}\right), B_{I}^{B}\left(y_{m}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.J_{F}^{B}\left(z_{m}\right) \leq \max \left\{J_{F}^{B}\left(x_{m}\right)\right), J_{F}^{B}\left(y_{m}\right)\right\} . \\
& \begin{aligned}
\left.M_{T}^{(} A \cap B\right)\left(z_{m}\right) & =\min \left\{M_{T}^{A}\left(z_{m}\right), M_{T}^{B}\left(z_{m}\right)\right\} \\
& =\min \left\{\min \left\{M_{T}^{A}\left(x_{m}\right), M_{T}^{A}\left(y_{m}\right)\right\}, \min \left\{M_{T}^{B}\left(x_{m}\right), M_{T}^{B}\left(y_{m}\right)\right\}\right\} \\
& =\min \left\{\min \left\{M_{T}^{A}\left(x_{m}\right), M_{T}^{B}\left(x_{m}\right)\right\}, \min \left\{M_{T}^{A}\left(y_{m}\right), M_{T}^{B}\left(y_{m}\right)\right\}\right\} \\
& \left.\left.=\min \left\{M_{T}^{(} A \cap B\right)\left(x_{m}\right), M_{T}^{(} A \cap B\right)\left(y_{m}\right)\right\}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\left.B_{I}^{(} A \cap B\right)\left(z_{m}\right) & =\min \left\{B_{I}^{A}\left(z_{m}\right), B\left(z_{m}\right)\right\} \\
& =\min \left\{\min \left\{B_{I}^{A}\left(x_{m}\right), B_{I}^{A}\left(y_{m}\right)\right\}, \min \left\{B_{I}^{B}\left(x_{m}\right), B_{I}^{B}\left(y_{m}\right)\right\}\right\} \\
& =\min \left\{\min \left\{B_{I}^{A}\left(x_{m}\right), B_{I}^{B}\left(x_{m}\right)\right\}, \min \left\{B_{I}^{A}\left(y_{m}\right), B_{I}^{B}\left(y_{m}\right)\right\}\right\} \\
& \left.\left.=\min \left\{B_{I}^{(} A \cap B\right)\left(x_{m}\right), B_{I}^{(} A \cap B\right)\left(y_{m}\right)\right\} . \\
\left.J_{F}^{(} A \cap B\right)\left(z_{m}\right) & =\max \left\{J_{F}^{A}\left(z_{m}\right), J_{F}^{B}\left(z_{m}\right)\right\} \\
& =\max \left\{\max \left\{J_{F}^{A}\left(x_{m}\right), J_{F}^{A}\left(y_{m}\right)\right\}, \max \left\{J_{F}^{B}\left(x_{m}\right), J_{F}^{B}\left(y_{m}\right)\right\}\right\} \\
& =\max \left\{\max \left\{J_{F}^{A}\left(x_{m}\right), J_{F}^{B}\left(x_{m}\right)\right\}, \max \left\{J_{F}^{A}\left(y_{m}\right), J_{F}^{B}\left(y_{m}\right)\right\}\right\} \\
& \left.\left.=\max \left\{J_{F}^{(} A \cap B\right)\left(x_{m}\right), J_{F}^{(} A \cap B\right)\left(y_{m}\right)\right\} .
\end{aligned}
$$

So $A_{m} \cap B_{m}$ is a $M_{B}^{J} \mathrm{~W}$ - filter of W.

Theorem 3.8. The M_{B}^{J}-set $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is $M_{B}^{J} w$ - filter of W if and only if its nonempty M_{B}^{J} cut sets $\left.M_{T}^{(} A_{\alpha}\right)$ and $\left.J_{F}^{(} A_{\gamma}\right)$ are implicative filters of W and $\left.B_{I}^{(} A_{\beta}\right)$ is an intuitionistic fuzzy filter of W for all $\alpha, \gamma \in[0,1]$ and $\left[\beta_{1}, \beta_{2}\right] \in I$.

