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Abstract For any positive integer n, the F.Smarandache LCM function SL(n) is defined as

the smallest positive integer k such that n | [1,2,---, k], where [1,2,--- | k] denotes the least
common multiple of 1,2,--- |k, and let n = p*p5? - - - ps* be the factorization of n into prime

powers, then Q(n) = a1p1 + aaps + - - + asps. The main purpose of this paper is using the
elementary methods to study the mean value properties of Q(n)SL(n), and give a sharper

asymptotic formula for it.
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§1. Introduction and Results

For any positive integer n, the famous F.Smarandache LCM function SL(n) defined as
the smallest positive integer k such that n | [1, 2, ---, k], where [1, 2, ---, k] denotes
the least common multiple of 1, 2, ---, k. For example, the first few values of SL(n) are
SL(1) =1, SL(2) =2, SL(3) =3, SL(4) =4, SL(5) =5, SL(6) =3, SL(7) =7, SL(8) = 4,
SL(9) = 6, SL(10) = 5, SL(11) = 11, SL(12) = 4, SL(13) = 13, SL(14) = 7, SL(15) =5, - .
About the elementary properties of SL(n), some authors had studied it, and obtained some
interesting results, see reference [2] and [3]. For example, Lv Zhongtian [4] studied the mean
value properties of SL(n), and proved that for any fixed positive integer k& and any real number

x > 1, we have the asymptotic formula
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where b; (i =2,3,--- , k) are computable constants.

On the other hand, Chen Jianbin [5] studied the value distribution properties of SL(n),

and proved that for any real number z > 1, we have the asymptotic formula
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where ((s) is the Riemann zeta-function, and P(n) denotes the largest prime divisor of n.
Now we define a new arithmetical function Q(n) as follows: Q(1) = 0; for n > 1, let n =

P ps? - - pYebe the factorization of n into prime powers, then Q(n) = a1p; +agpa + -+ -+ asps.
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Obviously, for any positive integers m and n, we have Q(mn) = Q(m) + Q(n). That is, Q(n)
is the additive function. The main purpose of this paper is using the elementary methods to
study the mean value properties of Q(n)SL(n), and give a sharper asymptotic formula for it.
That is, we shall prove the following conclusion:

Theorem. For any real number x > 1, we have the asymptotic formula

— k d.x3 73
Q(n)SL(n) = " +0 ,
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where d; (i =1, 2, ---, k) are computable constants.

§2. Proof of the theorem

In this section, we shall use the elementary methods to complete the proof of the theorem.
In fact, for any positive integer n > 1, let n = p{*p3? - - - p%= be the factorization of n into

prime powers, then from [2] we know that

SL(”) = max{p{ftlang) e apgs}v (1)

and we easily to know that

Q(n) = cap1 + agpa + -+ + APps. (2)

Now we consider the summation

> Q(n)SL(n). (3)

n<x

We separate all integer n in the interval [1,z] into four subsets A, B, C and D as follows:

A:p>+/nand n=m-p;

B: n3 <py <py <+/nandn=m-p;-py, where p; (i = 1,2) are primes;

C:nt <p<+nandn=m-p%

D: otherwise.

It is clear that if n € A, then from (1) we know that SL(n) = p, and from (2) we know
that Q(n) = Q(m) + p. Therefore, by the Abel’s summation formula (See Theorem 4.2 of [6])
and the Prime Theorem (See Theorem 3.2 of [7]):

k
a; - x x
W(Q:):Z +O<lnk+1x),

i
= In*z

where a; (i =1,2,...,k) are computable constants and a; = 1.
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We have
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where ((s) is the Riemann zeta-function, and b; (i = 2,3,--- , k) are computable constants.

Similarly, if n € B, then we have SL(n) = ps and Q(n) = Q(m) + p; + p2. So

> Q(n)SL(n)

neB

where ¢; (i =1,2,---

2. >, nto

(Q(m) +p1 +p2) p2 =

Z p1p2

mp1p2<x mpi1p2<T mp1p2<x
m<p1<p2 m<p1<p2 m<p1<p2
2 2
E E E p3 + O(z%)

mff% m<p1 <4/ % p1<p2< plmm,

>, > l” <plxm> p(;;g — m(p1)pT — 2/;;"1 w(t)tdt]

mgx% m<pi S\/ %

+0(z?)
23
o (e )

k

>

i=1

CZ'"E?’

In 2

, k) are computable constants.

Now we estimate the error terms in set C. Using the same method of proving (4), we have
SL(n) = p? and Q(n) = Q(m) + 2p, so

> Q(n)SL(n)

neC
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mp2 <z mp? <z mp?<wz
m<p m<p m<p

3

= 2 E E P>+ O(x2)

1 =
m<z3 m<p<y/%

O(a?). (6)

Finally, we estimate the error terms in set D. For any integer n € D, if SL(n) = p then
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p < /n; if SL(n) = p?, then p < n3; or SL(n) =p* a > 3. So we have

> Qm)SL(n) < > Qm)+pp+ > (Qm)+2p)p

neD mp<xz mp2<zx
p<m p<m
— x2
+ Q Y —. 7
> (Qm)ap)p™ < e (7)
mp®<x
pgm%,QZB

Combining (4), (5), (6) and (7) we may immediately obtain the asymptotic formula

Z Q(n)SL(n) = Z Q(n)SL(n) + Z Q(n)SL(n)

n<x neA neB

+) " Qm)SL(n) + Y Q(n)SL(n)
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where d; (i =1,2,---,k) are computable constants.

This completes the proof of Theorem.
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