Proof. Suppose A_{m} is M_{B}^{J} w-filter of W and $\alpha, \gamma \in[0,1]$ and $\left[\beta_{1}, \beta_{2}\right] \in I$.
Let $\left.\left.M_{T}^{(} A_{\alpha}\right), B_{I}^{(} A_{\beta}\right)$ and $\left.J_{F}^{(} A_{\gamma}\right)$ are nonempty. Obviously $\left.1_{m} \in M_{T}^{(} A_{\alpha}\right), 1_{m} \in$ $\left.B_{I}^{(} A_{\beta}\right)$ and $\left.1_{m} \in J_{F}^{(} A_{\gamma}\right)$. Let $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}$ and $z_{2} \in W$ such that $\left(x_{1} \rightarrow x_{2}, x_{1} \in\right.$ $\left.\left.\left.\left.M_{T}^{(} A_{\alpha}\right)\right),\left(y_{1} \rightarrow y_{2}, y_{1}\right) \in B_{I}^{(} A_{\beta}\right)\right)$ and $\left.\left(z_{1} \rightarrow z_{2}, z_{1} \in J_{F}^{(} A_{\gamma}\right)\right)$. Then:

$$
\begin{aligned}
& \left.M_{T}^{A}\left(x_{2}\right) \geq \min \left\{M_{T}^{A}\left(\left(x_{1} \rightarrow x_{2}\right), M_{T}^{A}\left(x_{1}\right)\right)\right\} \geq \alpha \text { implies } x_{2} \in M_{T}^{(} A_{\alpha}\right) \\
& \left.B_{I}^{A}\left(y_{2}\right) \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(y_{1} \rightarrow y_{2}\right), B_{I}^{A}\left(y_{1}\right)\right\} \geq\left[\beta_{1}, \beta_{2}\right] \text { implies } y_{2} \in B_{I}^{(} A_{\beta}\right) . \\
& \left.J_{F}^{A}\left(z_{2}\right) \leq \max \left\{J_{F}^{A}\left(z_{1} \rightarrow z_{2}\right), J_{F}^{A}\left(z_{1}\right)\right\} \leq \gamma \text { implies } z_{2} \in J_{F}^{(} A_{\gamma}\right) .
\end{aligned}
$$

So, $\left.M_{T}^{(} A_{\alpha}\right)$ and $\left.J_{F}^{(} A_{\gamma}\right)$ are implicative filters of W and $\left.B_{I}^{(} A_{\beta}\right)$ is an intuitionistic fuzzy filter of W.

Conversely, suppose that $\left.M_{T}^{(} A_{\alpha}\right)$ and $\left.J_{F}^{(} A_{\gamma}\right)$ are implicative filters of W and $\left.B_{I}^{(} A_{\beta}\right)$ is an intuitionistic fuzzy filter of W for all $\alpha, \gamma \in[0,1]$ and $\left[\beta_{1}, \beta_{2}\right] \in I$. For any $x_{m}, y_{m}, z_{m} \in W$ such that $M_{T}^{A}\left(x_{m}\right)=\alpha, B_{I}^{A}\left(y_{m}\right)=\left[\beta_{1}, \beta_{2}\right]$ and $J_{F}^{A}\left(z_{m}\right)=\gamma$. Then $\left.\left.x_{m} \in M_{T}^{(} A_{\alpha}\right), y_{m} \in B_{I}^{(} A_{\beta}\right)$ and $\left.z_{m} \in J_{F}^{(} A_{\gamma}\right)$, so $\left.\left.M_{T}^{(} A_{\alpha}\right), B_{I}^{(} A_{\beta}\right)$ and $\left.J_{F}^{(} A \gamma\right)$ are nonempty.

For any $x_{1}, x_{2} \in W$, let $\alpha=\min \left\{M_{T}^{A}\left(x_{1} \rightarrow x_{2}\right), M_{T}^{A}\left(x_{1}\right)\right\},\left[\beta_{1}, \beta_{2}\right]=$ $\min \left\{B_{I}^{A}\left(x_{1} \rightarrow x_{2}\right), B_{I}^{A}\left(x_{1}\right)\right\}$ and $\gamma=\left\{J_{F}^{A}\left(x_{1} \rightarrow x_{2}\right), J_{F}^{A}\left(x_{1}\right)\right\}$.

Then clearly:

$$
\begin{aligned}
& M_{T}^{A}\left(x_{2}\right) \geq \alpha=\min \left\{M_{T}^{A}\left(x_{1} \rightarrow x_{2}\right), M_{T}^{A}\left(x_{1}\right)\right\} \\
& B_{I}^{A}\left(y_{2}\right) \geq^{*}\left[\beta_{1}, \beta_{2}\right]=\min \left\{B_{I}^{A}\left(x_{1} \rightarrow x_{2}\right), B_{I}^{A}\left(x_{1}\right)\right\}
\end{aligned}
$$

and

$$
J_{F}^{A}\left(z_{2}\right) \leq \gamma=\max \left\{J_{F}^{A}\left(x_{1} \operatorname{Re} x_{2}, J_{F}^{A}\left(x_{1}\right)\right\}\right.
$$

So, $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is a $M_{B}^{J} \mathrm{w}$ - filter of W.
Lemma 3.2. If A_{m} is a $M_{B}^{J} w$-filter of W then $\left.\left.\left.M_{T}^{(} A_{\alpha}\right) \cap B_{I}^{(} A_{\beta}\right) \cap J_{F}^{(} A_{\gamma}\right)$ are implicative filters of W.

Theorem 3.9. Any implicative filter A ofw is a $(\alpha,[\alpha, \alpha], \alpha)$ cut- M_{B}^{J} of W.
Proof. Let A is implicative filter of W and $\alpha \in[0,1]$. Consider a M_{B}^{J} - set:

$$
\begin{aligned}
& A_{m}=\left(M_{T}^{A}\left(y_{m}\right),\left[B_{I}^{A-}\left(y_{m}\right) B_{I}^{A+}\left(y_{m}\right)\right],\right. \\
& J_{F}^{A}\left(y_{m}\right)=(\alpha,[\alpha, \alpha], \alpha) \text { if } y_{m} \in A_{m} \text { and } \\
& A_{m}=\left(0_{m},\left[0_{m}, 0_{m}\right], 0_{m}\right) \text { if } y_{m} \text { not in } A_{m} . \text { Let } x_{m}, y_{m} \in W . \text { If } y_{m} \in A \text { then } \\
& M_{T}^{A}\left(y_{m}\right)=\alpha \geq \min \left\{M_{T}^{A}\left(x_{m} \rightarrow y_{m}\right), M_{T}^{A}\left(x_{m}\right)\right\}, \\
& B_{I}^{A}\left(y_{m}\right)=[\alpha, \alpha] \geq^{*} \min \left\{B_{I}^{A}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A}\left(x_{m}\right)\right\}
\end{aligned}
$$

and

$$
J_{F}^{A}\left(y_{m}\right)=\alpha \leq \max \left\{J_{F}^{A}\left(x_{m} \rightarrow y_{m}\right), J_{F}^{A}\left(x_{m}\right)\right\} .
$$

Suppose y_{m} notin A then x not in A or $x_{m} \rightarrow y_{m}$ not in A. So
$M_{T}^{A}\left(y_{m}\right)=0_{m}=\min \left\{M_{T}^{A}\left(x_{m} \rightarrow y_{m}\right), M_{T}^{A}\left(x_{m}\right)\right\}$
$B_{I}^{A}\left(y_{m}\right)=\left[0_{m}, 0_{m}\right]=\min \left\{B_{I}^{A}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A}\left(x_{m}\right)\right\}$
and
$J_{F}^{A}\left(y_{m}\right)=0_{m}=\max \left\{J_{F}^{A}\left(x_{m} \rightarrow y_{m}\right), J_{F}^{A}\left({ }_{x} m\right)\right\}$. So, A_{m} is $M_{B}^{J} \mathrm{w}$ - filter of W.

Theorem 3.10. If A_{m} is $M_{B}^{J} w$ - filter of W then the set
$A=\left\{x_{m} \in W /\left(M_{T}^{A}\left(y_{m}\right), B_{I}^{A}\left(y_{m}, y_{m},\right), J_{F}^{A}\left(y_{m}\right)=\left(M_{T}^{A}\left(1_{m}\right), B_{I}^{A}\left[1_{m}, 1_{m}\right], J_{F}^{A}\left(1_{m}\right)\right\}\right.\right.$ is a implicative filter of W.

Proof. Clearly
$A=\left\{x_{m} \in W /\left(M_{T}^{A}\left(y_{m}\right), B_{I}^{A}\left(y_{m}, y_{m},\right), J_{F}^{A}\left(y_{m}\right)=\left(M_{T}^{A}\left(1_{m}\right), B_{I}^{A}\left[1_{m}, 1_{m}\right], J_{F}^{A}\left(1_{m}\right)\right\}\right.\right.$,
and $1_{m} \in A$. Let $x_{m}, y_{m} \in w$ such that $x_{m}, x_{m} \rightarrow y_{m} \in A$. Then

$$
M_{T}^{A}\left(x_{m} \rightarrow y_{m}\right)=M_{T}^{A}\left(x_{m}\right)=M_{T}^{A}\left(1_{m}\right)
$$

$$
B_{I}^{A}\left(x_{m} \rightarrow y_{m}\right)=B_{I}^{A}\left(x_{m}\right)=B_{I}^{A}\left[1_{m}, 1_{m}\right]
$$

and

$$
J_{F}^{A}\left(x_{m} \rightarrow y_{m}\right)=J_{F}^{A}\left(x_{m}\right)=J_{F}^{A}\left(1_{m}\right)
$$

So,

$$
M_{T}^{A}\left(y_{m}\right) \geq \min \left\{M_{T}^{A}\left(x_{m} \rightarrow y-m\right), M_{T}^{A}\left(x_{m}\right)\right\}=M_{T}^{A}\left(1_{m}\right)
$$

$$
B_{I}^{A}\left(y_{m}\right) \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A}\left(x_{m}\right)\right\}=B_{I}^{A}\left(1_{m}\right)
$$

and

$$
J_{F}^{A}\left(y_{m}\right) \leq \max J_{F}^{A}\left(x_{m} \rightarrow y_{m}\right), J_{F}^{A}\left(x_{m}\right)=J_{F}^{A}\left(1_{m}\right) .
$$

That is $y_{m} \in A$. So A a implicative filter of W.
Definition 3.2. $A M_{B}^{J}$ set $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ is on W is called a $M_{B}^{J} w$-lattice filter if it satisfies for all $x_{m}, y_{m} \in W$,

$$
\begin{align*}
& M_{T}^{A}\left(x_{m} \wedge y_{m}\right) \geq \min \left\{M_{T}^{A}\left(x_{m}\right), M_{T}^{A}\left(y_{m}\right)\right\}, \tag{3.5}\\
& \left.B_{I}^{A}\left(x_{m} \wedge y_{m}\right)\right) \geq^{*} \operatorname{rmin}\left\{B_{I}^{A}\left(x_{m}\right), B_{I}^{A}\left(y_{m}\right)\right\} \\
& \text { and } J_{F}^{A}\left(x_{m} \wedge y_{m}\right) \leq \max \left\{J_{F}^{A}\left(x_{m}\right), J_{F}^{A}\left(y_{m}\right)\right\}
\end{align*}
$$

Example 3. The M_{B}^{J} set $A_{m}=\left(M_{T}^{A}, B_{I}^{A}, J_{F}^{A}\right)$ defined on W as follows is M_{B}^{J}-lattice filter of W.

Table 4. MBJW-Lattice filter

Col1	Col2	Col3	Col4
	M_{T}^{A}	B_{I}^{A}	J_{F}^{A}
0_{m}	.547	$[.557, .6]$.451
x_{m}	.547	$[.557, .6]$.451
y_{m}	.721	$[.561, .64]$.331
z_{m}	.721	$[.561, .64]$.331
v_{m}	.547	$[.557, .6]$.451
1_{m}	.721	$[.561, .64]$.331

Theorem 3.11. Every $M_{B}^{J} w$-filter A_{m} of W is M_{B}^{J}-lattice filter of W.
Proof. Let A_{m} is a $M_{B}^{J} \mathrm{~W}$ - filter of W.

$$
\begin{aligned}
M_{T}^{A}\left(x_{m} \wedge y_{m}\right) & \geq \min \left\{M_{T}^{A}\left(x_{m} \rightarrow\left(x_{m} \wedge y_{m}\right)\right), M_{T}^{A}\left(x_{m}\right)\right\} \\
& =\min \left\{M_{T}^{A}\left(x_{m} \rightarrow y_{m}\right), M_{T}^{A}\left(x_{m}\right)\right\} \\
& \geq \min \left\{\min \left\{M_{T}^{A}\left(y_{m} \rightarrow\left(x_{m} \wedge y_{m}\right)\right), M_{T}^{A}\left(y_{m}\right)\right\}, M_{T}^{A}\left(x_{m}\right)\right\} \\
& \geq \min \left\{\min \left\{M_{T}^{A}\left(1_{m}\right), M_{T}^{A}\left(y_{m}\right)\right\}, M_{T}^{A}\left(x_{m}\right)\right\} \\
& =\min \left\{M_{T}^{A}\left(y_{m}\right), M_{T}^{A}\left(x_{m}\right)\right\} \\
B_{I}^{A}\left(x_{m} \wedge y_{m}\right) & \geq^{*} \min \left\{B_{I}^{A}\left(x_{m} \rightarrow\left(x_{m} \wedge y_{m}\right)\right), B_{I}^{A}\left(x_{m}\right)\right\} \\
& =\min \left\{B_{I}^{A}\left(x_{m} \rightarrow y_{m}\right), B_{I}^{A}\left(x_{m}\right)\right\} \\
& \geq^{*} \min \left\{\min \left\{B_{I}^{A}\left(y_{m} \rightarrow\left(x_{m} \wedge y_{m}\right)\right), B_{I}^{A}\left(y_{m}\right)\right\}, B_{I}^{A}\left(x_{m}\right)\right\} \\
& \geq^{*} \min \left\{\min \left\{B_{I}^{A}\left(1_{m}\right), B_{I}^{A}\left(y_{m}\right)\right\}, B_{I}^{A}\left(x_{m}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\min \left\{B_{I}^{A}\left(y_{m}\right), B_{I}^{A}\left(x_{m}\right)\right\} \\
J_{F}^{A}\left(x_{m} \wedge y_{m}\right) & \leq \min \left\{J_{F}^{A}\left(x_{m} \rightarrow\left(x_{m} \wedge y_{m}\right)\right), J_{F}^{A}\left(x_{m}\right)\right\} \\
& =\min \left\{J_{F}^{A}\left(x_{m} \rightarrow y_{m}\right), J_{F}^{A}\left(x_{m}\right)\right\} \\
& \leq \min \left\{\min \left\{J_{F}^{A}\left(y_{m} \rightarrow\left(x_{m} \wedge y_{m}\right)\right), J_{F}^{A}\left(y_{m}\right)\right\}, J_{F}^{A}\left(x_{m}\right)\right\} \\
& \leq \min \left\{\min \left\{J_{F}^{A}\left(1_{m}\right), J_{F}^{A}\left(y_{m}\right)\right\}, J_{F}^{A}\left(x_{m}\right)\right\} \\
& =\min \left\{J_{F}^{A}\left(y_{m}\right), J_{F}^{A}\left(x_{m}\right)\right\} .
\end{aligned}
$$

So A_{m} of W is M_{B}^{J}-lattice filter of W.
Remark 3.1. The M_{B}^{J}-lattice filter of W is need not to be a M_{B}^{J}-filter of W. For example the M_{B}^{J}-lattice filter of A_{m} of W in example 3 is not a M_{B}^{J} - filter of W because $M_{T}^{A}\left(z_{m}\right) \leq \min \left\{M_{T}^{A}\left(y_{m} \rightarrow z_{m}\right), M_{T}^{A}\left(y_{m}\right)\right\}$.

References

[1] A. Ibrahim, Saravan: On implicative and Strong Implicative Filters of Lattice Majsberg Algebras, Global Journal of Mathematical Sciences: Theory and Pratcical, 9(3) (2017), 387-397.
[2] M. B. Ahamed, Ibrahim: A, Fuzzy implicative filters of lattice wajsberg Algebras, Advances in Fuzzy Mathematics, 6(2)(2011), 235-243.
[3] Y. Bhargavi, T. Eswarlal: Vague semiprime ideals of a gamma-semiring, Afrika Mathematika, 2(9) (2018), 425-434.
[4] Y. Bhargavi: Vague filters of a gamma-semiring, International Journal of Mechanical and Production Engineering Research and Development, 8 (2018), 421-428.
[5] J. M. Rodriguez, A. J. Torrens:Wajsberg algebras, Stochastica, 8(1) (1984), 5-31.
[6] H. MANG, P. Madiraju, Y. Zhang, R. Sunderramn: Interval neutrosophic sets, International Journal of Applied Mathematics and Statistics, 3(5) (2005), 1-18.
[7] R. Leelavathi, S. G. Kumar, M. S. N. Murty: Nabla Hukuhara differentiability for fuzzy functions on time scales, International Journal of Applied Mathematics, 49(1) (2019).
[8] R. Leelavathi, S. G. Kumar, M. S. N. Murty:Nabla integral for fuzzy functions on time scales, International Journal of Applied Mathematics, 31(5) (2018), 669-680.
[9] M. Bhommil, M. Pal: Intuitionistic Neutrosophic Set, Journal of Information and Computiong Science, 4(2) (2009), 142-152.
[10] M. M. Takallo, R. A. Borzooei, Y. B. Jun: MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic Sets and Systems, 23 (2018), 72-84.
[11] K. Pushpalatha: Some contributions to boolean like near rings, International Journal of Engineering and Technology (UAE), 7 (3.34) (2018), 670-673.
[12] S. Ragamayi, Y. Bhargavi: A study of vague gamma-nearrings, International Journal of Scientific and Technology Research, 8(11) (2019), 3820-3823.
[13] S. Ragamayi, Y. Bhargavi:Some results on homomorphism of vague ideal of a gammanearring, International Journal of Scientific and Technology Research, 8(11) (2019), 38093812.
[14] T. V. Ramakrishnan, S. Sebastian: A Study on Multi-Fuzzy Sets, International Journal of Applied Mathematics, 23(4) (2010), 713-720.
[15] T. S. Rao, G.S . Kumar, Ch. Vasavi, B. V. A. Rao: On the controllability of fuzzy difference control systems, International Journal of Civil Engineering and Technology, 8(12) (2017), 723-732.
[16] T. S. RaO, S. B. Kumar, H. S. RaO: A study on gamma neutrosophic soft set in decision making problem, ARPN Journal of Engineering and Applied Sciences, 13(7) (2018), 25002504.
[17] T. S. Rao, S. B. Kumar, H. S. Rao: Use of gamma - soft set in application of decision making problem, Journal of Advanced Research in Dynamical and Control Systems, 10(2) (2018), 284-290.
[18] F. Smarandache: Neutrosophic set, a generalization of intuitionistic fuzzy sets, International Journal of Pure and Applied Mathematics, 24(5) (2005), 287-297.
[19] C. H. Vasavi, G. S. Kumar, T. S. Rao, B. V. A. Rao: Application of fuzzy differential equations for cooling problems, International Journal of Mechanical Engineering and Technology, 8(12) (2017), 712-721.
[20] M. WAJSberg:Beitragezum Metaaussagenkal, Monat. Mat. Phys., 42 (1935), 240-243.
Department of Mathematics
K.L.University, A.P., India

Email address: anitha.t537@gmail.com
Department of Mathematics
Nagarjuna University, A.P., India
Email address: amarendravelisela@ymail.com
Department of Mathematics
APIIIT Nuzvid, A.P., India
Email address: bnbbattu@rguktn.ac.in

[^0]: ${ }^{1}$ corresponding author
 2020 Mathematics Subject Classification. 16P70, 16D25.
 Key words and phrases. Lattice wajsberg algebra, MBJ-neutrosophic sets, MBJW - filters and MBJW- lattice filters.

